Novel Feature Reduction (NFR) Model With Machine Learning and Data Mining Algorithms for Effective Disease Risk Prediction

Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 184087 - 184108
Main Authors Pasha, Syed Javeed, Mohamed, E. Syed
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3028714

Cover

Abstract Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by the medical practitioners. Moreover, for effective disease risk prediction in medical analysis, more emphasis is accorded to the area under the curve (AUC) with accuracy as an evaluation metric. However, the role of the AUC has not been previously characterized notably. In this research article, a novel feature reduction (NFR) model that is aligned with the ML and DM algorithms is proposed to reduce the error rate and further improve the performance. The proposed NFR model comprises of two approaches and uses the AUC in addition to the accuracy to achieve a robust and effective disease risk prediction. The first approach is based on a heuristic process evaluating performance by reducing features with respect to the improvement in the AUC besides the accuracy as evaluation metrics, working to obtain the best subset of highly contributing features in the prediction. The second approach evaluates the accuracy and AUC of all individual features and forms the subsets with the highest accuracies, AUCs, and least difference between them, which are combined in various combinations to achieve the best-reduced set of highly relevant features. For this purpose, the benchmarked public heart datasets of the ML repository of the University of California, Irvine (UCI) are tested; the results are promising. The highest accuracy and AUC achieved with the proposed NFR model are 95.52% and 99.20% with 41.67% feature reduction, respectively. The accuracy is 4.22% higher than recent existing research with a significant improvement of 25% in the performance of the running time of the algorithm.
AbstractList Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by the medical practitioners. Moreover, for effective disease risk prediction in medical analysis, more emphasis is accorded to the area under the curve (AUC) with accuracy as an evaluation metric. However, the role of the AUC has not been previously characterized notably. In this research article, a novel feature reduction (NFR) model that is aligned with the ML and DM algorithms is proposed to reduce the error rate and further improve the performance. The proposed NFR model comprises of two approaches and uses the AUC in addition to the accuracy to achieve a robust and effective disease risk prediction. The first approach is based on a heuristic process evaluating performance by reducing features with respect to the improvement in the AUC besides the accuracy as evaluation metrics, working to obtain the best subset of highly contributing features in the prediction. The second approach evaluates the accuracy and AUC of all individual features and forms the subsets with the highest accuracies, AUCs, and least difference between them, which are combined in various combinations to achieve the best-reduced set of highly relevant features. For this purpose, the benchmarked public heart datasets of the ML repository of the University of California, Irvine (UCI) are tested; the results are promising. The highest accuracy and AUC achieved with the proposed NFR model are 95.52% and 99.20% with 41.67% feature reduction, respectively. The accuracy is 4.22% higher than recent existing research with a significant improvement of 25% in the performance of the running time of the algorithm.
Author Mohamed, E. Syed
Pasha, Syed Javeed
Author_xml – sequence: 1
  givenname: Syed Javeed
  orcidid: 0000-0002-4091-0960
  surname: Pasha
  fullname: Pasha, Syed Javeed
  email: syedjaveedrs@gmail.com
  organization: Department of Computer Applications, School of Mathematical and Computer Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
– sequence: 2
  givenname: E. Syed
  surname: Mohamed
  fullname: Mohamed, E. Syed
  organization: Department of Computer Science and Engineering, School of Mathematical and Computer Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
BookMark eNptkU1vEzEQhleoSJTSX9CLJS5wSPD37h6jNKGVkoJaEEdr1jubOmzXqb0pan89TraKUIQv9ozneWfs93120vkOs-yC0TFjtPwymU5nd3djTjkdC8qLnMk32SlnuhwJJfTJP-d32XmMa5pWkVIqP81ebvwTtmSO0G8Dklust7Z3viOfbua3n8nS1-n2l-vvyRLsveuQLBBC57oVga4ml9ADWbp9PGlXPqTKh0gaH8isaTBJPSG5dBEhJnEXf5PvAWu3b_Ehe9tAG_H8dT_Lfs5nP6ZXo8W3r9fTyWJkJS36kWUKKptXBQqwlUZslNQVZUVZ1TXjQiCoXKqcsSbXXCpUNSqQlS0ZaFkIcZZdD7q1h7XZBPcA4dl4cGaf8GFlIPTOtmhqCnVVccE0bxLKStlUqLQEKkvJRZG05KC17Tbw_Afa9iDIqNnZYcBajNHs7DCvdiTs44Btgn_cYuzN2m9Dl15t0sSiYLlQOlWVQ5UNPsaAjbGuh91X9QFce-gwGH7cQRyxx3P9n7oYKIeIB6LkjEuuxV8RerZv
CODEN IAECCG
CitedBy_id crossref_primary_10_4108_eetpht_10_6807
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_32604_iasc_2022_022276
crossref_primary_10_1016_j_compbiolchem_2025_108394
crossref_primary_10_3233_JIFS_223280
crossref_primary_10_1002_eng2_13034
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_1142_S0218488523400056
crossref_primary_10_3390_w15132318
crossref_primary_10_1016_j_imu_2022_101064
crossref_primary_10_54105_ijainn_C1046_042322
crossref_primary_10_1186_s12911_023_02269_2
crossref_primary_10_1016_j_advengsoft_2022_103297
crossref_primary_10_4018_IJSIR_313665
crossref_primary_10_1111_risa_14215
crossref_primary_10_32604_cmc_2025_058724
crossref_primary_10_3390_electronics10192347
crossref_primary_10_1007_s10461_023_04015_1
crossref_primary_10_3390_app11188352
crossref_primary_10_1186_s12911_023_02154_y
crossref_primary_10_3390_app13010118
crossref_primary_10_32604_iasc_2023_028903
crossref_primary_10_1016_j_bspc_2022_104019
crossref_primary_10_1016_j_heliyon_2024_e27411
crossref_primary_10_1016_j_imu_2022_101155
crossref_primary_10_1109_ACCESS_2022_3165792
crossref_primary_10_1109_ACCESS_2024_3512878
crossref_primary_10_3390_pr11041210
Cites_doi 10.1007/s12065-019-00327-1
10.1007/s10115-018-1185-y
10.1109/ACCESS.2019.2953920
10.1016/j.imu.2019.100203
10.1109/TKDE.2005.50
10.1007/s13042-018-0784-y
10.1016/j.ins.2010.05.037
10.1016/j.jksuci.2011.09.002
10.1016/j.jbi.2018.03.016
10.1109/ACCESS.2019.2904800
10.1016/j.physa.2017.04.113
10.1016/j.jksuci.2020.01.007
10.1016/j.neucom.2018.11.101
10.1016/j.future.2019.09.056
10.1007/978-981-13-0586-3_45
10.1016/j.imu.2019.100180
10.1016/j.asoc.2019.105617
10.1007/978-1-4615-5689-3
10.1109/ACCESS.2019.2923707
10.1109/ICIEV.2016.7759984
10.1007/s13042-018-0797-6
10.1109/ACCESS.2019.2962755
10.1016/j.eswa.2008.02.010
10.1016/j.asej.2019.10.004
10.1016/j.neucom.2019.06.040
10.1007/s10489-017-1037-6
10.1109/ICCUBEA47591.2019.9129304
10.1109/TCBB.2019.2954826
10.1007/s00500-018-3133-x
10.1016/j.cie.2018.12.021
10.1016/j.procs.2015.09.132
10.1007/s00500-019-04022-2
10.1007/978-981-13-2414-7_6
10.1007/s10489-014-0611-4
10.1109/JSTSP.2018.2873988
10.1109/ICICT48043.2020.9112406
10.1109/ICOEI.2019.8862604
10.1016/j.compeleceng.2017.08.005
10.1016/j.tele.2018.11.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3028714
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 184108
ExternalDocumentID oai_doaj_org_article_d0adbb23162f483194fbe564a0494238
10.1109/access.2020.3028714
10_1109_ACCESS_2020_3028714
9212426
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-c15abc7b8e3acb6eef546b0189bdd1233ea5745711f76245e5de5a4bc91a64833
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:33 EDT 2025
Sun Sep 07 11:10:06 EDT 2025
Mon Jun 30 03:02:17 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Wed Oct 01 03:37:38 EDT 2025
Wed Aug 27 02:32:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c15abc7b8e3acb6eef546b0189bdd1233ea5745711f76245e5de5a4bc91a64833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4091-0960
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9212426
PQID 2453817356
PQPubID 4845423
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_d0adbb23162f483194fbe564a0494238
unpaywall_primary_10_1109_access_2020_3028714
crossref_citationtrail_10_1109_ACCESS_2020_3028714
ieee_primary_9212426
proquest_journals_2453817356
crossref_primary_10_1109_ACCESS_2020_3028714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
groves (ref2) 2013
ref30
ref33
ref11
ref32
ref39
ref17
ref38
ref16
ref19
ref18
el-bialy (ref10) 2015; 65
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref20
ref42
ref41
guyon (ref7) 2003; 3
ref22
ref44
mokeddem (ref25) 2018; 48
ref21
ref43
(ref1) 2018
ref28
ref27
ref29
fernández-delgado (ref35) 2014; 15
ref6
ref5
ref40
bishop (ref4) 2006
brause (ref3) 2199
(ref9) 2020
(ref8) 2018
References_xml – ident: ref32
  doi: 10.1007/s12065-019-00327-1
– year: 2006
  ident: ref4
  publication-title: Pattern Recognition and Machine Learning
– ident: ref19
  doi: 10.1007/s10115-018-1185-y
– ident: ref29
  doi: 10.1109/ACCESS.2019.2953920
– ident: ref15
  doi: 10.1016/j.imu.2019.100203
– ident: ref48
  doi: 10.1109/TKDE.2005.50
– ident: ref42
  doi: 10.1007/s13042-018-0784-y
– ident: ref47
  doi: 10.1016/j.ins.2010.05.037
– ident: ref45
  doi: 10.1016/j.jksuci.2011.09.002
– ident: ref26
  doi: 10.1016/j.jbi.2018.03.016
– ident: ref31
  doi: 10.1109/ACCESS.2019.2904800
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref7
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref17
  doi: 10.1016/j.physa.2017.04.113
– ident: ref44
  doi: 10.1016/j.jksuci.2020.01.007
– ident: ref40
  doi: 10.1016/j.neucom.2018.11.101
– ident: ref14
  doi: 10.1016/j.future.2019.09.056
– year: 2018
  ident: ref8
  publication-title: UCI Machine Learning Repository Heart Disease Data Set
– ident: ref28
  doi: 10.1007/978-981-13-0586-3_45
– ident: ref23
  doi: 10.1016/j.imu.2019.100180
– ident: ref37
  doi: 10.1016/j.asoc.2019.105617
– ident: ref5
  doi: 10.1007/978-1-4615-5689-3
– ident: ref30
  doi: 10.1109/ACCESS.2019.2923707
– ident: ref11
  doi: 10.1109/ICIEV.2016.7759984
– ident: ref41
  doi: 10.1007/s13042-018-0797-6
– ident: ref16
  doi: 10.1109/ACCESS.2019.2962755
– ident: ref6
  doi: 10.1016/j.eswa.2008.02.010
– ident: ref21
  doi: 10.1016/j.asej.2019.10.004
– ident: ref38
  doi: 10.1016/j.neucom.2019.06.040
– ident: ref46
  doi: 10.1007/s10489-017-1037-6
– volume: 48
  start-page: 1233
  year: 2018
  ident: ref25
  article-title: A fuzzy classification model for myocardial infarction risk assessment
  publication-title: Appl Intell
– start-page: 1
  year: 2013
  ident: ref2
  article-title: Accelerating value and innovation, big data
  publication-title: Revolut Healthc Accel Value Innov
– ident: ref22
  doi: 10.1109/ICCUBEA47591.2019.9129304
– ident: ref43
  doi: 10.1109/TCBB.2019.2954826
– year: 2020
  ident: ref9
  publication-title: UCI Machine Learning Repository Statlog (Heart) Data Set
– ident: ref27
  doi: 10.1007/s00500-018-3133-x
– ident: ref34
  doi: 10.1016/j.cie.2018.12.021
– volume: 65
  start-page: 459
  year: 2015
  ident: ref10
  article-title: Feature analysis of coronary artery heart disease data sets
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.09.132
– ident: ref33
  doi: 10.1007/s00500-019-04022-2
– ident: ref12
  doi: 10.1007/978-981-13-2414-7_6
– start-page: 1
  year: 2199
  ident: ref3
  article-title: Medical analysis and diagnosis by neural networks
  publication-title: Proc Int Symp Med Data Anal
– ident: ref24
  doi: 10.1007/s10489-014-0611-4
– volume: 15
  start-page: 3133
  year: 2014
  ident: ref35
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1109/JSTSP.2018.2873988
– year: 2018
  ident: ref1
  publication-title: WHO | Cardiovascular Diseases (CVDs)
– ident: ref18
  doi: 10.1109/ICICT48043.2020.9112406
– ident: ref36
  doi: 10.1109/ICOEI.2019.8862604
– ident: ref39
  doi: 10.1016/j.compeleceng.2017.08.005
– ident: ref13
  doi: 10.1016/j.tele.2018.11.007
SSID ssj0000816957
Score 2.4391332
Snippet Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 184087
SubjectTerms Accuracy
Algorithms
AUC
cardiovascular
Data mining
Disease
disease risk prediction model
Diseases
Error reduction
Feature extraction
feature selection
health care
Heart
Machine learning
Medical diagnostic imaging
NFR
Performance enhancement
Performance evaluation
Prediction algorithms
Predictive models
UCI ML repository
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQXgYPCDYQhTH5gQeQiBYntuM8lm7VhLQKVUzszTonzpgW0qlNQfDXcxd7VSskeEF5Sy7O5e58H7b1O8beGF8qr7EsaYyRiRRpnSClSoDAw4zINYRTvjN9fik_XqmrrVZfdCYswAMHwZ3UKdTOYRais0YaNBjZOK-0BAI2wXhD3jc15VYxNfhgI3SpiggzJNLyZDyZ4B9hQZhhnZpSnSB3QtGA2B9brOxkm_vr7g5-_oC23Qo80yfsccwY-Thw-pQ98N0Be7SFI3jIfs0W333LKZ1bLz2fExwrCZy_nU3n7zj1O2v5l5v-K78Yzk56HmFVrzl0NT-FHvjF0CmCj9vrxRIpv604prM8gBujR-SnYSeHz29Wt_zTkvZ36BPP2OX07PPkPIlNFZJKpqZPKqHAVYUzPofKae8bJbVLhSldXWMYyz2oQqpCiAb9pFRe1V6BdFUpQKMC8udsr1t0_gXjxoDw3ilVgZcqa0BXeBUVZE2NLlSPWHYvX1tFxHFqfNHaofJISxuUYkkpNiplxN5vXroLgBt_J_9AituQElr2cANtyEYbsv-yoRE7JLVvBikxnmPmMmJH92Zg48xeWRQJgRrmCh8nG9P4g1UY2l3usPryf7D6ij2kMcMi0BHb65dr_xrTot4dDzPgN46lBD4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege0A88DUQhYH8wANIZMSJ7TqPpaOakFZNFRXjKTo7zjYtpFObbmJ_PXeJV7UgTaC8OefEH-fz73T27xh7Z3ymvEa3pDRGRlLERYSSKgIiDzMi1dCd8p3ow5n8eqJOAs823YXZjN-LOPsEbdpA9OMSdC9jgvfyPtvRCoF3j-3MJsfDH5Q-TugsSttA5Os7am7tPS1Ff8ipsgUvH6zqS_h1DVW1sdOMH3dXuJctQSEdMLnYXzV23938Qd_4j514wh4FxMmHnYo8Zfd8_Yw93OAh3GU3k_mVrzjBwdXC8ynRudKE8feT8fQDp3xpFf9-3pzxo_bspeeBlvWUQ13wA2iAH7WZJviwOp0vUPLnkiMc5h05MlpUftBFgvj0fHnBjxcUH6JfPGez8Zdvo8MoJGWInIxNEzmhwLqBNT4FZ7X3pZLaxsJktihwG0w9qIFUAyFKtLNSeVV4BdK6TICWJk1fsF49r_1Lxo0B4b1VyoGXKilBO3wGDpKyQBOs-yy5na7cBcZySpxR5a3nEmf5cDRCNc1pYPMwsH32cV3psiPsuFv8M-nBWpTYttsCnL88LN68iKGwFpGwTkrsgshkab3SEohcBzFPn-2SFq0_kiEeQOTTZ3u3WpUHy7DMcUiIFDFV-Dpaa9pfTe1UZqupr_5Tfo_1msXKv0HQ1Ni3YbH8Bg3DDy4
  priority: 102
  providerName: Unpaywall
Title Novel Feature Reduction (NFR) Model With Machine Learning and Data Mining Algorithms for Effective Disease Risk Prediction
URI https://ieeexplore.ieee.org/document/9212426
https://www.proquest.com/docview/2453817356
https://doi.org/10.1109/access.2020.3028714
https://doaj.org/article/d0adbb23162f483194fbe564a0494238
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe2cQAOfA1Ex6h84ADS0uXDdpxj6agmpFZTRcU4Rbbzsk0L7dQmQ-yv59lxoxUQQrlEyUts5728L9u_R8g7CRkHgWFJKSULWBQWAVLyQFnwMBklQrWrfKfidM4-n_PzHXLU7YUBALf4DAb21M3lF0vT2FTZcYZ6Fi3KLtlNpWj3anX5FFtAIuOpBxaKwux4OBrhGDAEjDEyDW1kwLaMj8Po90VVtvzLh83iRv38oarqnqkZPyWTTSfbFSbXg6bWA3P3G37j_47iGXnifU46bIXkOdmBxQvy-B4S4T65my5voaLWIWxWQGcW0NWyjL6fjmcfqK2YVtGvV_UlnbjVl0A9MOsFVYuCnqha0YmrNUGH1cVyhZTf1xQdYtrCI6NOpSftXBCdXa2v6dnKzhDZJl6S-fjTl9Fp4MsyBIaFsg5MxJU2qZaQKKMFQMmZ0GEkM10UaAgTUDxlPI2iEjUt48AL4Ippk0VKMJkkr8jeYrmA14RKqSIAzblRwHhcKmHwSI2KywKVsOiReMOv3HjMcls6o8pd7BJmecvk3DI590zukaPuoZsWsuPf5B-tIHSkFm_bXUCm5f73zYtQFVqjLyziEocQZazUwAVTFl4HvZ4e2beM7l7iedwjhxuxyr1uWOf4SSwsYsLxdtCJ2h9dVa5g5lZXD_7eyhvyyFK1iaFDslevGniLrlKt-y7F0Hd_Sp88mE_Pht9-AZFnEQE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOAwOfA1ExwAfOIC0dHFiO86xdFQF1gpVm9jNsp2XMS1LpzYFsb-e5ySNVkAI5RIlz7Gd9_w-_PF7hLxRkAqQGJbkSvGAszALkFIExoOHKRZL0-zyncrxKf90Js62yEF3FgYA6s1n0Pe39Vp-NncrP1V2mKKeRYtyh9wVnHPRnNbqZlR8ColUJC20EAvTw8FwiL3AIDDC2DT0sQHfMD81Sn-bVmXDw9xZldfm5w9TFLeMzeghmayb2ewxueyvKtt3N78hOP5vPx6RB63XSQeNmDwmW1A-IfdvYRHukpvp_DsU1LuEqwXQmYd09Uyjb6ej2Tvqc6YV9OtF9Y1O6v2XQFto1nNqyowemcrQSZ1tgg6K8_kCKa-WFF1i2gAko1alR81qEJ1dLC_pl4VfI_JVPCWnow8nw3HQJmYIHA9VFTgmjHWJVRAbZyVALri0IVOpzTI0hTEYkXCRMJajruUCRAbCcOtSZiRXcfyMbJfzEp4TqpRhAFYIZ4CLKDfS4ZU4E-UZqmHZI9GaX9q1qOU-eUah6-glTHXDZO2ZrFsm98hBV-i6Ae34N_l7LwgdqUfcrh8g03Q7gHUWmsxa9IZllGMXWMpzC0Jy4wF20O_pkV3P6O4jLY97ZH8tVrrVDkuNv8QDI8YCXwedqP3RVFOnzNxo6t7fa3lNdsYnk2N9_HH6-QW550s000T7ZLtarOAlOk6VfVWPl1_88hGp
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege0A88DUQhYH8wANIZMSJ7TqPpaOakFZNFRXjKTo7zjYtpFObbmJ_PXeJV7UgTaC8OefEH-fz73T27xh7Z3ymvEa3pDRGRlLERYSSKgIiDzMi1dCd8p3ow5n8eqJOAs823YXZjN-LOPsEbdpA9OMSdC9jgvfyPtvRCoF3j-3MJsfDH5Q-TugsSttA5Os7am7tPS1Ff8ipsgUvH6zqS_h1DVW1sdOMH3dXuJctQSEdMLnYXzV23938Qd_4j514wh4FxMmHnYo8Zfd8_Yw93OAh3GU3k_mVrzjBwdXC8ynRudKE8feT8fQDp3xpFf9-3pzxo_bspeeBlvWUQ13wA2iAH7WZJviwOp0vUPLnkiMc5h05MlpUftBFgvj0fHnBjxcUH6JfPGez8Zdvo8MoJGWInIxNEzmhwLqBNT4FZ7X3pZLaxsJktihwG0w9qIFUAyFKtLNSeVV4BdK6TICWJk1fsF49r_1Lxo0B4b1VyoGXKilBO3wGDpKyQBOs-yy5na7cBcZySpxR5a3nEmf5cDRCNc1pYPMwsH32cV3psiPsuFv8M-nBWpTYttsCnL88LN68iKGwFpGwTkrsgshkab3SEohcBzFPn-2SFq0_kiEeQOTTZ3u3WpUHy7DMcUiIFDFV-Dpaa9pfTe1UZqupr_5Tfo_1msXKv0HQ1Ni3YbH8Bg3DDy4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Feature+Reduction+%28NFR%29+Model+With+Machine+Learning+and+Data+Mining+Algorithms+for+Effective+Disease+Risk+Prediction&rft.jtitle=IEEE+access&rft.au=Pasha%2C+Syed+Javeed&rft.au=Mohamed%2C+E.+Syed&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=184087&rft.epage=184108&rft_id=info:doi/10.1109%2FACCESS.2020.3028714&rft.externalDocID=9212426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon