Novel Feature Reduction (NFR) Model With Machine Learning and Data Mining Algorithms for Effective Disease Risk Prediction
Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by...
        Saved in:
      
    
          | Published in | IEEE access Vol. 8; pp. 184087 - 184108 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2020.3028714 | 
Cover
| Abstract | Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by the medical practitioners. Moreover, for effective disease risk prediction in medical analysis, more emphasis is accorded to the area under the curve (AUC) with accuracy as an evaluation metric. However, the role of the AUC has not been previously characterized notably. In this research article, a novel feature reduction (NFR) model that is aligned with the ML and DM algorithms is proposed to reduce the error rate and further improve the performance. The proposed NFR model comprises of two approaches and uses the AUC in addition to the accuracy to achieve a robust and effective disease risk prediction. The first approach is based on a heuristic process evaluating performance by reducing features with respect to the improvement in the AUC besides the accuracy as evaluation metrics, working to obtain the best subset of highly contributing features in the prediction. The second approach evaluates the accuracy and AUC of all individual features and forms the subsets with the highest accuracies, AUCs, and least difference between them, which are combined in various combinations to achieve the best-reduced set of highly relevant features. For this purpose, the benchmarked public heart datasets of the ML repository of the University of California, Irvine (UCI) are tested; the results are promising. The highest accuracy and AUC achieved with the proposed NFR model are 95.52% and 99.20% with 41.67% feature reduction, respectively. The accuracy is 4.22% higher than recent existing research with a significant improvement of 25% in the performance of the running time of the algorithm. | 
    
|---|---|
| AbstractList | Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable data into beneficial knowledge. It is proven from the literature works that a chance of 12% error remains in the diagnosis of the diseases by the medical practitioners. Moreover, for effective disease risk prediction in medical analysis, more emphasis is accorded to the area under the curve (AUC) with accuracy as an evaluation metric. However, the role of the AUC has not been previously characterized notably. In this research article, a novel feature reduction (NFR) model that is aligned with the ML and DM algorithms is proposed to reduce the error rate and further improve the performance. The proposed NFR model comprises of two approaches and uses the AUC in addition to the accuracy to achieve a robust and effective disease risk prediction. The first approach is based on a heuristic process evaluating performance by reducing features with respect to the improvement in the AUC besides the accuracy as evaluation metrics, working to obtain the best subset of highly contributing features in the prediction. The second approach evaluates the accuracy and AUC of all individual features and forms the subsets with the highest accuracies, AUCs, and least difference between them, which are combined in various combinations to achieve the best-reduced set of highly relevant features. For this purpose, the benchmarked public heart datasets of the ML repository of the University of California, Irvine (UCI) are tested; the results are promising. The highest accuracy and AUC achieved with the proposed NFR model are 95.52% and 99.20% with 41.67% feature reduction, respectively. The accuracy is 4.22% higher than recent existing research with a significant improvement of 25% in the performance of the running time of the algorithm. | 
    
| Author | Mohamed, E. Syed Pasha, Syed Javeed  | 
    
| Author_xml | – sequence: 1 givenname: Syed Javeed orcidid: 0000-0002-4091-0960 surname: Pasha fullname: Pasha, Syed Javeed email: syedjaveedrs@gmail.com organization: Department of Computer Applications, School of Mathematical and Computer Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India – sequence: 2 givenname: E. Syed surname: Mohamed fullname: Mohamed, E. Syed organization: Department of Computer Science and Engineering, School of Mathematical and Computer Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India  | 
    
| BookMark | eNptkU1vEzEQhleoSJTSX9CLJS5wSPD37h6jNKGVkoJaEEdr1jubOmzXqb0pan89TraKUIQv9ozneWfs93120vkOs-yC0TFjtPwymU5nd3djTjkdC8qLnMk32SlnuhwJJfTJP-d32XmMa5pWkVIqP81ebvwTtmSO0G8Dklust7Z3viOfbua3n8nS1-n2l-vvyRLsveuQLBBC57oVga4ml9ADWbp9PGlXPqTKh0gaH8isaTBJPSG5dBEhJnEXf5PvAWu3b_Ehe9tAG_H8dT_Lfs5nP6ZXo8W3r9fTyWJkJS36kWUKKptXBQqwlUZslNQVZUVZ1TXjQiCoXKqcsSbXXCpUNSqQlS0ZaFkIcZZdD7q1h7XZBPcA4dl4cGaf8GFlIPTOtmhqCnVVccE0bxLKStlUqLQEKkvJRZG05KC17Tbw_Afa9iDIqNnZYcBajNHs7DCvdiTs44Btgn_cYuzN2m9Dl15t0sSiYLlQOlWVQ5UNPsaAjbGuh91X9QFce-gwGH7cQRyxx3P9n7oYKIeIB6LkjEuuxV8RerZv | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_4108_eetpht_10_6807 crossref_primary_10_1109_ACCESS_2023_3289584 crossref_primary_10_32604_iasc_2022_022276 crossref_primary_10_1016_j_compbiolchem_2025_108394 crossref_primary_10_3233_JIFS_223280 crossref_primary_10_1002_eng2_13034 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_1142_S0218488523400056 crossref_primary_10_3390_w15132318 crossref_primary_10_1016_j_imu_2022_101064 crossref_primary_10_54105_ijainn_C1046_042322 crossref_primary_10_1186_s12911_023_02269_2 crossref_primary_10_1016_j_advengsoft_2022_103297 crossref_primary_10_4018_IJSIR_313665 crossref_primary_10_1111_risa_14215 crossref_primary_10_32604_cmc_2025_058724 crossref_primary_10_3390_electronics10192347 crossref_primary_10_1007_s10461_023_04015_1 crossref_primary_10_3390_app11188352 crossref_primary_10_1186_s12911_023_02154_y crossref_primary_10_3390_app13010118 crossref_primary_10_32604_iasc_2023_028903 crossref_primary_10_1016_j_bspc_2022_104019 crossref_primary_10_1016_j_heliyon_2024_e27411 crossref_primary_10_1016_j_imu_2022_101155 crossref_primary_10_1109_ACCESS_2022_3165792 crossref_primary_10_1109_ACCESS_2024_3512878 crossref_primary_10_3390_pr11041210  | 
    
| Cites_doi | 10.1007/s12065-019-00327-1 10.1007/s10115-018-1185-y 10.1109/ACCESS.2019.2953920 10.1016/j.imu.2019.100203 10.1109/TKDE.2005.50 10.1007/s13042-018-0784-y 10.1016/j.ins.2010.05.037 10.1016/j.jksuci.2011.09.002 10.1016/j.jbi.2018.03.016 10.1109/ACCESS.2019.2904800 10.1016/j.physa.2017.04.113 10.1016/j.jksuci.2020.01.007 10.1016/j.neucom.2018.11.101 10.1016/j.future.2019.09.056 10.1007/978-981-13-0586-3_45 10.1016/j.imu.2019.100180 10.1016/j.asoc.2019.105617 10.1007/978-1-4615-5689-3 10.1109/ACCESS.2019.2923707 10.1109/ICIEV.2016.7759984 10.1007/s13042-018-0797-6 10.1109/ACCESS.2019.2962755 10.1016/j.eswa.2008.02.010 10.1016/j.asej.2019.10.004 10.1016/j.neucom.2019.06.040 10.1007/s10489-017-1037-6 10.1109/ICCUBEA47591.2019.9129304 10.1109/TCBB.2019.2954826 10.1007/s00500-018-3133-x 10.1016/j.cie.2018.12.021 10.1016/j.procs.2015.09.132 10.1007/s00500-019-04022-2 10.1007/978-981-13-2414-7_6 10.1007/s10489-014-0611-4 10.1109/JSTSP.2018.2873988 10.1109/ICICT48043.2020.9112406 10.1109/ICOEI.2019.8862604 10.1016/j.compeleceng.2017.08.005 10.1016/j.tele.2018.11.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2020.3028714 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 184108 | 
    
| ExternalDocumentID | oai_doaj_org_article_d0adbb23162f483194fbe564a0494238 10.1109/access.2020.3028714 10_1109_ACCESS_2020_3028714 9212426  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-c15abc7b8e3acb6eef546b0189bdd1233ea5745711f76245e5de5a4bc91a64833 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:42:33 EDT 2025 Sun Sep 07 11:10:06 EDT 2025 Mon Jun 30 03:02:17 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Wed Oct 01 03:37:38 EDT 2025 Wed Aug 27 02:32:30 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-c15abc7b8e3acb6eef546b0189bdd1233ea5745711f76245e5de5a4bc91a64833 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4091-0960 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9212426 | 
    
| PQID | 2453817356 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d0adbb23162f483194fbe564a0494238 unpaywall_primary_10_1109_access_2020_3028714 crossref_citationtrail_10_1109_ACCESS_2020_3028714 ieee_primary_9212426 proquest_journals_2453817356 crossref_primary_10_1109_ACCESS_2020_3028714  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 20200000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 groves (ref2) 2013 ref30 ref33 ref11 ref32 ref39 ref17 ref38 ref16 ref19 ref18 el-bialy (ref10) 2015; 65 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref20 ref42 ref41 guyon (ref7) 2003; 3 ref22 ref44 mokeddem (ref25) 2018; 48 ref21 ref43 (ref1) 2018 ref28 ref27 ref29 fernández-delgado (ref35) 2014; 15 ref6 ref5 ref40 bishop (ref4) 2006 brause (ref3) 2199 (ref9) 2020 (ref8) 2018  | 
    
| References_xml | – ident: ref32 doi: 10.1007/s12065-019-00327-1 – year: 2006 ident: ref4 publication-title: Pattern Recognition and Machine Learning – ident: ref19 doi: 10.1007/s10115-018-1185-y – ident: ref29 doi: 10.1109/ACCESS.2019.2953920 – ident: ref15 doi: 10.1016/j.imu.2019.100203 – ident: ref48 doi: 10.1109/TKDE.2005.50 – ident: ref42 doi: 10.1007/s13042-018-0784-y – ident: ref47 doi: 10.1016/j.ins.2010.05.037 – ident: ref45 doi: 10.1016/j.jksuci.2011.09.002 – ident: ref26 doi: 10.1016/j.jbi.2018.03.016 – ident: ref31 doi: 10.1109/ACCESS.2019.2904800 – volume: 3 start-page: 1157 year: 2003 ident: ref7 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref17 doi: 10.1016/j.physa.2017.04.113 – ident: ref44 doi: 10.1016/j.jksuci.2020.01.007 – ident: ref40 doi: 10.1016/j.neucom.2018.11.101 – ident: ref14 doi: 10.1016/j.future.2019.09.056 – year: 2018 ident: ref8 publication-title: UCI Machine Learning Repository Heart Disease Data Set – ident: ref28 doi: 10.1007/978-981-13-0586-3_45 – ident: ref23 doi: 10.1016/j.imu.2019.100180 – ident: ref37 doi: 10.1016/j.asoc.2019.105617 – ident: ref5 doi: 10.1007/978-1-4615-5689-3 – ident: ref30 doi: 10.1109/ACCESS.2019.2923707 – ident: ref11 doi: 10.1109/ICIEV.2016.7759984 – ident: ref41 doi: 10.1007/s13042-018-0797-6 – ident: ref16 doi: 10.1109/ACCESS.2019.2962755 – ident: ref6 doi: 10.1016/j.eswa.2008.02.010 – ident: ref21 doi: 10.1016/j.asej.2019.10.004 – ident: ref38 doi: 10.1016/j.neucom.2019.06.040 – ident: ref46 doi: 10.1007/s10489-017-1037-6 – volume: 48 start-page: 1233 year: 2018 ident: ref25 article-title: A fuzzy classification model for myocardial infarction risk assessment publication-title: Appl Intell – start-page: 1 year: 2013 ident: ref2 article-title: Accelerating value and innovation, big data publication-title: Revolut Healthc Accel Value Innov – ident: ref22 doi: 10.1109/ICCUBEA47591.2019.9129304 – ident: ref43 doi: 10.1109/TCBB.2019.2954826 – year: 2020 ident: ref9 publication-title: UCI Machine Learning Repository Statlog (Heart) Data Set – ident: ref27 doi: 10.1007/s00500-018-3133-x – ident: ref34 doi: 10.1016/j.cie.2018.12.021 – volume: 65 start-page: 459 year: 2015 ident: ref10 article-title: Feature analysis of coronary artery heart disease data sets publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.132 – ident: ref33 doi: 10.1007/s00500-019-04022-2 – ident: ref12 doi: 10.1007/978-981-13-2414-7_6 – start-page: 1 year: 2199 ident: ref3 article-title: Medical analysis and diagnosis by neural networks publication-title: Proc Int Symp Med Data Anal – ident: ref24 doi: 10.1007/s10489-014-0611-4 – volume: 15 start-page: 3133 year: 2014 ident: ref35 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res – ident: ref20 doi: 10.1109/JSTSP.2018.2873988 – year: 2018 ident: ref1 publication-title: WHO | Cardiovascular Diseases (CVDs) – ident: ref18 doi: 10.1109/ICICT48043.2020.9112406 – ident: ref36 doi: 10.1109/ICOEI.2019.8862604 – ident: ref39 doi: 10.1016/j.compeleceng.2017.08.005 – ident: ref13 doi: 10.1016/j.tele.2018.11.007  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.4391332 | 
    
| Snippet | Presently, the application of machine learning (ML) and data mining (DM) techniques have a vital role in healthcare systems and wisely convert all obtainable... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 184087 | 
    
| SubjectTerms | Accuracy Algorithms AUC cardiovascular Data mining Disease disease risk prediction model Diseases Error reduction Feature extraction feature selection health care Heart Machine learning Medical diagnostic imaging NFR Performance enhancement Performance evaluation Prediction algorithms Predictive models UCI ML repository  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQXgYPCDYQhTH5gQeQiBYntuM8lm7VhLQKVUzszTonzpgW0qlNQfDXcxd7VSskeEF5Sy7O5e58H7b1O8beGF8qr7EsaYyRiRRpnSClSoDAw4zINYRTvjN9fik_XqmrrVZfdCYswAMHwZ3UKdTOYRais0YaNBjZOK-0BAI2wXhD3jc15VYxNfhgI3SpiggzJNLyZDyZ4B9hQZhhnZpSnSB3QtGA2B9brOxkm_vr7g5-_oC23Qo80yfsccwY-Thw-pQ98N0Be7SFI3jIfs0W333LKZ1bLz2fExwrCZy_nU3n7zj1O2v5l5v-K78Yzk56HmFVrzl0NT-FHvjF0CmCj9vrxRIpv604prM8gBujR-SnYSeHz29Wt_zTkvZ36BPP2OX07PPkPIlNFZJKpqZPKqHAVYUzPofKae8bJbVLhSldXWMYyz2oQqpCiAb9pFRe1V6BdFUpQKMC8udsr1t0_gXjxoDw3ilVgZcqa0BXeBUVZE2NLlSPWHYvX1tFxHFqfNHaofJISxuUYkkpNiplxN5vXroLgBt_J_9AituQElr2cANtyEYbsv-yoRE7JLVvBikxnmPmMmJH92Zg48xeWRQJgRrmCh8nG9P4g1UY2l3usPryf7D6ij2kMcMi0BHb65dr_xrTot4dDzPgN46lBD4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege0A88DUQhYH8wANIZMSJ7TqPpaOakFZNFRXjKTo7zjYtpFObbmJ_PXeJV7UgTaC8OefEH-fz73T27xh7Z3ymvEa3pDRGRlLERYSSKgIiDzMi1dCd8p3ow5n8eqJOAs823YXZjN-LOPsEbdpA9OMSdC9jgvfyPtvRCoF3j-3MJsfDH5Q-TugsSttA5Os7am7tPS1Ff8ipsgUvH6zqS_h1DVW1sdOMH3dXuJctQSEdMLnYXzV23938Qd_4j514wh4FxMmHnYo8Zfd8_Yw93OAh3GU3k_mVrzjBwdXC8ynRudKE8feT8fQDp3xpFf9-3pzxo_bspeeBlvWUQ13wA2iAH7WZJviwOp0vUPLnkiMc5h05MlpUftBFgvj0fHnBjxcUH6JfPGez8Zdvo8MoJGWInIxNEzmhwLqBNT4FZ7X3pZLaxsJktihwG0w9qIFUAyFKtLNSeVV4BdK6TICWJk1fsF49r_1Lxo0B4b1VyoGXKilBO3wGDpKyQBOs-yy5na7cBcZySpxR5a3nEmf5cDRCNc1pYPMwsH32cV3psiPsuFv8M-nBWpTYttsCnL88LN68iKGwFpGwTkrsgshkab3SEohcBzFPn-2SFq0_kiEeQOTTZ3u3WpUHy7DMcUiIFDFV-Dpaa9pfTe1UZqupr_5Tfo_1msXKv0HQ1Ni3YbH8Bg3DDy4 priority: 102 providerName: Unpaywall  | 
    
| Title | Novel Feature Reduction (NFR) Model With Machine Learning and Data Mining Algorithms for Effective Disease Risk Prediction | 
    
| URI | https://ieeexplore.ieee.org/document/9212426 https://www.proquest.com/docview/2453817356 https://doi.org/10.1109/access.2020.3028714 https://doaj.org/article/d0adbb23162f483194fbe564a0494238  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe2cQAOfA1Ex6h84ADS0uXDdpxj6agmpFZTRcU4Rbbzsk0L7dQmQ-yv59lxoxUQQrlEyUts5728L9u_R8g7CRkHgWFJKSULWBQWAVLyQFnwMBklQrWrfKfidM4-n_PzHXLU7YUBALf4DAb21M3lF0vT2FTZcYZ6Fi3KLtlNpWj3anX5FFtAIuOpBxaKwux4OBrhGDAEjDEyDW1kwLaMj8Po90VVtvzLh83iRv38oarqnqkZPyWTTSfbFSbXg6bWA3P3G37j_47iGXnifU46bIXkOdmBxQvy-B4S4T65my5voaLWIWxWQGcW0NWyjL6fjmcfqK2YVtGvV_UlnbjVl0A9MOsFVYuCnqha0YmrNUGH1cVyhZTf1xQdYtrCI6NOpSftXBCdXa2v6dnKzhDZJl6S-fjTl9Fp4MsyBIaFsg5MxJU2qZaQKKMFQMmZ0GEkM10UaAgTUDxlPI2iEjUt48AL4Ippk0VKMJkkr8jeYrmA14RKqSIAzblRwHhcKmHwSI2KywKVsOiReMOv3HjMcls6o8pd7BJmecvk3DI590zukaPuoZsWsuPf5B-tIHSkFm_bXUCm5f73zYtQFVqjLyziEocQZazUwAVTFl4HvZ4e2beM7l7iedwjhxuxyr1uWOf4SSwsYsLxdtCJ2h9dVa5g5lZXD_7eyhvyyFK1iaFDslevGniLrlKt-y7F0Hd_Sp88mE_Pht9-AZFnEQE | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOAwOfA1ExwAfOIC0dHFiO86xdFQF1gpVm9jNsp2XMS1LpzYFsb-e5ySNVkAI5RIlz7Gd9_w-_PF7hLxRkAqQGJbkSvGAszALkFIExoOHKRZL0-zyncrxKf90Js62yEF3FgYA6s1n0Pe39Vp-NncrP1V2mKKeRYtyh9wVnHPRnNbqZlR8ColUJC20EAvTw8FwiL3AIDDC2DT0sQHfMD81Sn-bVmXDw9xZldfm5w9TFLeMzeghmayb2ewxueyvKtt3N78hOP5vPx6RB63XSQeNmDwmW1A-IfdvYRHukpvp_DsU1LuEqwXQmYd09Uyjb6ej2Tvqc6YV9OtF9Y1O6v2XQFto1nNqyowemcrQSZ1tgg6K8_kCKa-WFF1i2gAko1alR81qEJ1dLC_pl4VfI_JVPCWnow8nw3HQJmYIHA9VFTgmjHWJVRAbZyVALri0IVOpzTI0hTEYkXCRMJajruUCRAbCcOtSZiRXcfyMbJfzEp4TqpRhAFYIZ4CLKDfS4ZU4E-UZqmHZI9GaX9q1qOU-eUah6-glTHXDZO2ZrFsm98hBV-i6Ae34N_l7LwgdqUfcrh8g03Q7gHUWmsxa9IZllGMXWMpzC0Jy4wF20O_pkV3P6O4jLY97ZH8tVrrVDkuNv8QDI8YCXwedqP3RVFOnzNxo6t7fa3lNdsYnk2N9_HH6-QW550s000T7ZLtarOAlOk6VfVWPl1_88hGp | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELege0A88DUQhYH8wANIZMSJ7TqPpaOakFZNFRXjKTo7zjYtpFObbmJ_PXeJV7UgTaC8OefEH-fz73T27xh7Z3ymvEa3pDRGRlLERYSSKgIiDzMi1dCd8p3ow5n8eqJOAs823YXZjN-LOPsEbdpA9OMSdC9jgvfyPtvRCoF3j-3MJsfDH5Q-TugsSttA5Os7am7tPS1Ff8ipsgUvH6zqS_h1DVW1sdOMH3dXuJctQSEdMLnYXzV23938Qd_4j514wh4FxMmHnYo8Zfd8_Yw93OAh3GU3k_mVrzjBwdXC8ynRudKE8feT8fQDp3xpFf9-3pzxo_bspeeBlvWUQ13wA2iAH7WZJviwOp0vUPLnkiMc5h05MlpUftBFgvj0fHnBjxcUH6JfPGez8Zdvo8MoJGWInIxNEzmhwLqBNT4FZ7X3pZLaxsJktihwG0w9qIFUAyFKtLNSeVV4BdK6TICWJk1fsF49r_1Lxo0B4b1VyoGXKilBO3wGDpKyQBOs-yy5na7cBcZySpxR5a3nEmf5cDRCNc1pYPMwsH32cV3psiPsuFv8M-nBWpTYttsCnL88LN68iKGwFpGwTkrsgshkab3SEohcBzFPn-2SFq0_kiEeQOTTZ3u3WpUHy7DMcUiIFDFV-Dpaa9pfTe1UZqupr_5Tfo_1msXKv0HQ1Ni3YbH8Bg3DDy4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Feature+Reduction+%28NFR%29+Model+With+Machine+Learning+and+Data+Mining+Algorithms+for+Effective+Disease+Risk+Prediction&rft.jtitle=IEEE+access&rft.au=Pasha%2C+Syed+Javeed&rft.au=Mohamed%2C+E.+Syed&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=184087&rft.epage=184108&rft_id=info:doi/10.1109%2FACCESS.2020.3028714&rft.externalDocID=9212426 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |