Bayesian modeling of dependence in brain connectivity data
Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence struc...
Saved in:
| Published in | Biostatistics (Oxford, England) Vol. 21; no. 2; pp. 269 - 286 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
01.04.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1465-4644 1468-4357 1468-4357 |
| DOI | 10.1093/biostatistics/kxy046 |
Cover
| Abstract | Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method. |
|---|---|
| AbstractList | Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method. Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method.Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric phenotype-related connectivity patterns. When performing group-level brain connectivity alternation analyses, it is critical to model the dependence structure between multivariate connectivity edges to achieve accurate and efficient estimates of model parameters. However, specifying and estimating dependencies between connectivity edges presents formidable challenges because (i) the dimensionality of parameters in the covariance matrix is high (of the order of the fourth power of the number of nodes); (ii) the covariance between a pair of edges involves four nodes with spatial location information; and (iii) the dependence structure between edges can be related to unknown network topological structures. Existing methods for large covariance/precision matrix regularization and spatial closeness-based dependence structure specification/estimation models may not fully address the complexity and challenges. We develop a new Bayesian nonparametric model that unifies information from brain network areas (nodes), connectivity (edges), and covariance between edges by constructing the function of covariance matrix based on the underlying network topological structure. We perform parameter estimation using an efficient Markov chain Monte Carlo algorithm. We apply our method to resting-state functional magnetic resonance imaging data from 60 subjects of a schizophrenia study and simulated data to demonstrate the performance of our method. |
| Author | Chen, Shuo Hong, L Elliot Xing, Yishi Kochunov, Peter Kang, Jian |
| AuthorAffiliation | 2 Department of Electrical and Computer Engineering, University of Maryland , 8223 Paint Branch Dr, College Park, MD, USA 1 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA 3 Department of Biostatistics, School of Public Health, University of Michigan , 1415 Washington Heights, Ann Arbor, MI, USA 4 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA |
| AuthorAffiliation_xml | – name: 2 Department of Electrical and Computer Engineering, University of Maryland , 8223 Paint Branch Dr, College Park, MD, USA – name: 1 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA – name: 3 Department of Biostatistics, School of Public Health, University of Michigan , 1415 Washington Heights, Ann Arbor, MI, USA – name: 4 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine , 655 W Baltimore S, Baltimore, MD, USA |
| Author_xml | – sequence: 1 givenname: Shuo surname: Chen fullname: Chen, Shuo organization: Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, and Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA – sequence: 2 givenname: Yishi surname: Xing fullname: Xing, Yishi organization: Department of Electrical and Computer Engineering, University of Maryland, 8223 Paint Branch Dr, College Park, MD, USA – sequence: 3 givenname: Jian surname: Kang fullname: Kang, Jian organization: Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA – sequence: 4 givenname: Peter surname: Kochunov fullname: Kochunov, Peter organization: Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA – sequence: 5 givenname: L Elliot surname: Hong fullname: Hong, L Elliot organization: Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 655 W Baltimore S, Baltimore, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30203093$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkElPwzAQhS1URNn-AUI5cgn1FjftAQkQm1SJC5ytiTMBQ2qX2AXy70lpWQ-Ii21p3vfe-G2RnvMOCdlj9JDRkRgU1ocI0YZoTRg8vrZUqjWyyaTKUymyYe_9naVSSdknWyE8UMq5UGKD9AXlVHQmm2R8Ai0GCy6Z-hJr6-4SXyUlztCV6Awm1iVFA91pvHNoon22sU1KiLBD1iuoA-6u7m1ye352c3qZTq4vrk6PJ6mRNI9pUSgELgqhMsYqUyjgilbGMAAKpaEjg1hlJc9LqKDIMxwKZJkYmQ5nlGZim2RL37mbQfsCda1njZ1C02pG9aIL_aMLveyi446W3GxeTLE06GIDX6wHq39OnL3Xd_5ZD3OVUznsDA5WBo1_mmOIemqDwboGh34eNGeUC84Vzzvp_vesz5CPojuBXApM40NosPrvH8a_MGMXIr_Y2NZ_w29R4LDB |
| CitedBy_id | crossref_primary_10_1016_j_csda_2019_06_007 crossref_primary_10_1093_biostatistics_kxad007 crossref_primary_10_3390_e22090925 crossref_primary_10_1186_s12863_023_01128_3 crossref_primary_10_1016_j_nicl_2020_102531 crossref_primary_10_1093_biostatistics_kxaa061 crossref_primary_10_1109_ACCESS_2020_3018995 crossref_primary_10_1186_s12874_022_01712_8 |
| Cites_doi | 10.1111/j.1541-0420.2009.01355.x 10.1016/j.neuroimage.2011.12.090 10.1016/j.neuron.2010.08.017 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2013.12.058 10.4310/SII.2017.v10.n3.a1 10.1198/jcgs.2010.07081 10.3389/fncom.2013.00169 10.1016/j.neuroimage.2013.05.099 10.2202/1544-6115.1175 10.1016/j.nicl.2015.10.004 10.1111/rssb.12123 10.1214/16-BA1030 10.1016/j.neuroimage.2014.07.031 10.4310/SII.2013.v6.n2.a8 10.1073/pnas.0135058100 10.1080/01621459.2014.988213 10.1038/nrn3801 10.1016/j.neuroimage.2013.08.024 10.1214/16-AOAS940 10.1016/j.neuroimage.2014.06.052 10.1146/annurev-psych-122414-033634 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2007.08.012 10.1038/nn.3690 10.1038/nrn2575 10.1371/journal.pone.0097584 10.1371/journal.pone.0089470 10.1016/j.neuroimage.2012.01.071 10.1016/j.neuroimage.2017.01.051 10.1016/j.neuroimage.2014.05.043 10.1111/biom.12633 10.1016/j.nicl.2015.10.013 10.1198/016214504000000089 10.1002/hbm.23456 10.1111/ectj.12061 10.1093/biostatistics/kxi027 10.1038/nmeth.2482 10.1111/j.1740-9713.2015.00843.x 10.1073/pnas.0911855107 10.1016/j.neuroimage.2010.06.041 10.1198/jasa.2011.tm10155 10.1089/brain.2015.0361 10.1080/10618600.2000.10474879 10.1016/j.neuroimage.2016.05.038 10.1002/hbm.23007 10.1523/JNEUROSCI.0333-10.2010 10.1073/pnas.0601602103 10.1016/j.neuroimage.2015.03.021 10.1111/biom.12433 |
| ContentType | Journal Article |
| Copyright | The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018 |
| Copyright_xml | – notice: The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/biostatistics/kxy046 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1468-4357 |
| EndPage | 286 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7868047 PMC7868047 30203093 10_1093_biostatistics_kxy046 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH112180 – fundername: NIH HHS grantid: S10 OD023696 – fundername: NIMH NIH HHS grantid: R01 MH116948 – fundername: NIMH NIH HHS grantid: R01 MH105561 – fundername: NIGMS NIH HHS grantid: R01 GM124061 – fundername: NIDA NIH HHS grantid: DP1 DA048968 – fundername: NIBIB NIH HHS grantid: R01 EB015611 – fundername: ; ; grantid: MH116948; MH112180; MH105561; EB01561; GM12406; MH108148 – fundername: ; ; |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF NPM 7X8 5PM AAJQQ EJD NU- ACIPB ADTOC C1A CAG COF NTWIH O0~ RNI RZO UNPAY |
| ID | FETCH-LOGICAL-c408t-bb6ea23b36511fcb6a260fcc1aa0adc09ceef5d28dafab85e73e1539cc4010053 |
| IEDL.DBID | UNPAY |
| ISSN | 1465-4644 1468-4357 |
| IngestDate | Sun Oct 26 04:14:53 EDT 2025 Tue Sep 30 16:38:52 EDT 2025 Sun Sep 28 09:40:06 EDT 2025 Thu Apr 03 08:16:35 EDT 2025 Wed Oct 01 04:23:33 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Large covariance matrix Neuroimaging MCMC fMRI Bayesian non-parametric model Network |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-bb6ea23b36511fcb6a260fcc1aa0adc09ceef5d28dafab85e73e1539cc4010053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7868047 |
| PMID | 30203093 |
| PQID | 2102322628 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1093_biostatistics_kxy046 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868047 proquest_miscellaneous_2102322628 pubmed_primary_30203093 crossref_primary_10_1093_biostatistics_kxy046 crossref_citationtrail_10_1093_biostatistics_kxy046 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biostatistics (Oxford, England) |
| PublicationTitleAlternate | Biostatistics |
| PublicationYear | 2020 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Simpson (2021020713361212500_B41) 2015; 113 Zhang (2021020713361212500_B54) 2015; 110 Schäfer (2021020713361212500_B37) 2005; 4 Birn (2021020713361212500_B3) 2013; 83 Bullmore (2021020713361212500_B9) 2009; 10 Ahn (2021020713361212500_B1) 2015; 25 Brown (2021020713361212500_B7) 2014; 84 Chen (2021020713361212500_B10) 2015; 36 Barnard (2021020713361212500_B2) 2000; 10 Efron (2021020713361212500_B18) 2004; 99 Chiang (2021020713361212500_B13) 2017; 38 Bowman (2021020713361212500_B6) 2008; 39 Rubinov (2021020713361212500_B36) 2010; 52 Zalesky (2021020713361212500_B53) 2010; 53 Greicius (2021020713361212500_B22) 2003; 100 Sporns (2021020713361212500_B43) 2014; 17 Wang (2021020713361212500_B51) 2011; 20 Bryant (2021020713361212500_B8) 2017; 10 Bowman (2021020713361212500_B5) 2005; 6 Han (2021020713361212500_B23) 2016; 10 Newman (2021020713361212500_B31) 2006; 103 Kim (2021020713361212500_B27) 2015; 9 Simpson (2021020713361212500_B42) 2016; 6 Kim (2021020713361212500_B26) 2014; 101 Chen (2021020713361212500_B11) 2016; 72 Risk (2021020713361212500_B35) 2016; 142 Simpson (2021020713361212500_B40) 2015; 12 Eloyan (2021020713361212500_B19) 2014; 9 Cai (2021020713361212500_B12) 2011; 106 Shou (2021020713361212500_B38) 2014; 102 Tzourio-Mazoyer (2021020713361212500_B49) 2002; 15 Neal (2021020713361212500_B30) 2000; 9 Stam (2021020713361212500_B45) 2014; 15 Fornito (2021020713361212500_B21) 2012; 62 Power (2021020713361212500_B34) 2010; 67 Pavlovic (2021020713361212500_B32) 2014; 9 Woo (2021020713361212500_B50) 2014; 91 Harville (2021020713361212500_B24) 1998 Press (2021020713361212500_B33) 2007 Khondker (2021020713361212500_B25) 2013; 6 Craddock (2021020713361212500_B14) 2013; 10 Xia (2021020713361212500_B52) 2017; 73 Sweeney (2021020713361212500_B47) 2016; 10 Simpson (2021020713361212500_B39) 2012; 60 Lynall (2021020713361212500_B29) 2010; 30 Lindquist (2021020713361212500_B28) 2014; 101 Durante (2021020713361212500_B16) 2018; 13 Stanley (2021020713361212500_B46) 2013; 7 Derado (2021020713361212500_B15) 2010; 66 Fiecas (2021020713361212500_B17) 2017; 149 Sporns (2021020713361212500_B44) 2016; 67 Biswal (2021020713361212500_B4) 2010; 107 Fan (2021020713361212500_B20) 2016; 19 Qiu (2021020713361212500_B48) 2016; 78 |
| References_xml | – volume: 66 start-page: 949 year: 2010 ident: 2021020713361212500_B15 article-title: Modeling the spatial and temporal dependence in fMRI data. publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01355.x – volume: 62 start-page: 2296 year: 2012 ident: 2021020713361212500_B21 article-title: Schizophrenia, neuroimaging and connectomics. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: 67 start-page: 735 year: 2010 ident: 2021020713361212500_B34 article-title: The development of human functional brain networks. publication-title: Neuron doi: 10.1016/j.neuron.2010.08.017 – volume: 52 start-page: 1059 year: 2010 ident: 2021020713361212500_B36 article-title: Complex network measures of brain connectivity: uses and interpretations. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 91 start-page: 412 year: 2014 ident: 2021020713361212500_B50 article-title: Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.058 – volume: 10 start-page: 369 year: 2017 ident: 2021020713361212500_B8 article-title: LCN: a random graph mixture model for community detection in functional brain networks. publication-title: Statistics and Its Interface doi: 10.4310/SII.2017.v10.n3.a1 – volume: 20 start-page: 196 year: 2011 ident: 2021020713361212500_B51 article-title: Fast Bayesian inference in Dirichlet process mixture models. publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/jcgs.2010.07081 – volume: 7 start-page: 169 year: 2013 ident: 2021020713361212500_B46 article-title: Defining nodes in complex brain networks. publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2013.00169 – volume: 83 start-page: 550 year: 2013 ident: 2021020713361212500_B3 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.099 – volume: 4 start-page: 1175 year: 2005 ident: 2021020713361212500_B37 article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. publication-title: Statistical Applications in Genetics and Molecular Biology doi: 10.2202/1544-6115.1175 – volume: 9 start-page: 625 year: 2015 ident: 2021020713361212500_B27 article-title: Highly adaptive tests for group differences in brain functional connectivity. publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2015.10.004 – volume: 78 start-page: 487 year: 2016 ident: 2021020713361212500_B48 article-title: Joint estimation of multiple graphical models from high dimensional time series. publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology doi: 10.1111/rssb.12123 – volume: 13 start-page: 29 year: 2018 ident: 2021020713361212500_B16 article-title: Bayesian inference and testing of group differences in brain networks. publication-title: Bayesian Analysis doi: 10.1214/16-BA1030 – volume: 101 start-page: 681 year: 2014 ident: 2021020713361212500_B26 article-title: Comparison of statistical tests for group differences in brain functional networks. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.031 – volume: 6 start-page: 243 year: 2013 ident: 2021020713361212500_B25 article-title: The Bayesian covariance lasso. publication-title: Statistics and its Interface doi: 10.4310/SII.2013.v6.n2.a8 – volume: 100 start-page: 253 year: 2003 ident: 2021020713361212500_B22 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0135058100 – volume: 110 start-page: 93 year: 2015 ident: 2021020713361212500_B54 article-title: A dynamic directional model for effective brain connectivity using electrocorticographic (ECoG) time series. publication-title: The Journal of the American Statistical Association doi: 10.1080/01621459.2014.988213 – volume: 15 start-page: 683 year: 2014 ident: 2021020713361212500_B45 article-title: Modern network science of neurological disorders. publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn3801 – volume: 84 start-page: 97 year: 2014 ident: 2021020713361212500_B7 article-title: Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.024 – volume: 10 start-page: 1397 year: 2016 ident: 2021020713361212500_B23 article-title: Sparse median graphs estimation in a high dimensional semiparametric model. publication-title: The Annals of Applied Statistics doi: 10.1214/16-AOAS940 – volume-title: Matrix Algebra From a Statistician’s Perspective year: 1998 ident: 2021020713361212500_B24 – volume-title: Numerical Recipes 3rd Edition: The Art of Scientific Computing year: 2007 ident: 2021020713361212500_B33 – volume: 101 start-page: 531 year: 2014 ident: 2021020713361212500_B28 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.052 – volume: 10 start-page: 1281 year: 2000 ident: 2021020713361212500_B2 article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. publication-title: Statistica Sinica – volume: 67 start-page: 613 year: 2016 ident: 2021020713361212500_B44 article-title: Modular brain networks. publication-title: Annual Review of Psychology doi: 10.1146/annurev-psych-122414-033634 – volume: 15 start-page: 273 year: 2002 ident: 2021020713361212500_B49 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 39 start-page: 146 year: 2008 ident: 2021020713361212500_B6 article-title: A Bayesian hierarchical framework for spatial modeling of fMRI data. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.08.012 – volume: 17 start-page: 652 year: 2014 ident: 2021020713361212500_B43 article-title: Contributions and challenges for network models in cognitive neuroscience. publication-title: Nature Neuroscience doi: 10.1038/nn.3690 – volume: 10 start-page: 186 year: 2009 ident: 2021020713361212500_B9 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems. publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2575 – volume: 9 start-page: e97584 year: 2014 ident: 2021020713361212500_B32 article-title: Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome. publication-title: PloS One doi: 10.1371/journal.pone.0097584 – volume: 9 start-page: e89470 year: 2014 ident: 2021020713361212500_B19 article-title: Analytic programming with fMRI data: a quick-start guide for statisticians using R. publication-title: PloS One doi: 10.1371/journal.pone.0089470 – volume: 60 start-page: 1117 year: 2012 ident: 2021020713361212500_B39 article-title: An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.071 – volume: 149 start-page: 256 year: 2017 ident: 2021020713361212500_B17 article-title: A variance components model for statistical inference on functional connectivity networks. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.051 – volume: 25 start-page: 295 year: 2015 ident: 2021020713361212500_B1 article-title: A sparse reduced rank framework for group analysis of functional neuroimaging data. publication-title: Statistica Sinica – volume: 102 start-page: 938 year: 2014 ident: 2021020713361212500_B38 article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.043 – volume: 73 start-page: 780 year: 2017 ident: 2021020713361212500_B52 article-title: Hypothesis testing of matrix graph model with application to brain connectivity analysis. publication-title: Biometrics doi: 10.1111/biom.12633 – volume: 10 start-page: 1 year: 2016 ident: 2021020713361212500_B47 article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions. publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2015.10.013 – volume: 99 start-page: 96 year: 2004 ident: 2021020713361212500_B18 article-title: Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000000089 – volume: 38 start-page: 1311 year: 2017 ident: 2021020713361212500_B13 article-title: Bayesian vector autoregressive model for multi⣳subject effective connectivity inference using multi⣳modal neuroimaging data. publication-title: Human Brain Mapping doi: 10.1002/hbm.23456 – volume: 19 start-page: C1 year: 2016 ident: 2021020713361212500_B20 article-title: An overview of the estimation of large covariance and precision matrices. publication-title: The Econometrics Journal doi: 10.1111/ectj.12061 – volume: 6 start-page: 558 year: 2005 ident: 2021020713361212500_B5 article-title: Spatio-temporal modeling of localized brain activity. publication-title: Biostatistics doi: 10.1093/biostatistics/kxi027 – volume: 10 start-page: 524 year: 2013 ident: 2021020713361212500_B14 article-title: Imaging human connectomes at the macroscale. publication-title: Nature Methods doi: 10.1038/nmeth.2482 – volume: 12 start-page: 34 year: 2015 ident: 2021020713361212500_B40 article-title: The brain science interface. publication-title: Significance doi: 10.1111/j.1740-9713.2015.00843.x – volume: 107 start-page: 4734 year: 2010 ident: 2021020713361212500_B4 article-title: Toward discovery science of human brain function. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0911855107 – volume: 53 start-page: 1197 year: 2010 ident: 2021020713361212500_B53 article-title: Network-based statistic: identifying differences in brain networks. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 106 start-page: 594 year: 2011 ident: 2021020713361212500_B12 article-title: A constrained ‘1 minimization approach to sparse precision matrix estimation. publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2011.tm10155 – volume: 6 start-page: 95 year: 2016 ident: 2021020713361212500_B42 article-title: Disentangling brain graphs: a note on the conflation of network and connectivity analyses. publication-title: Brain Connectivity doi: 10.1089/brain.2015.0361 – volume: 9 start-page: 249 issue: 2 year: 2000 ident: 2021020713361212500_B30 article-title: Markov chain sampling methods for Dirichlet process mixture models. publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2000.10474879 – volume: 142 start-page: 280 year: 2016 ident: 2021020713361212500_B35 article-title: Spatiotemporal mixed modeling of multi-subject task fMRI via method of moments. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.038 – volume: 36 start-page: 5196 year: 2015 ident: 2021020713361212500_B10 article-title: A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks. publication-title: Human Brain Mapping doi: 10.1002/hbm.23007 – volume: 30 start-page: 9477 year: 2010 ident: 2021020713361212500_B29 article-title: Functional connectivity and brain networks in schizophrenia. publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 103 start-page: 8577 year: 2006 ident: 2021020713361212500_B31 article-title: Modularity and community structure in networks. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0601602103 – volume: 113 start-page: 310 year: 2015 ident: 2021020713361212500_B41 article-title: A two-part mixed-effects modeling framework for analyzing whole-brain network data. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.021 – volume: 72 start-page: 596 year: 2016 ident: 2021020713361212500_B11 article-title: A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data. publication-title: Biometrics doi: 10.1111/biom.12433 |
| SSID | ssj0022363 |
| Score | 2.2836645 |
| Snippet | Brain connectivity studies often refer to brain areas as graph nodes and connections between nodes as edges, and aim to identify neuropsychiatric... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 269 |
| SubjectTerms | Bayes Theorem Brain - diagnostic imaging Brain - physiology Computer Simulation Connectome - methods Humans Models, Biological Models, Statistical Nerve Net - diagnostic imaging Nerve Net - physiology Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Statistics, Nonparametric |
| Title | Bayesian modeling of dependence in brain connectivity data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30203093 https://www.proquest.com/docview/2102322628 https://pubmed.ncbi.nlm.nih.gov/PMC7868047 https://www.ncbi.nlm.nih.gov/pmc/articles/7868047 |
| UnpaywallVersion | submittedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1468-4357 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022363 issn: 1465-4644 databaseCode: KQ8 dateStart: 20000301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1468-4357 dateEnd: 20231028 omitProxy: true ssIdentifier: ssj0022363 issn: 1465-4644 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6Voom9bIyNLWxUmcSr06ROnIQ3Ng3xQ0MTohJ7iuyLI6qWtNpabd1fv7OdVBQegOfYTpyzfd_J390HcKA4ErKXgpnaZCwueckkF4IReuVC50qmNhfm-4U4GcZn18l1B6I2F8aS9lGNgnpyG9SjG8utnN1iv-WJ9WnMLIzTDdgUCcHvLmwOL34c_XRZRAmLhRVwtRlFBAXSNl0u5301mposHVcAuT_-uwwN7L3rjh5gzIdUya1FPZPLP3IyueOHjl_DZTsDRz8ZB4u5CvDfveKOz5riNrxqUKl_5B69gY6ud-CF06lcvoXDL3KpTbalb4VzyNv508pv9XNR-6PaV0ZrwkfDm0GnSOEb9uk7GB5_u_p6whrRBYZxmM2ZUkLLAVdcEBSrUAlJEU-FGEkZyhLDnLxqlZSDrJSVVFmiU67p1MyRukdmS-9Ct57W-gPQW0SVlRFBBMxtpCYioWNME52hSLD0gLf_vsCmIrkRxpgU7macF2sWK5zFPGCrXjNXkeOR9p9bsxa0dcx9iKz1dPG7MNEunWdikHnw3pl5NSI3N7Q0pAfp2gJYNTBludefkCltee7Geh4Eq6XypA_de26Hj_ByYKJ_yyP6BN35r4XeJ4g0Vz0KDk7Pe83W-A8CBxs1 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BEWIvG7_JxlCQeHWa1ImT7I1NQwgJhBCV4CmyL46oWtJqtNq6v35nO6koPDCeYztxzvZ9J393H8CJ4kjIXgpmapOxuOQlk1wIRuiVC50rmdpcmMsrcd6PL-6SuxWI2lwYS9pHNQjq0WNQDx4st3LyiN2WJ9alMbMwTldhTSQEvzuw1r-6Pr13WUQJi4UVcLUZRQQF0jZdLuddNRibLB1XALk7_DMPDex97o5eYczXVMmNWT2R899yNHrmh84-wU07A0c_GQazqQrw74viju-a4iZ8bFCpf-oebcGKrrdh3elUznfg23c51ybb0rfCOeTt_HHlt_q5qP1B7SujNeGj4c2gU6TwDft0F_pnP29_nLNGdIFhHGZTppTQsscVFwTFKlRCUsRTIUZShrLEMCevWiVlLytlJVWW6JRrOjVzpO6R2dJ70KnHtT4AeouosjIiiIC5jdREJHSMaaIzFAmWHvD23xfYVCQ3whijwt2M82LJYoWzmAds0WviKnK80f64NWtBW8fch8haj2dPhYl26TwTvcyDfWfmxYjc3NDSkB6kSwtg0cCU5V5-Qqa05bkb63kQLJbKf33o5_d2-AIfeib6tzyiQ-hMf830V4JIU3XUbIp_ZH8aPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+modeling+of+dependence+in+brain+connectivity+data&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Chen%2C+Shuo&rft.au=Xing%2C+Yishi&rft.au=Kang%2C+Jian&rft.au=Kochunov%2C+Peter&rft.date=2020-04-01&rft.pub=Oxford+University+Press&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=21&rft.issue=2&rft.spage=269&rft.epage=286&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxy046&rft_id=info%3Apmid%2F30203093&rft.externalDocID=PMC7868047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |