Increasing fossil power plant flexibility by integrating molten-salt thermal storage
Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by...
Saved in:
Published in | Energy (Oxford) Vol. 118; pp. 876 - 883 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 |
DOI | 10.1016/j.energy.2016.10.108 |
Cover
Abstract | Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility.
The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required.
•The implementation of molten-salt thermal storage systems in fossil power plants is presented.•Thermal performance of the storage systems has been investigated by conducting process simulations.•Two different power plant types are the subject of this study: heat controlled and power controlled.•Results indicate that thermal storage systems are suitable to increase power plant flexibility. |
---|---|
AbstractList | Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility.
The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required.
•The implementation of molten-salt thermal storage systems in fossil power plants is presented.•Thermal performance of the storage systems has been investigated by conducting process simulations.•Two different power plant types are the subject of this study: heat controlled and power controlled.•Results indicate that thermal storage systems are suitable to increase power plant flexibility. Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility. The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required. |
Author | Garbrecht, Oliver Kneer, Reinhold Bieber, Malte |
Author_xml | – sequence: 1 givenname: Oliver surname: Garbrecht fullname: Garbrecht, Oliver email: garbrecht@wsa.rwth-aachen.de – sequence: 2 givenname: Malte surname: Bieber fullname: Bieber, Malte – sequence: 3 givenname: Reinhold surname: Kneer fullname: Kneer, Reinhold |
BookMark | eNqFkE1LxDAQhoMouH78Aw8FL1665qtt6kEQ8QsEL3oOaTpds2STNcmq--9NrScPyhyGGd73ZeY5QLvOO0DohOA5waQ-X87BQVhs5zRP8--t2EEzIhpW1o2odtEMsxqXFed0Hx3EuMQYV6JtZ-j5wekAKhq3KAYfo7HF2n9AKNZWuVQMFj5NZ6xJ26LbFsYlWASVRvXK2wSujMqmIr1CWClbxOSDWsAR2huUjXD80w_Ry-3N8_V9-fh093B99VhqjkUqOzzUombQVEzwsaq6qRntWk47CooNXdtwWvU9ZwI6DVRVApNe4EFjpXHLDtHZlLsO_m0DMcmViRpsPh38JkpKWGbQioZn6ekv6dJvgsvXSdIySkRVt2PgxaTSIbMIMEhtUn7XuxSUsZJgOQKXSzkBlyPwaSuymf8yr4NZqbD9z3Y52SCTejcQZNQGnIbeBNBJ9t78HfAFIJmfFg |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132795 crossref_primary_10_1016_j_est_2022_104335 crossref_primary_10_1016_j_energy_2024_133568 crossref_primary_10_1016_j_corsci_2024_112651 crossref_primary_10_1016_j_applthermaleng_2022_119008 crossref_primary_10_1016_j_apenergy_2019_04_190 crossref_primary_10_1039_D3CP01096A crossref_primary_10_1016_j_applthermaleng_2022_119240 crossref_primary_10_1016_j_applthermaleng_2025_125847 crossref_primary_10_1016_j_applthermaleng_2019_114258 crossref_primary_10_1016_j_est_2024_110611 crossref_primary_10_1016_j_est_2024_110495 crossref_primary_10_1007_s11814_021_0789_1 crossref_primary_10_1016_j_est_2024_113363 crossref_primary_10_1002_cite_202000137 crossref_primary_10_1016_j_enconman_2021_114054 crossref_primary_10_1016_j_applthermaleng_2023_121287 crossref_primary_10_1016_j_est_2024_114491 crossref_primary_10_1016_j_apenergy_2019_113487 crossref_primary_10_1088_1755_1315_983_1_012007 crossref_primary_10_3390_en17112775 crossref_primary_10_3390_en12214205 crossref_primary_10_1016_j_apenergy_2018_02_039 crossref_primary_10_1016_j_applthermaleng_2019_04_049 crossref_primary_10_1016_j_rser_2025_115388 crossref_primary_10_1016_j_energy_2022_126480 crossref_primary_10_1051_e3sconf_202019401034 crossref_primary_10_1016_j_energy_2022_125349 crossref_primary_10_1016_j_energy_2023_128239 crossref_primary_10_3390_en15218004 crossref_primary_10_1016_j_egypro_2018_11_031 crossref_primary_10_1016_j_energy_2018_01_102 crossref_primary_10_1016_j_tsep_2024_103004 crossref_primary_10_2339_politeknik_719875 crossref_primary_10_1016_j_apenergy_2022_119017 crossref_primary_10_3390_en13040787 crossref_primary_10_1016_j_energy_2019_116684 crossref_primary_10_1016_j_anucene_2025_111197 crossref_primary_10_3389_fenrg_2020_00178 crossref_primary_10_3390_en13092222 crossref_primary_10_1016_j_applthermaleng_2023_121702 crossref_primary_10_1016_j_est_2025_116183 crossref_primary_10_1016_j_energy_2024_130950 crossref_primary_10_1016_j_est_2022_106410 crossref_primary_10_1016_j_enconman_2019_112434 crossref_primary_10_1016_j_esr_2018_08_011 crossref_primary_10_1016_j_est_2024_114916 crossref_primary_10_1016_j_est_2025_116147 crossref_primary_10_3390_e22121440 crossref_primary_10_1109_TPWRS_2019_2940725 crossref_primary_10_2298_TSCI231217066Z crossref_primary_10_1016_j_jclepro_2020_124298 crossref_primary_10_1007_s11630_024_2015_z crossref_primary_10_1016_j_partic_2023_09_016 crossref_primary_10_1016_j_energy_2023_129557 crossref_primary_10_1016_j_energy_2022_125917 crossref_primary_10_1016_j_applthermaleng_2023_120371 crossref_primary_10_1016_j_ijepes_2022_108051 crossref_primary_10_1016_j_energy_2025_135292 crossref_primary_10_1016_j_energy_2024_132201 crossref_primary_10_1016_j_applthermaleng_2024_122907 crossref_primary_10_1016_j_csite_2024_105212 crossref_primary_10_1016_j_applthermaleng_2022_119537 crossref_primary_10_1016_j_energy_2023_129236 crossref_primary_10_1016_j_applthermaleng_2022_118041 crossref_primary_10_1016_j_est_2025_115983 crossref_primary_10_1016_j_applthermaleng_2019_04_066 crossref_primary_10_1016_j_energy_2017_05_010 crossref_primary_10_1016_j_est_2025_115667 crossref_primary_10_1016_j_est_2024_112227 crossref_primary_10_1016_j_jclepro_2021_128047 crossref_primary_10_1016_j_apenergy_2019_113572 crossref_primary_10_2139_ssrn_4109675 crossref_primary_10_1115_1_4056450 crossref_primary_10_1016_j_enconman_2020_113271 crossref_primary_10_3390_su13041882 crossref_primary_10_1016_j_energy_2025_135580 crossref_primary_10_3390_en15165830 |
Cites_doi | 10.1115/1.1464123 10.1016/j.apenergy.2010.12.031 10.1016/j.solener.2010.03.007 10.1016/j.rser.2009.07.036 10.1016/j.jpowsour.2004.12.025 10.1016/j.enpol.2010.01.006 10.1016/j.combustflame.2016.07.028 10.1016/j.jpowsour.2004.12.022 10.1016/j.energy.2015.02.017 10.1016/j.energy.2014.12.067 10.1016/S0360-5442(03)00193-2 10.1109/TPWRS.2007.901459 10.1016/j.epsr.2008.09.017 10.1016/j.rser.2007.01.023 10.1016/j.apenergy.2010.04.024 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Jan 1, 2017 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2017 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2016.10.108 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 883 |
ExternalDocumentID | 10_1016_j_energy_2016_10_108 S0360544216315547 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c408t-b0f6863e753848484567632b942b2ea3fb97425dd438ebce2a5801d80fc0ac093 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Sun Sep 28 02:07:46 EDT 2025 Wed Aug 13 11:30:34 EDT 2025 Tue Jul 01 00:53:05 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Control reserve Primary reserve Molten salt thermal storage Grid stability Fossil power plant Increased flexibility |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-b0f6863e753848484567632b942b2ea3fb97425dd438ebce2a5801d80fc0ac093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1932185699 |
PQPubID | 2045484 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2131879874 proquest_journals_1932185699 crossref_citationtrail_10_1016_j_energy_2016_10_108 crossref_primary_10_1016_j_energy_2016_10_108 elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Oudalov, Chartouni, Ohler (bib4) Aug 2007; 22 Kempton, Tomic (bib6) 2005; 144 Hees, Zabrodiec, Massmeyer, Pielsticker, Gövert, Habermehl (bib18) 2016; 172 De Luca, Ferraro, Marinelli (bib10) 2015; 83 Flueckiger, Yang, Garimella (bib12) 2011; 88 Cocco, Serra (bib15) 2015; 81 Yang, Garimella (bib14) 2010; 84 Andersson, Elofsson, Galus, Gransson, Karlsson, Johnsson (bib7) 2010; 38 Konstantin (bib1) 2009; vol. 2 Kempton, Tomic (bib5) 2005; 144 Yang, Garimella (bib13) 2010; 87 Divya, Østergaard (bib3) 2009; 79 Hirsch, Janicka, Löw, Metzger, Pawellek (bib16) 2010 Pacheco, Showalter, Kolb (bib8) Apr. 2002; 124 Medrano, Gil, Martorell, Potau, Cabeza (bib9) 2010; 14 Herrmann, Kelly, Price (bib11) 2004; 29 Pawellek, Pulyaev, Hirsch, Wittmann, Seitz (bib17) 2012 Caterpillar Inc (bib19) 2015 Ibrahim, Ilinca, Perron (bib2) 2008; 12 Cocco (10.1016/j.energy.2016.10.108_bib15) 2015; 81 Hees (10.1016/j.energy.2016.10.108_bib18) 2016; 172 Pawellek (10.1016/j.energy.2016.10.108_bib17) 2012 Medrano (10.1016/j.energy.2016.10.108_bib9) 2010; 14 Oudalov (10.1016/j.energy.2016.10.108_bib4) 2007; 22 Pacheco (10.1016/j.energy.2016.10.108_bib8) 2002; 124 Divya (10.1016/j.energy.2016.10.108_bib3) 2009; 79 Kempton (10.1016/j.energy.2016.10.108_bib6) 2005; 144 Flueckiger (10.1016/j.energy.2016.10.108_bib12) 2011; 88 Yang (10.1016/j.energy.2016.10.108_bib14) 2010; 84 Konstantin (10.1016/j.energy.2016.10.108_bib1) 2009; vol. 2 Kempton (10.1016/j.energy.2016.10.108_bib5) 2005; 144 Yang (10.1016/j.energy.2016.10.108_bib13) 2010; 87 Herrmann (10.1016/j.energy.2016.10.108_bib11) 2004; 29 Ibrahim (10.1016/j.energy.2016.10.108_bib2) 2008; 12 De Luca (10.1016/j.energy.2016.10.108_bib10) 2015; 83 Caterpillar Inc (10.1016/j.energy.2016.10.108_bib19) 2015 Andersson (10.1016/j.energy.2016.10.108_bib7) 2010; 38 Hirsch (10.1016/j.energy.2016.10.108_bib16) 2010 |
References_xml | – volume: 124 start-page: 153 year: Apr. 2002 end-page: 159 ident: bib8 article-title: Development of a molten-salt thermocline thermal storage system for parabolic trough plants publication-title: J Sol Energy Eng – volume: 14 start-page: 56 year: 2010 end-page: 72 ident: bib9 article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies publication-title: Renew Sustain Energy Rev – volume: 83 start-page: 230 year: 2015 end-page: 239 ident: bib10 article-title: On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salt publication-title: Energy – volume: 29 start-page: 883 year: 2004 end-page: 893 ident: bib11 article-title: Two-tank molten salt storage for parabolic trough solar power plants publication-title: Energy – year: 2015 ident: bib19 article-title: Technical spec sheet for 3516E generator set – volume: 144 start-page: 280 year: 2005 end-page: 294 ident: bib6 article-title: Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy publication-title: J Power Sources – year: 2010 ident: bib16 article-title: Annual simulations with the EBSILON Professional time series calculation module publication-title: Proceedings of the SolarPACES 2010 conference, perpignan, France – volume: 38 start-page: 2751 year: 2010 end-page: 2762 ident: bib7 article-title: Plug-in hybrid electric vehicles as regulating power providers: case studies of Sweden and Germany publication-title: Energy Policy – volume: 12 start-page: 1221 year: 2008 end-page: 1250 ident: bib2 article-title: Energy storage systems - characteristics and comparisons publication-title: Renew Sustain Energy Rev – volume: vol. 2 year: 2009 ident: bib1 publication-title: Praxisbuch Energiewirtschaft – volume: 79 start-page: 511 year: 2009 end-page: 520 ident: bib3 article-title: Battery energy storage technology for power systems - an overview publication-title: Electr Power Syst Res – volume: 172 start-page: 289 year: 2016 end-page: 301 ident: bib18 article-title: Detailed analyzes of pulverized coal swirl flames in oxy-fuel atmospheres publication-title: Combust Flame – volume: 87 start-page: 3322 year: 2010 end-page: 3329 ident: bib13 article-title: Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions publication-title: Appl Energy – volume: 84 start-page: 974 year: 2010 end-page: 985 ident: bib14 article-title: Thermal analysis of solar thermal energy storage in a molten-salt thermocline publication-title: Sol Energy – volume: 22 start-page: 1259 year: Aug 2007 end-page: 1266 ident: bib4 article-title: Optimizing a battery energy storage system for primary frequency control publication-title: Power Syst IEEE Trans – volume: 144 start-page: 268 year: 2005 end-page: 279 ident: bib5 article-title: Vehicle-to-grid power fundamentals: calculating capacity and net revenue publication-title: J Power Sources – volume: 81 start-page: 526 year: 2015 end-page: 536 ident: bib15 article-title: Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power publication-title: Energy – year: 2012 ident: bib17 article-title: Transient simulation of a parabolic trough collector in EBSILON PROFESSIONAL publication-title: Proceedings of the SolarPACES 2012 conference, marakkech, Morocco – volume: 88 start-page: 2098 year: 2011 end-page: 2105 ident: bib12 article-title: An integrated thermal and mechanical investigation of molten-salt thermocline energy storage publication-title: Appl Energy – volume: 124 start-page: 153 year: 2002 ident: 10.1016/j.energy.2016.10.108_bib8 article-title: Development of a molten-salt thermocline thermal storage system for parabolic trough plants publication-title: J Sol Energy Eng doi: 10.1115/1.1464123 – volume: 88 start-page: 2098 issue: 6 year: 2011 ident: 10.1016/j.energy.2016.10.108_bib12 article-title: An integrated thermal and mechanical investigation of molten-salt thermocline energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.031 – volume: 84 start-page: 974 issue: 6 year: 2010 ident: 10.1016/j.energy.2016.10.108_bib14 article-title: Thermal analysis of solar thermal energy storage in a molten-salt thermocline publication-title: Sol Energy doi: 10.1016/j.solener.2010.03.007 – volume: 14 start-page: 56 issue: 1 year: 2010 ident: 10.1016/j.energy.2016.10.108_bib9 article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.07.036 – volume: vol. 2 year: 2009 ident: 10.1016/j.energy.2016.10.108_bib1 – volume: 144 start-page: 268 issue: 1 year: 2005 ident: 10.1016/j.energy.2016.10.108_bib5 article-title: Vehicle-to-grid power fundamentals: calculating capacity and net revenue publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.12.025 – volume: 38 start-page: 2751 issue: 6 year: 2010 ident: 10.1016/j.energy.2016.10.108_bib7 article-title: Plug-in hybrid electric vehicles as regulating power providers: case studies of Sweden and Germany publication-title: Energy Policy doi: 10.1016/j.enpol.2010.01.006 – year: 2015 ident: 10.1016/j.energy.2016.10.108_bib19 – volume: 172 start-page: 289 year: 2016 ident: 10.1016/j.energy.2016.10.108_bib18 article-title: Detailed analyzes of pulverized coal swirl flames in oxy-fuel atmospheres publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.07.028 – volume: 144 start-page: 280 issue: 1 year: 2005 ident: 10.1016/j.energy.2016.10.108_bib6 article-title: Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.12.022 – volume: 83 start-page: 230 year: 2015 ident: 10.1016/j.energy.2016.10.108_bib10 article-title: On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salt publication-title: Energy doi: 10.1016/j.energy.2015.02.017 – year: 2012 ident: 10.1016/j.energy.2016.10.108_bib17 article-title: Transient simulation of a parabolic trough collector in EBSILON PROFESSIONAL – volume: 81 start-page: 526 year: 2015 ident: 10.1016/j.energy.2016.10.108_bib15 article-title: Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power publication-title: Energy doi: 10.1016/j.energy.2014.12.067 – volume: 29 start-page: 883 issue: 56 year: 2004 ident: 10.1016/j.energy.2016.10.108_bib11 article-title: Two-tank molten salt storage for parabolic trough solar power plants publication-title: Energy doi: 10.1016/S0360-5442(03)00193-2 – volume: 22 start-page: 1259 year: 2007 ident: 10.1016/j.energy.2016.10.108_bib4 article-title: Optimizing a battery energy storage system for primary frequency control publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2007.901459 – volume: 79 start-page: 511 issue: 4 year: 2009 ident: 10.1016/j.energy.2016.10.108_bib3 article-title: Battery energy storage technology for power systems - an overview publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2008.09.017 – volume: 12 start-page: 1221 issue: 5 year: 2008 ident: 10.1016/j.energy.2016.10.108_bib2 article-title: Energy storage systems - characteristics and comparisons publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2007.01.023 – volume: 87 start-page: 3322 issue: 11 year: 2010 ident: 10.1016/j.energy.2016.10.108_bib13 article-title: Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.04.024 – year: 2010 ident: 10.1016/j.energy.2016.10.108_bib16 article-title: Annual simulations with the EBSILON Professional time series calculation module |
SSID | ssj0005899 |
Score | 2.492836 |
Snippet | Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 876 |
SubjectTerms | case studies Computer simulation Control reserve electric power Electric power plants Electricity distribution Energy storage Exergy Fluctuations Fossil fuels Fossil power plant Grid stability Heat Heat exchangers Heat transfer Incinerators Increased flexibility Lignite markets Molten salt thermal storage Numerical analysis Power plants Primary reserve Renewable energy sources steam Steam electric power generation Storage systems Studies Thermal storage |
Title | Increasing fossil power plant flexibility by integrating molten-salt thermal storage |
URI | https://dx.doi.org/10.1016/j.energy.2016.10.108 https://www.proquest.com/docview/1932185699 https://www.proquest.com/docview/2131879874 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED3oRn1itsoLX2HSz2W6OUpSq6EUFb0v2EajEtpj24MXf7swm8QUiSG7J5MFkd75vk29mAE4GiGKIwklkDdI3UeQ456wX0UD6zHnn4iwkid3cytGDuHpMH5dg2ObCkKyyif11TA_RutnTa7zZm43HvTuMvcg3BEdGQaBIGeVU_QvH9OnbF5mHCj0kyTgi6zZ9Lmi8fMivI4GXPK31dr_B049AHdDnYgPWG9rIzuon24QlP9mC1TaruNqC3fPPjDU0bKZstQ33GAFIeI4QxQq85bhkM-qMxmYlOpUVVBAzCGRfmXllbfUIsn6elkiooyov54xo4jNel7SUGIF24OHi_H44ippWCpEVsZpHJi6kkonHxYkStKUSAws3meCG-zwpDK4reOqcSJQ31CQsRehyKi5snNs4S3ZheTKd-D1gXHrHi9hK1beicH1lU-5MYpRD4LMi7UDSelDbps44tbsodSsoe9K13zX5vd6rOhB9nDWr62z8YT9oX47-Nl40QsEfZ3bbd6mb-VpporHIXGSWdeD44zDONPp9kk_8dFFp3k-oNbsaiP1_3_wA1jjxgvANpwvL85eFP0RWMzdHYdgewcrZ5fXo9h1tAPhC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOcAFsXyIsizrlbiGpo7jOEeEQGWBXigSNyv-iFSUfoiUA_9-ZxIHBNIKCeWW2Ek0id97Tt54AE4zZDFk4SSyBuWbKAscc9aLKJM-d965OG-SxO7GcvQg_j6mj2tw0eXCkK0yYH-L6Q1ahz2DEM3Bcjod3CP2ot4QHBUFkWK2DhsiRUzuwcb59c1o_O70UE0ZSWofUYcug66xefkmxY48XvKstdz9j6E-YXVDQFc7sB2UIztvb-4HrPn5Lmx2icX1LhxcvietYcMwaus9mCAIkPccWYqVeMlpxZZUHI0tK4wrK2lNzMYj-8rMK-sWkKDWs0WFmjqqi2rFSCnO8Lxkp0QQ2oeHq8vJxSgK1RQiK2K1ikxcSiUTj_MTJWhLJWILN7nghvsiKQ1OLXjqnEiUN1QnLEX2cioubVzYOE8OoDdfzP0hMC6942VspRpaUbqhsil3JjHKIfdZkfYh6SKobVhqnCpeVLrzlD3pNu6a4t7uVX2I3not26U2vmifdQ9Hf3hlNLLBFz2Pu2epw5CtNSlZFC8yz_vw5-0wDjb6g1LM_eKl1nyYUHV2lYmjb1_8N2yOJne3-vZ6fPMTtjjJhOaTzjH0Vs8v_heKnJU5CS_xP9jO-u0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+fossil+power+plant+flexibility+by+integrating+molten-salt+thermal+storage&rft.jtitle=Energy+%28Oxford%29&rft.au=Garbrecht%2C+Oliver&rft.au=Bieber%2C+Malte&rft.au=Kneer%2C+Reinhold&rft.date=2017-01-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=118&rft.spage=876&rft_id=info:doi/10.1016%2Fj.energy.2016.10.108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |