Increasing fossil power plant flexibility by integrating molten-salt thermal storage

Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 118; pp. 876 - 883
Main Authors Garbrecht, Oliver, Bieber, Malte, Kneer, Reinhold
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2016.10.108

Cover

Abstract Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility. The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required. •The implementation of molten-salt thermal storage systems in fossil power plants is presented.•Thermal performance of the storage systems has been investigated by conducting process simulations.•Two different power plant types are the subject of this study: heat controlled and power controlled.•Results indicate that thermal storage systems are suitable to increase power plant flexibility.
AbstractList Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility. The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required. •The implementation of molten-salt thermal storage systems in fossil power plants is presented.•Thermal performance of the storage systems has been investigated by conducting process simulations.•Two different power plant types are the subject of this study: heat controlled and power controlled.•Results indicate that thermal storage systems are suitable to increase power plant flexibility.
Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output fluctuations as well as providing control reserve. The present study investigates the use of molten-salt storage systems in fossil-fired power plants by conducting a series of numerical process simulations. Two case studies are performed: First, an incinerator representing a heat-controlled facility with fluctuating output due to varying customer steam demand. Second, a small-size lignite-fired power plant for providing control reserve, representing a power-controlled facility. The results show that the concept allows significant attenuation of fluctuations in the heat-controlled facility. For a broad range of customer steam extraction, a steady production of electrical energy could be obtained without substantial modifications to the plant. Positive and negative control reserve in the power-controlled facility can be provided through the use of a storage system with relatively low exergetic losses. However, a number of additional heat exchangers and significant modifications to the steam cycle are required.
Author Garbrecht, Oliver
Kneer, Reinhold
Bieber, Malte
Author_xml – sequence: 1
  givenname: Oliver
  surname: Garbrecht
  fullname: Garbrecht, Oliver
  email: garbrecht@wsa.rwth-aachen.de
– sequence: 2
  givenname: Malte
  surname: Bieber
  fullname: Bieber, Malte
– sequence: 3
  givenname: Reinhold
  surname: Kneer
  fullname: Kneer, Reinhold
BookMark eNqFkE1LxDAQhoMouH78Aw8FL1665qtt6kEQ8QsEL3oOaTpds2STNcmq--9NrScPyhyGGd73ZeY5QLvOO0DohOA5waQ-X87BQVhs5zRP8--t2EEzIhpW1o2odtEMsxqXFed0Hx3EuMQYV6JtZ-j5wekAKhq3KAYfo7HF2n9AKNZWuVQMFj5NZ6xJ26LbFsYlWASVRvXK2wSujMqmIr1CWClbxOSDWsAR2huUjXD80w_Ry-3N8_V9-fh093B99VhqjkUqOzzUombQVEzwsaq6qRntWk47CooNXdtwWvU9ZwI6DVRVApNe4EFjpXHLDtHZlLsO_m0DMcmViRpsPh38JkpKWGbQioZn6ekv6dJvgsvXSdIySkRVt2PgxaTSIbMIMEhtUn7XuxSUsZJgOQKXSzkBlyPwaSuymf8yr4NZqbD9z3Y52SCTejcQZNQGnIbeBNBJ9t78HfAFIJmfFg
CitedBy_id crossref_primary_10_1016_j_energy_2024_132795
crossref_primary_10_1016_j_est_2022_104335
crossref_primary_10_1016_j_energy_2024_133568
crossref_primary_10_1016_j_corsci_2024_112651
crossref_primary_10_1016_j_applthermaleng_2022_119008
crossref_primary_10_1016_j_apenergy_2019_04_190
crossref_primary_10_1039_D3CP01096A
crossref_primary_10_1016_j_applthermaleng_2022_119240
crossref_primary_10_1016_j_applthermaleng_2025_125847
crossref_primary_10_1016_j_applthermaleng_2019_114258
crossref_primary_10_1016_j_est_2024_110611
crossref_primary_10_1016_j_est_2024_110495
crossref_primary_10_1007_s11814_021_0789_1
crossref_primary_10_1016_j_est_2024_113363
crossref_primary_10_1002_cite_202000137
crossref_primary_10_1016_j_enconman_2021_114054
crossref_primary_10_1016_j_applthermaleng_2023_121287
crossref_primary_10_1016_j_est_2024_114491
crossref_primary_10_1016_j_apenergy_2019_113487
crossref_primary_10_1088_1755_1315_983_1_012007
crossref_primary_10_3390_en17112775
crossref_primary_10_3390_en12214205
crossref_primary_10_1016_j_apenergy_2018_02_039
crossref_primary_10_1016_j_applthermaleng_2019_04_049
crossref_primary_10_1016_j_rser_2025_115388
crossref_primary_10_1016_j_energy_2022_126480
crossref_primary_10_1051_e3sconf_202019401034
crossref_primary_10_1016_j_energy_2022_125349
crossref_primary_10_1016_j_energy_2023_128239
crossref_primary_10_3390_en15218004
crossref_primary_10_1016_j_egypro_2018_11_031
crossref_primary_10_1016_j_energy_2018_01_102
crossref_primary_10_1016_j_tsep_2024_103004
crossref_primary_10_2339_politeknik_719875
crossref_primary_10_1016_j_apenergy_2022_119017
crossref_primary_10_3390_en13040787
crossref_primary_10_1016_j_energy_2019_116684
crossref_primary_10_1016_j_anucene_2025_111197
crossref_primary_10_3389_fenrg_2020_00178
crossref_primary_10_3390_en13092222
crossref_primary_10_1016_j_applthermaleng_2023_121702
crossref_primary_10_1016_j_est_2025_116183
crossref_primary_10_1016_j_energy_2024_130950
crossref_primary_10_1016_j_est_2022_106410
crossref_primary_10_1016_j_enconman_2019_112434
crossref_primary_10_1016_j_esr_2018_08_011
crossref_primary_10_1016_j_est_2024_114916
crossref_primary_10_1016_j_est_2025_116147
crossref_primary_10_3390_e22121440
crossref_primary_10_1109_TPWRS_2019_2940725
crossref_primary_10_2298_TSCI231217066Z
crossref_primary_10_1016_j_jclepro_2020_124298
crossref_primary_10_1007_s11630_024_2015_z
crossref_primary_10_1016_j_partic_2023_09_016
crossref_primary_10_1016_j_energy_2023_129557
crossref_primary_10_1016_j_energy_2022_125917
crossref_primary_10_1016_j_applthermaleng_2023_120371
crossref_primary_10_1016_j_ijepes_2022_108051
crossref_primary_10_1016_j_energy_2025_135292
crossref_primary_10_1016_j_energy_2024_132201
crossref_primary_10_1016_j_applthermaleng_2024_122907
crossref_primary_10_1016_j_csite_2024_105212
crossref_primary_10_1016_j_applthermaleng_2022_119537
crossref_primary_10_1016_j_energy_2023_129236
crossref_primary_10_1016_j_applthermaleng_2022_118041
crossref_primary_10_1016_j_est_2025_115983
crossref_primary_10_1016_j_applthermaleng_2019_04_066
crossref_primary_10_1016_j_energy_2017_05_010
crossref_primary_10_1016_j_est_2025_115667
crossref_primary_10_1016_j_est_2024_112227
crossref_primary_10_1016_j_jclepro_2021_128047
crossref_primary_10_1016_j_apenergy_2019_113572
crossref_primary_10_2139_ssrn_4109675
crossref_primary_10_1115_1_4056450
crossref_primary_10_1016_j_enconman_2020_113271
crossref_primary_10_3390_su13041882
crossref_primary_10_1016_j_energy_2025_135580
crossref_primary_10_3390_en15165830
Cites_doi 10.1115/1.1464123
10.1016/j.apenergy.2010.12.031
10.1016/j.solener.2010.03.007
10.1016/j.rser.2009.07.036
10.1016/j.jpowsour.2004.12.025
10.1016/j.enpol.2010.01.006
10.1016/j.combustflame.2016.07.028
10.1016/j.jpowsour.2004.12.022
10.1016/j.energy.2015.02.017
10.1016/j.energy.2014.12.067
10.1016/S0360-5442(03)00193-2
10.1109/TPWRS.2007.901459
10.1016/j.epsr.2008.09.017
10.1016/j.rser.2007.01.023
10.1016/j.apenergy.2010.04.024
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2016.10.108
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 883
ExternalDocumentID 10_1016_j_energy_2016_10_108
S0360544216315547
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c408t-b0f6863e753848484567632b942b2ea3fb97425dd438ebce2a5801d80fc0ac093
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Sun Sep 28 02:07:46 EDT 2025
Wed Aug 13 11:30:34 EDT 2025
Tue Jul 01 00:53:05 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Control reserve
Primary reserve
Molten salt thermal storage
Grid stability
Fossil power plant
Increased flexibility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b0f6863e753848484567632b942b2ea3fb97425dd438ebce2a5801d80fc0ac093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1932185699
PQPubID 2045484
PageCount 8
ParticipantIDs proquest_miscellaneous_2131879874
proquest_journals_1932185699
crossref_citationtrail_10_1016_j_energy_2016_10_108
crossref_primary_10_1016_j_energy_2016_10_108
elsevier_sciencedirect_doi_10_1016_j_energy_2016_10_108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Oudalov, Chartouni, Ohler (bib4) Aug 2007; 22
Kempton, Tomic (bib6) 2005; 144
Hees, Zabrodiec, Massmeyer, Pielsticker, Gövert, Habermehl (bib18) 2016; 172
De Luca, Ferraro, Marinelli (bib10) 2015; 83
Flueckiger, Yang, Garimella (bib12) 2011; 88
Cocco, Serra (bib15) 2015; 81
Yang, Garimella (bib14) 2010; 84
Andersson, Elofsson, Galus, Gransson, Karlsson, Johnsson (bib7) 2010; 38
Konstantin (bib1) 2009; vol. 2
Kempton, Tomic (bib5) 2005; 144
Yang, Garimella (bib13) 2010; 87
Divya, Østergaard (bib3) 2009; 79
Hirsch, Janicka, Löw, Metzger, Pawellek (bib16) 2010
Pacheco, Showalter, Kolb (bib8) Apr. 2002; 124
Medrano, Gil, Martorell, Potau, Cabeza (bib9) 2010; 14
Herrmann, Kelly, Price (bib11) 2004; 29
Pawellek, Pulyaev, Hirsch, Wittmann, Seitz (bib17) 2012
Caterpillar Inc (bib19) 2015
Ibrahim, Ilinca, Perron (bib2) 2008; 12
Cocco (10.1016/j.energy.2016.10.108_bib15) 2015; 81
Hees (10.1016/j.energy.2016.10.108_bib18) 2016; 172
Pawellek (10.1016/j.energy.2016.10.108_bib17) 2012
Medrano (10.1016/j.energy.2016.10.108_bib9) 2010; 14
Oudalov (10.1016/j.energy.2016.10.108_bib4) 2007; 22
Pacheco (10.1016/j.energy.2016.10.108_bib8) 2002; 124
Divya (10.1016/j.energy.2016.10.108_bib3) 2009; 79
Kempton (10.1016/j.energy.2016.10.108_bib6) 2005; 144
Flueckiger (10.1016/j.energy.2016.10.108_bib12) 2011; 88
Yang (10.1016/j.energy.2016.10.108_bib14) 2010; 84
Konstantin (10.1016/j.energy.2016.10.108_bib1) 2009; vol. 2
Kempton (10.1016/j.energy.2016.10.108_bib5) 2005; 144
Yang (10.1016/j.energy.2016.10.108_bib13) 2010; 87
Herrmann (10.1016/j.energy.2016.10.108_bib11) 2004; 29
Ibrahim (10.1016/j.energy.2016.10.108_bib2) 2008; 12
De Luca (10.1016/j.energy.2016.10.108_bib10) 2015; 83
Caterpillar Inc (10.1016/j.energy.2016.10.108_bib19) 2015
Andersson (10.1016/j.energy.2016.10.108_bib7) 2010; 38
Hirsch (10.1016/j.energy.2016.10.108_bib16) 2010
References_xml – volume: 124
  start-page: 153
  year: Apr. 2002
  end-page: 159
  ident: bib8
  article-title: Development of a molten-salt thermocline thermal storage system for parabolic trough plants
  publication-title: J Sol Energy Eng
– volume: 14
  start-page: 56
  year: 2010
  end-page: 72
  ident: bib9
  article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies
  publication-title: Renew Sustain Energy Rev
– volume: 83
  start-page: 230
  year: 2015
  end-page: 239
  ident: bib10
  article-title: On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salt
  publication-title: Energy
– volume: 29
  start-page: 883
  year: 2004
  end-page: 893
  ident: bib11
  article-title: Two-tank molten salt storage for parabolic trough solar power plants
  publication-title: Energy
– year: 2015
  ident: bib19
  article-title: Technical spec sheet for 3516E generator set
– volume: 144
  start-page: 280
  year: 2005
  end-page: 294
  ident: bib6
  article-title: Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy
  publication-title: J Power Sources
– year: 2010
  ident: bib16
  article-title: Annual simulations with the EBSILON Professional time series calculation module
  publication-title: Proceedings of the SolarPACES 2010 conference, perpignan, France
– volume: 38
  start-page: 2751
  year: 2010
  end-page: 2762
  ident: bib7
  article-title: Plug-in hybrid electric vehicles as regulating power providers: case studies of Sweden and Germany
  publication-title: Energy Policy
– volume: 12
  start-page: 1221
  year: 2008
  end-page: 1250
  ident: bib2
  article-title: Energy storage systems - characteristics and comparisons
  publication-title: Renew Sustain Energy Rev
– volume: vol. 2
  year: 2009
  ident: bib1
  publication-title: Praxisbuch Energiewirtschaft
– volume: 79
  start-page: 511
  year: 2009
  end-page: 520
  ident: bib3
  article-title: Battery energy storage technology for power systems - an overview
  publication-title: Electr Power Syst Res
– volume: 172
  start-page: 289
  year: 2016
  end-page: 301
  ident: bib18
  article-title: Detailed analyzes of pulverized coal swirl flames in oxy-fuel atmospheres
  publication-title: Combust Flame
– volume: 87
  start-page: 3322
  year: 2010
  end-page: 3329
  ident: bib13
  article-title: Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions
  publication-title: Appl Energy
– volume: 84
  start-page: 974
  year: 2010
  end-page: 985
  ident: bib14
  article-title: Thermal analysis of solar thermal energy storage in a molten-salt thermocline
  publication-title: Sol Energy
– volume: 22
  start-page: 1259
  year: Aug 2007
  end-page: 1266
  ident: bib4
  article-title: Optimizing a battery energy storage system for primary frequency control
  publication-title: Power Syst IEEE Trans
– volume: 144
  start-page: 268
  year: 2005
  end-page: 279
  ident: bib5
  article-title: Vehicle-to-grid power fundamentals: calculating capacity and net revenue
  publication-title: J Power Sources
– volume: 81
  start-page: 526
  year: 2015
  end-page: 536
  ident: bib15
  article-title: Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power
  publication-title: Energy
– year: 2012
  ident: bib17
  article-title: Transient simulation of a parabolic trough collector in EBSILON PROFESSIONAL
  publication-title: Proceedings of the SolarPACES 2012 conference, marakkech, Morocco
– volume: 88
  start-page: 2098
  year: 2011
  end-page: 2105
  ident: bib12
  article-title: An integrated thermal and mechanical investigation of molten-salt thermocline energy storage
  publication-title: Appl Energy
– volume: 124
  start-page: 153
  year: 2002
  ident: 10.1016/j.energy.2016.10.108_bib8
  article-title: Development of a molten-salt thermocline thermal storage system for parabolic trough plants
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.1464123
– volume: 88
  start-page: 2098
  issue: 6
  year: 2011
  ident: 10.1016/j.energy.2016.10.108_bib12
  article-title: An integrated thermal and mechanical investigation of molten-salt thermocline energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.031
– volume: 84
  start-page: 974
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2016.10.108_bib14
  article-title: Thermal analysis of solar thermal energy storage in a molten-salt thermocline
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.03.007
– volume: 14
  start-page: 56
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2016.10.108_bib9
  article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.07.036
– volume: vol. 2
  year: 2009
  ident: 10.1016/j.energy.2016.10.108_bib1
– volume: 144
  start-page: 268
  issue: 1
  year: 2005
  ident: 10.1016/j.energy.2016.10.108_bib5
  article-title: Vehicle-to-grid power fundamentals: calculating capacity and net revenue
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.12.025
– volume: 38
  start-page: 2751
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2016.10.108_bib7
  article-title: Plug-in hybrid electric vehicles as regulating power providers: case studies of Sweden and Germany
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.01.006
– year: 2015
  ident: 10.1016/j.energy.2016.10.108_bib19
– volume: 172
  start-page: 289
  year: 2016
  ident: 10.1016/j.energy.2016.10.108_bib18
  article-title: Detailed analyzes of pulverized coal swirl flames in oxy-fuel atmospheres
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2016.07.028
– volume: 144
  start-page: 280
  issue: 1
  year: 2005
  ident: 10.1016/j.energy.2016.10.108_bib6
  article-title: Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.12.022
– volume: 83
  start-page: 230
  year: 2015
  ident: 10.1016/j.energy.2016.10.108_bib10
  article-title: On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salt
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.017
– year: 2012
  ident: 10.1016/j.energy.2016.10.108_bib17
  article-title: Transient simulation of a parabolic trough collector in EBSILON PROFESSIONAL
– volume: 81
  start-page: 526
  year: 2015
  ident: 10.1016/j.energy.2016.10.108_bib15
  article-title: Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.067
– volume: 29
  start-page: 883
  issue: 56
  year: 2004
  ident: 10.1016/j.energy.2016.10.108_bib11
  article-title: Two-tank molten salt storage for parabolic trough solar power plants
  publication-title: Energy
  doi: 10.1016/S0360-5442(03)00193-2
– volume: 22
  start-page: 1259
  year: 2007
  ident: 10.1016/j.energy.2016.10.108_bib4
  article-title: Optimizing a battery energy storage system for primary frequency control
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2007.901459
– volume: 79
  start-page: 511
  issue: 4
  year: 2009
  ident: 10.1016/j.energy.2016.10.108_bib3
  article-title: Battery energy storage technology for power systems - an overview
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2008.09.017
– volume: 12
  start-page: 1221
  issue: 5
  year: 2008
  ident: 10.1016/j.energy.2016.10.108_bib2
  article-title: Energy storage systems - characteristics and comparisons
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2007.01.023
– volume: 87
  start-page: 3322
  issue: 11
  year: 2010
  ident: 10.1016/j.energy.2016.10.108_bib13
  article-title: Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.04.024
– year: 2010
  ident: 10.1016/j.energy.2016.10.108_bib16
  article-title: Annual simulations with the EBSILON Professional time series calculation module
SSID ssj0005899
Score 2.492836
Snippet Increasing market penetration of renewable energy sources requires measures to stabilize the electric grid. This includes reducing generator output...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 876
SubjectTerms case studies
Computer simulation
Control reserve
electric power
Electric power plants
Electricity distribution
Energy storage
Exergy
Fluctuations
Fossil fuels
Fossil power plant
Grid stability
Heat
Heat exchangers
Heat transfer
Incinerators
Increased flexibility
Lignite
markets
Molten salt thermal storage
Numerical analysis
Power plants
Primary reserve
Renewable energy sources
steam
Steam electric power generation
Storage systems
Studies
Thermal storage
Title Increasing fossil power plant flexibility by integrating molten-salt thermal storage
URI https://dx.doi.org/10.1016/j.energy.2016.10.108
https://www.proquest.com/docview/1932185699
https://www.proquest.com/docview/2131879874
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED3oRn1itsoLX2HSz2W6OUpSq6EUFb0v2EajEtpj24MXf7swm8QUiSG7J5MFkd75vk29mAE4GiGKIwklkDdI3UeQ456wX0UD6zHnn4iwkid3cytGDuHpMH5dg2ObCkKyyif11TA_RutnTa7zZm43HvTuMvcg3BEdGQaBIGeVU_QvH9OnbF5mHCj0kyTgi6zZ9Lmi8fMivI4GXPK31dr_B049AHdDnYgPWG9rIzuon24QlP9mC1TaruNqC3fPPjDU0bKZstQ33GAFIeI4QxQq85bhkM-qMxmYlOpUVVBAzCGRfmXllbfUIsn6elkiooyov54xo4jNel7SUGIF24OHi_H44ippWCpEVsZpHJi6kkonHxYkStKUSAws3meCG-zwpDK4reOqcSJQ31CQsRehyKi5snNs4S3ZheTKd-D1gXHrHi9hK1beicH1lU-5MYpRD4LMi7UDSelDbps44tbsodSsoe9K13zX5vd6rOhB9nDWr62z8YT9oX47-Nl40QsEfZ3bbd6mb-VpporHIXGSWdeD44zDONPp9kk_8dFFp3k-oNbsaiP1_3_wA1jjxgvANpwvL85eFP0RWMzdHYdgewcrZ5fXo9h1tAPhC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOcAFsXyIsizrlbiGpo7jOEeEQGWBXigSNyv-iFSUfoiUA_9-ZxIHBNIKCeWW2Ek0id97Tt54AE4zZDFk4SSyBuWbKAscc9aLKJM-d965OG-SxO7GcvQg_j6mj2tw0eXCkK0yYH-L6Q1ahz2DEM3Bcjod3CP2ot4QHBUFkWK2DhsiRUzuwcb59c1o_O70UE0ZSWofUYcug66xefkmxY48XvKstdz9j6E-YXVDQFc7sB2UIztvb-4HrPn5Lmx2icX1LhxcvietYcMwaus9mCAIkPccWYqVeMlpxZZUHI0tK4wrK2lNzMYj-8rMK-sWkKDWs0WFmjqqi2rFSCnO8Lxkp0QQ2oeHq8vJxSgK1RQiK2K1ikxcSiUTj_MTJWhLJWILN7nghvsiKQ1OLXjqnEiUN1QnLEX2cioubVzYOE8OoDdfzP0hMC6942VspRpaUbqhsil3JjHKIfdZkfYh6SKobVhqnCpeVLrzlD3pNu6a4t7uVX2I3not26U2vmifdQ9Hf3hlNLLBFz2Pu2epw5CtNSlZFC8yz_vw5-0wDjb6g1LM_eKl1nyYUHV2lYmjb1_8N2yOJne3-vZ6fPMTtjjJhOaTzjH0Vs8v_heKnJU5CS_xP9jO-u0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+fossil+power+plant+flexibility+by+integrating+molten-salt+thermal+storage&rft.jtitle=Energy+%28Oxford%29&rft.au=Garbrecht%2C+Oliver&rft.au=Bieber%2C+Malte&rft.au=Kneer%2C+Reinhold&rft.date=2017-01-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=118&rft.spage=876&rft_id=info:doi/10.1016%2Fj.energy.2016.10.108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon