A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion
Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-...
Saved in:
| Published in | IEEE access Vol. 8; pp. 202100 - 202110 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3035347 |
Cover
| Summary: | Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.3035347 |