Bayesian modeling of dependence in brain connectivity data

Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence struc...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 21; no. 2; pp. 269 - 286
Main Authors Chen, Shuo, Xing, Yishi, Kang, Jian, Kochunov, Peter, Hong, L Elliot
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2020
Subjects
Online AccessGet full text
ISSN1465-4644
1468-4357
1468-4357
DOI10.1093/biostatistics/kxy046

Cover

Abstract Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method.
AbstractList Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method.
Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method.Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method.
Author Chen, Shuo
Hong, L Elliot
Xing, Yishi
Kochunov, Peter
Kang, Jian
AuthorAffiliation 2 Department of Electrical and Computer Engineering, University of Maryland , 8223 Paint Branch Dr, College Park, MD, USA
1 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA
3 Department of Biostatistics, School of Public Health, University of Michigan , 1415 Washington Heights, Ann Arbor, MI, USA
4 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA
AuthorAffiliation_xml – name: 2 Department of Electrical and Computer Engineering, University of Maryland , 8223 Paint Branch Dr, College Park, MD, USA
– name: 1 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA
– name: 3 Department of Biostatistics, School of Public Health, University of Michigan , 1415 Washington Heights, Ann Arbor, MI, USA
– name: 4 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA
Author_xml – sequence: 1
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
  organization: Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA
– sequence: 2
  givenname: Yishi
  surname: Xing
  fullname: Xing, Yishi
  organization: Department of Electrical and Computer Engineering, University of Maryland, 8223 Paint Branch Dr, College Park, MD, USA
– sequence: 3
  givenname: Jian
  surname: Kang
  fullname: Kang, Jian
  organization: Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
– sequence: 4
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
  organization: Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA
– sequence: 5
  givenname: L Elliot
  surname: Hong
  fullname: Hong, L Elliot
  organization: Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30203093$$D View this record in MEDLINE/PubMed
BookMark eNqNkElPwzAQhS1URNn-AUI5cgn1FjftAQkQm1SJC5ytiTMBQ2qX2AXy70lpWQ-Ii21p3vfe-G2RnvMOCdlj9JDRkRgU1ocI0YZoTRg8vrZUqjWyyaTKUymyYe_9naVSSdknWyE8UMq5UGKD9AXlVHQmm2R8Ai0GCy6Z-hJr6-4SXyUlztCV6Awm1iVFA91pvHNoon22sU1KiLBD1iuoA-6u7m1ye352c3qZTq4vrk6PJ6mRNI9pUSgELgqhMsYqUyjgilbGMAAKpaEjg1hlJc9LqKDIMxwKZJkYmQ5nlGZim2RL37mbQfsCda1njZ1C02pG9aIL_aMLveyi446W3GxeTLE06GIDX6wHq39OnL3Xd_5ZD3OVUznsDA5WBo1_mmOIemqDwboGh34eNGeUC84Vzzvp_vesz5CPojuBXApM40NosPrvH8a_MGMXIr_Y2NZ_w29R4LDB
CitedBy_id crossref_primary_10_1016_j_csda_2019_06_007
crossref_primary_10_1093_biostatistics_kxad007
crossref_primary_10_3390_e22090925
crossref_primary_10_1186_s12863_023_01128_3
crossref_primary_10_1016_j_nicl_2020_102531
crossref_primary_10_1093_biostatistics_kxaa061
crossref_primary_10_1109_ACCESS_2020_3018995
crossref_primary_10_1186_s12874_022_01712_8
Cites_doi 10.1111/j.1541-0420.2009.01355.x
10.1016/j.neuroimage.2011.12.090
10.1016/j.neuron.2010.08.017
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2013.12.058
10.4310/SII.2017.v10.n3.a1
10.1198/jcgs.2010.07081
10.3389/fncom.2013.00169
10.1016/j.neuroimage.2013.05.099
10.2202/1544-6115.1175
10.1016/j.nicl.2015.10.004
10.1111/rssb.12123
10.1214/16-BA1030
10.1016/j.neuroimage.2014.07.031
10.4310/SII.2013.v6.n2.a8
10.1073/pnas.0135058100
10.1080/01621459.2014.988213
10.1038/nrn3801
10.1016/j.neuroimage.2013.08.024
10.1214/16-AOAS940
10.1016/j.neuroimage.2014.06.052
10.1146/annurev-psych-122414-033634
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2007.08.012
10.1038/nn.3690
10.1038/nrn2575
10.1371/journal.pone.0097584
10.1371/journal.pone.0089470
10.1016/j.neuroimage.2012.01.071
10.1016/j.neuroimage.2017.01.051
10.1016/j.neuroimage.2014.05.043
10.1111/biom.12633
10.1016/j.nicl.2015.10.013
10.1198/016214504000000089
10.1002/hbm.23456
10.1111/ectj.12061
10.1093/biostatistics/kxi027
10.1038/nmeth.2482
10.1111/j.1740-9713.2015.00843.x
10.1073/pnas.0911855107
10.1016/j.neuroimage.2010.06.041
10.1198/jasa.2011.tm10155
10.1089/brain.2015.0361
10.1080/10618600.2000.10474879
10.1016/j.neuroimage.2016.05.038
10.1002/hbm.23007
10.1523/JNEUROSCI.0333-10.2010
10.1073/pnas.0601602103
10.1016/j.neuroimage.2015.03.021
10.1111/biom.12433
ContentType Journal Article
Copyright The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018
Copyright_xml – notice: The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/biostatistics/kxy046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 286
ExternalDocumentID oai:pubmedcentral.nih.gov:7868047
PMC7868047
30203093
10_1093_biostatistics_kxy046
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH112180
– fundername: NIH HHS
  grantid: S10 OD023696
– fundername: NIMH NIH HHS
  grantid: R01 MH116948
– fundername: NIMH NIH HHS
  grantid: R01 MH105561
– fundername: NIGMS NIH HHS
  grantid: R01 GM124061
– fundername: NIDA NIH HHS
  grantid: DP1 DA048968
– fundername: NIBIB NIH HHS
  grantid: R01 EB015611
– fundername: ; ;
  grantid: MH116948; MH112180; MH105561; EB01561; GM12406; MH108148
– fundername: ; ;
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
AAJQQ
EJD
NU-
ACIPB
ADTOC
C1A
CAG
COF
NTWIH
O0~
RNI
RZO
UNPAY
ID FETCH-LOGICAL-c408t-bb6ea23b36511fcb6a260fcc1aa0adc09ceef5d28dafab85e73e1539cc4010053
IEDL.DBID UNPAY
ISSN 1465-4644
1468-4357
IngestDate Sun Oct 26 04:14:53 EDT 2025
Tue Sep 30 16:38:52 EDT 2025
Sun Sep 28 09:40:06 EDT 2025
Thu Apr 03 08:16:35 EDT 2025
Wed Oct 01 04:23:33 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Large covariance matrix
Neuroimaging
MCMC
fMRI
Bayesian non-parametric model
Network
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-bb6ea23b36511fcb6a260fcc1aa0adc09ceef5d28dafab85e73e1539cc4010053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7868047
PMID 30203093
PQID 2102322628
PQPubID 23479
PageCount 18
ParticipantIDs unpaywall_primary_10_1093_biostatistics_kxy046
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868047
proquest_miscellaneous_2102322628
pubmed_primary_30203093
crossref_primary_10_1093_biostatistics_kxy046
crossref_citationtrail_10_1093_biostatistics_kxy046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Simpson (2021020713361212500_B41) 2015; 113
Zhang (2021020713361212500_B54) 2015; 110
Schäfer (2021020713361212500_B37) 2005; 4
Birn (2021020713361212500_B3) 2013; 83
Bullmore (2021020713361212500_B9) 2009; 10
Ahn (2021020713361212500_B1) 2015; 25
Brown (2021020713361212500_B7) 2014; 84
Chen (2021020713361212500_B10) 2015; 36
Barnard (2021020713361212500_B2) 2000; 10
Efron (2021020713361212500_B18) 2004; 99
Chiang (2021020713361212500_B13) 2017; 38
Bowman (2021020713361212500_B6) 2008; 39
Rubinov (2021020713361212500_B36) 2010; 52
Zalesky (2021020713361212500_B53) 2010; 53
Greicius (2021020713361212500_B22) 2003; 100
Sporns (2021020713361212500_B43) 2014; 17
Wang (2021020713361212500_B51) 2011; 20
Bryant (2021020713361212500_B8) 2017; 10
Bowman (2021020713361212500_B5) 2005; 6
Han (2021020713361212500_B23) 2016; 10
Newman (2021020713361212500_B31) 2006; 103
Kim (2021020713361212500_B27) 2015; 9
Simpson (2021020713361212500_B42) 2016; 6
Kim (2021020713361212500_B26) 2014; 101
Chen (2021020713361212500_B11) 2016; 72
Risk (2021020713361212500_B35) 2016; 142
Simpson (2021020713361212500_B40) 2015; 12
Eloyan (2021020713361212500_B19) 2014; 9
Cai (2021020713361212500_B12) 2011; 106
Shou (2021020713361212500_B38) 2014; 102
Tzourio-Mazoyer (2021020713361212500_B49) 2002; 15
Neal (2021020713361212500_B30) 2000; 9
Stam (2021020713361212500_B45) 2014; 15
Fornito (2021020713361212500_B21) 2012; 62
Power (2021020713361212500_B34) 2010; 67
Pavlovic (2021020713361212500_B32) 2014; 9
Woo (2021020713361212500_B50) 2014; 91
Harville (2021020713361212500_B24) 1998
Press (2021020713361212500_B33) 2007
Khondker (2021020713361212500_B25) 2013; 6
Craddock (2021020713361212500_B14) 2013; 10
Xia (2021020713361212500_B52) 2017; 73
Sweeney (2021020713361212500_B47) 2016; 10
Simpson (2021020713361212500_B39) 2012; 60
Lynall (2021020713361212500_B29) 2010; 30
Lindquist (2021020713361212500_B28) 2014; 101
Durante (2021020713361212500_B16) 2018; 13
Stanley (2021020713361212500_B46) 2013; 7
Derado (2021020713361212500_B15) 2010; 66
Fiecas (2021020713361212500_B17) 2017; 149
Sporns (2021020713361212500_B44) 2016; 67
Biswal (2021020713361212500_B4) 2010; 107
Fan (2021020713361212500_B20) 2016; 19
Qiu (2021020713361212500_B48) 2016; 78
References_xml – volume: 66
  start-page: 949
  year: 2010
  ident: 2021020713361212500_B15
  article-title: Modeling the spatial and temporal dependence in fMRI data.
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01355.x
– volume: 62
  start-page: 2296
  year: 2012
  ident: 2021020713361212500_B21
  article-title: Schizophrenia, neuroimaging and connectomics.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: 67
  start-page: 735
  year: 2010
  ident: 2021020713361212500_B34
  article-title: The development of human functional brain networks.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.017
– volume: 52
  start-page: 1059
  year: 2010
  ident: 2021020713361212500_B36
  article-title: Complex network measures of brain connectivity: uses and interpretations.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 91
  start-page: 412
  year: 2014
  ident: 2021020713361212500_B50
  article-title: Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.058
– volume: 10
  start-page: 369
  year: 2017
  ident: 2021020713361212500_B8
  article-title: LCN: a random graph mixture model for community detection in functional brain networks.
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2017.v10.n3.a1
– volume: 20
  start-page: 196
  year: 2011
  ident: 2021020713361212500_B51
  article-title: Fast Bayesian inference in Dirichlet process mixture models.
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2010.07081
– volume: 7
  start-page: 169
  year: 2013
  ident: 2021020713361212500_B46
  article-title: Defining nodes in complex brain networks.
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2013.00169
– volume: 83
  start-page: 550
  year: 2013
  ident: 2021020713361212500_B3
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.099
– volume: 4
  start-page: 1175
  year: 2005
  ident: 2021020713361212500_B37
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1175
– volume: 9
  start-page: 625
  year: 2015
  ident: 2021020713361212500_B27
  article-title: Highly adaptive tests for group differences in brain functional connectivity.
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2015.10.004
– volume: 78
  start-page: 487
  year: 2016
  ident: 2021020713361212500_B48
  article-title: Joint estimation of multiple graphical models from high dimensional time series.
  publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology
  doi: 10.1111/rssb.12123
– volume: 13
  start-page: 29
  year: 2018
  ident: 2021020713361212500_B16
  article-title: Bayesian inference and testing of group differences in brain networks.
  publication-title: Bayesian Analysis
  doi: 10.1214/16-BA1030
– volume: 101
  start-page: 681
  year: 2014
  ident: 2021020713361212500_B26
  article-title: Comparison of statistical tests for group differences in brain functional networks.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.031
– volume: 6
  start-page: 243
  year: 2013
  ident: 2021020713361212500_B25
  article-title: The Bayesian covariance lasso.
  publication-title: Statistics and its Interface
  doi: 10.4310/SII.2013.v6.n2.a8
– volume: 100
  start-page: 253
  year: 2003
  ident: 2021020713361212500_B22
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0135058100
– volume: 110
  start-page: 93
  year: 2015
  ident: 2021020713361212500_B54
  article-title: A dynamic directional model for effective brain connectivity using electrocorticographic (ECoG) time series.
  publication-title: The Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.988213
– volume: 15
  start-page: 683
  year: 2014
  ident: 2021020713361212500_B45
  article-title: Modern network science of neurological disorders.
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn3801
– volume: 84
  start-page: 97
  year: 2014
  ident: 2021020713361212500_B7
  article-title: Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.024
– volume: 10
  start-page: 1397
  year: 2016
  ident: 2021020713361212500_B23
  article-title: Sparse median graphs estimation in a high dimensional semiparametric model.
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/16-AOAS940
– volume-title: Matrix Algebra From a Statistician’s Perspective
  year: 1998
  ident: 2021020713361212500_B24
– volume-title: Numerical Recipes 3rd Edition: The Art of Scientific Computing
  year: 2007
  ident: 2021020713361212500_B33
– volume: 101
  start-page: 531
  year: 2014
  ident: 2021020713361212500_B28
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.052
– volume: 10
  start-page: 1281
  year: 2000
  ident: 2021020713361212500_B2
  article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage.
  publication-title: Statistica Sinica
– volume: 67
  start-page: 613
  year: 2016
  ident: 2021020713361212500_B44
  article-title: Modular brain networks.
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev-psych-122414-033634
– volume: 15
  start-page: 273
  year: 2002
  ident: 2021020713361212500_B49
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 39
  start-page: 146
  year: 2008
  ident: 2021020713361212500_B6
  article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.08.012
– volume: 17
  start-page: 652
  year: 2014
  ident: 2021020713361212500_B43
  article-title: Contributions and challenges for network models in cognitive neuroscience.
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3690
– volume: 10
  start-page: 186
  year: 2009
  ident: 2021020713361212500_B9
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems.
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2575
– volume: 9
  start-page: e97584
  year: 2014
  ident: 2021020713361212500_B32
  article-title: Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.
  publication-title: PloS One
  doi: 10.1371/journal.pone.0097584
– volume: 9
  start-page: e89470
  year: 2014
  ident: 2021020713361212500_B19
  article-title: Analytic programming with fMRI data: a quick-start guide for statisticians using R.
  publication-title: PloS One
  doi: 10.1371/journal.pone.0089470
– volume: 60
  start-page: 1117
  year: 2012
  ident: 2021020713361212500_B39
  article-title: An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.071
– volume: 149
  start-page: 256
  year: 2017
  ident: 2021020713361212500_B17
  article-title: A variance components model for statistical inference on functional connectivity networks.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.01.051
– volume: 25
  start-page: 295
  year: 2015
  ident: 2021020713361212500_B1
  article-title: A sparse reduced rank framework for group analysis of functional neuroimaging data.
  publication-title: Statistica Sinica
– volume: 102
  start-page: 938
  year: 2014
  ident: 2021020713361212500_B38
  article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.043
– volume: 73
  start-page: 780
  year: 2017
  ident: 2021020713361212500_B52
  article-title: Hypothesis testing of matrix graph model with application to brain connectivity analysis.
  publication-title: Biometrics
  doi: 10.1111/biom.12633
– volume: 10
  start-page: 1
  year: 2016
  ident: 2021020713361212500_B47
  article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions.
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2015.10.013
– volume: 99
  start-page: 96
  year: 2004
  ident: 2021020713361212500_B18
  article-title: Large-scale simultaneous hypothesis testing: the choice of a null hypothesis.
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000089
– volume: 38
  start-page: 1311
  year: 2017
  ident: 2021020713361212500_B13
  article-title: Bayesian vector autoregressive model for multi⣳subject effective connectivity inference using multi⣳modal neuroimaging data.
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23456
– volume: 19
  start-page: C1
  year: 2016
  ident: 2021020713361212500_B20
  article-title: An overview of the estimation of large covariance and precision matrices.
  publication-title: The Econometrics Journal
  doi: 10.1111/ectj.12061
– volume: 6
  start-page: 558
  year: 2005
  ident: 2021020713361212500_B5
  article-title: Spatio-temporal modeling of localized brain activity.
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxi027
– volume: 10
  start-page: 524
  year: 2013
  ident: 2021020713361212500_B14
  article-title: Imaging human connectomes at the macroscale.
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2482
– volume: 12
  start-page: 34
  year: 2015
  ident: 2021020713361212500_B40
  article-title: The brain science interface.
  publication-title: Significance
  doi: 10.1111/j.1740-9713.2015.00843.x
– volume: 107
  start-page: 4734
  year: 2010
  ident: 2021020713361212500_B4
  article-title: Toward discovery science of human brain function.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0911855107
– volume: 53
  start-page: 1197
  year: 2010
  ident: 2021020713361212500_B53
  article-title: Network-based statistic: identifying differences in brain networks.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 106
  start-page: 594
  year: 2011
  ident: 2021020713361212500_B12
  article-title: A constrained ‘1 minimization approach to sparse precision matrix estimation.
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2011.tm10155
– volume: 6
  start-page: 95
  year: 2016
  ident: 2021020713361212500_B42
  article-title: Disentangling brain graphs: a note on the conflation of network and connectivity analyses.
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2015.0361
– volume: 9
  start-page: 249
  issue: 2
  year: 2000
  ident: 2021020713361212500_B30
  article-title: Markov chain sampling methods for Dirichlet process mixture models.
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2000.10474879
– volume: 142
  start-page: 280
  year: 2016
  ident: 2021020713361212500_B35
  article-title: Spatiotemporal mixed modeling of multi-subject task fMRI via method of moments.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.038
– volume: 36
  start-page: 5196
  year: 2015
  ident: 2021020713361212500_B10
  article-title: A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks.
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23007
– volume: 30
  start-page: 9477
  year: 2010
  ident: 2021020713361212500_B29
  article-title: Functional connectivity and brain networks in schizophrenia.
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 103
  start-page: 8577
  year: 2006
  ident: 2021020713361212500_B31
  article-title: Modularity and community structure in networks.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0601602103
– volume: 113
  start-page: 310
  year: 2015
  ident: 2021020713361212500_B41
  article-title: A two-part mixed-effects modeling framework for analyzing whole-brain network data.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.021
– volume: 72
  start-page: 596
  year: 2016
  ident: 2021020713361212500_B11
  article-title: A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data.
  publication-title: Biometrics
  doi: 10.1111/biom.12433
SSID ssj0022363
Score 2.2836645
Snippet Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 269
SubjectTerms Bayes Theorem
Brain - diagnostic imaging
Brain - physiology
Computer Simulation
Connectome - methods
Humans
Models, Biological
Models, Statistical
Nerve Net - diagnostic imaging
Nerve Net - physiology
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Statistics, Nonparametric
Title Bayesian modeling of dependence in brain connectivity data
URI https://www.ncbi.nlm.nih.gov/pubmed/30203093
https://www.proquest.com/docview/2102322628
https://pubmed.ncbi.nlm.nih.gov/PMC7868047
https://www.ncbi.nlm.nih.gov/pmc/articles/7868047
UnpaywallVersion submittedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1468-4357
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022363
  issn: 1465-4644
  databaseCode: KQ8
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1468-4357
  dateEnd: 20231028
  omitProxy: true
  ssIdentifier: ssj0022363
  issn: 1465-4644
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6Voom9bIyNLWxUmcSr06ROnIQ3Ng3xQ0MTohJ7iuyLI6qWtNpabd1fv7OdVBQegOfYTpyzfd_J390HcKA4ErKXgpnaZCwueckkF4IReuVC50qmNhfm-4U4GcZn18l1B6I2F8aS9lGNgnpyG9SjG8utnN1iv-WJ9WnMLIzTDdgUCcHvLmwOL34c_XRZRAmLhRVwtRlFBAXSNl0u5301mposHVcAuT_-uwwN7L3rjh5gzIdUya1FPZPLP3IyueOHjl_DZTsDRz8ZB4u5CvDfveKOz5riNrxqUKl_5B69gY6ud-CF06lcvoXDL3KpTbalb4VzyNv508pv9XNR-6PaV0ZrwkfDm0GnSOEb9uk7GB5_u_p6whrRBYZxmM2ZUkLLAVdcEBSrUAlJEU-FGEkZyhLDnLxqlZSDrJSVVFmiU67p1MyRukdmS-9Ct57W-gPQW0SVlRFBBMxtpCYioWNME52hSLD0gLf_vsCmIrkRxpgU7macF2sWK5zFPGCrXjNXkeOR9p9bsxa0dcx9iKz1dPG7MNEunWdikHnw3pl5NSI3N7Q0pAfp2gJYNTBludefkCltee7Geh4Eq6XypA_de26Hj_ByYKJ_yyP6BN35r4XeJ4g0Vz0KDk7Pe83W-A8CBxs1
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BEWIvG7_JxlCQeHWa1ImT7I1NQwgJhBCV4CmyL46oWtJqtNq6v35nO6koPDCeYztxzvZ9J393H8CJ4kjIXgpmapOxuOQlk1wIRuiVC50rmdpcmMsrcd6PL-6SuxWI2lwYS9pHNQjq0WNQDx4st3LyiN2WJ9alMbMwTldhTSQEvzuw1r-6Pr13WUQJi4UVcLUZRQQF0jZdLuddNRibLB1XALk7_DMPDex97o5eYczXVMmNWT2R899yNHrmh84-wU07A0c_GQazqQrw74viju-a4iZ8bFCpf-oebcGKrrdh3elUznfg23c51ybb0rfCOeTt_HHlt_q5qP1B7SujNeGj4c2gU6TwDft0F_pnP29_nLNGdIFhHGZTppTQsscVFwTFKlRCUsRTIUZShrLEMCevWiVlLytlJVWW6JRrOjVzpO6R2dJ70KnHtT4AeouosjIiiIC5jdREJHSMaaIzFAmWHvD23xfYVCQ3whijwt2M82LJYoWzmAds0WviKnK80f64NWtBW8fch8haj2dPhYl26TwTvcyDfWfmxYjc3NDSkB6kSwtg0cCU5V5-Qqa05bkb63kQLJbKf33o5_d2-AIfeib6tzyiQ-hMf830V4JIU3XUbIp_ZH8aPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+modeling+of+dependence+in+brain+connectivity+data&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Chen%2C+Shuo&rft.au=Xing%2C+Yishi&rft.au=Kang%2C+Jian&rft.au=Kochunov%2C+Peter&rft.date=2020-04-01&rft.pub=Oxford+University+Press&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=21&rft.issue=2&rft.spage=269&rft.epage=286&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxy046&rft_id=info%3Apmid%2F30203093&rft.externalDocID=PMC7868047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon