Data Association-Based Fault Diagnosis of IMUs: Optimized DBN Design and Wheeled Robot Evaluation
Deep belief network (DBN) is now being recognized as a powerful and eminently practical tool for large scale data processing. The main characteristics of DBN are the feature extension from low-level content to high-level data association and the representation of joint distribution between original...
Saved in:
| Published in | IEEE access Vol. 8; pp. 59618 - 59636 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.2979999 |
Cover
| Abstract | Deep belief network (DBN) is now being recognized as a powerful and eminently practical tool for large scale data processing. The main characteristics of DBN are the feature extension from low-level content to high-level data association and the representation of joint distribution between original data and matched labels. For a wheeled robot with no other available location reference supports, the internally integrated inertial measurement units (IMUs) essentially requires the robot to be able to implement efficient fault diagnosis to locate and identify the faults, especially for the accumulated error caused by large drifts of gyroscopes. An optimized DBN based fault diagnosis design is proposed to deal with such faults with complexity and diversity. The highlights of the proposed DBN model lies in its combination of weight value optimization via an inexact LSA-GA (abbreviates 'inexact linear searching algorithm- genetic algorithm') and dynamic adjustment for hidden-layer neurons of constituent RBMs (abbreviates 'restricted Boltzmann machines'). The problems associated with DBN anatomy, bat algorithm (BA) description and fault diagnosis modeling are discussed in detail. The real robot platform experiments and dataset tests are conducted. The results indicate that, the optimized DBN design leads to a better fault classification with excellent generalization ability on given datasets, and the adjustable 'DBN structure' contributes to the data association extraction between multiples of fault categories. The proposed scheme may therefore be considered to provide preferred reference models for a class of data based fault diagnosis problems. |
|---|---|
| AbstractList | Deep belief network (DBN) is now being recognized as a powerful and eminently practical tool for large scale data processing. The main characteristics of DBN are the feature extension from low-level content to high-level data association and the representation of joint distribution between original data and matched labels. For a wheeled robot with no other available location reference supports, the internally integrated inertial measurement units (IMUs) essentially requires the robot to be able to implement efficient fault diagnosis to locate and identify the faults, especially for the accumulated error caused by large drifts of gyroscopes. An optimized DBN based fault diagnosis design is proposed to deal with such faults with complexity and diversity. The highlights of the proposed DBN model lies in its combination of weight value optimization via an inexact LSA-GA (abbreviates `inexact linear searching algorithm- genetic algorithm') and dynamic adjustment for hidden-layer neurons of constituent RBMs (abbreviates `restricted Boltzmann machines'). The problems associated with DBN anatomy, bat algorithm (BA) description and fault diagnosis modeling are discussed in detail. The real robot platform experiments and dataset tests are conducted. The results indicate that, the optimized DBN design leads to a better fault classification with excellent generalization ability on given datasets, and the adjustable `DBN structure' contributes to the data association extraction between multiples of fault categories. The proposed scheme may therefore be considered to provide preferred reference models for a class of data based fault diagnosis problems. |
| Author | Zhang, Shufeng Cui, Jiashuo Xia, Linlin Shen, Ran |
| Author_xml | – sequence: 1 givenname: Linlin orcidid: 0000-0002-5079-3788 surname: Xia fullname: Xia, Linlin email: xiall521@neepu.edu.cn organization: School of Automation Engineering, Northeast Electric Power University, Jilin, China – sequence: 2 givenname: Shufeng orcidid: 0000-0002-3316-914X surname: Zhang fullname: Zhang, Shufeng organization: School of Automation Engineering, Northeast Electric Power University, Jilin, China – sequence: 3 givenname: Ran orcidid: 0000-0002-0308-3919 surname: Shen fullname: Shen, Ran organization: School of Automation Engineering, Northeast Electric Power University, Jilin, China – sequence: 4 givenname: Jiashuo orcidid: 0000-0002-7825-994X surname: Cui fullname: Cui, Jiashuo organization: School of Automation Engineering, Northeast Electric Power University, Jilin, China |
| BookMark | eNqFkU9P3DAQxa2KSqWUT8DFUs_Z-k8Sx70tuwtdiRYJinq0Js5k61WIt7FTBJ8es0Googfm4tHovd9onj-Sg973SMgJZzPOmf4yXyxW19czwQSbCa10qnfkUPBSZ7KQ5cE__QdyHMKWparSqFCHBJYQgc5D8NZBdL7PTiFgQ89g7CJdOtj0PrhAfUvX32_CV3q5i-7WPSTJ8vQHXWJwm55C39BfvxG7NL7ytY909Re6cQ_8RN630AU8fn6PyM3Z6ufiW3Zxeb5ezC8ym7MqZlDJEgpsbQmSYZ1jKwSHVmvBmjq1VskcqkJx1GALqTivZd4oBskkC4vyiKwnbuNha3aDu4Xh3nhwZj_ww8bAEJ3t0DTK1lAw2SC2eaugtqBqZhnopoa0PrHyiTX2O7i_g657AXJmnlI3YC2GYJ5SN8-pJ9vnybYb_J8RQzRbPw59utqIPMVflayqkkpOKjv4EAZs_2NPP_qarV-5rIv7gOMArnvDezJ5HSK-bNNMCq5K-Qi81q98 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ac543a crossref_primary_10_1038_s41598_022_22171_7 |
| Cites_doi | 10.1016/j.neucom.2010.12.003 10.3390/s16111835 10.1109/ACCESS.2018.2837621 10.1016/j.asoc.2013.10.010 10.1007/s11424-017-6232-3 10.1016/j.jksuci.2018.03.010 10.1109/TASE.2012.2230628 10.3390/s17020425 10.1109/ACCESS.2018.2833851 10.1016/j.jprocont.2012.02.012 10.1109/TASE.2015.2487523 10.1016/j.engappai.2016.10.002 10.1109/ACCESS.2014.2302442 10.1007/s12555-012-0142-x 10.1016/j.robot.2017.06.002 10.1002/cjce.22962 10.1109/WCCAIS.2014.6916571 10.1038/nature14539 10.1016/j.neucom.2016.10.076 10.1142/S1793351X1940004X 10.1016/j.eswa.2018.08.050 10.1109/ACCESS.2017.2785763 10.1016/j.neunet.2014.09.003 10.1016/j.cja.2013.04.039 10.1016/j.neucom.2019.08.029 10.1016/j.applthermaleng.2016.07.109 10.1016/j.eswa.2011.02.043 10.1016/j.neucom.2017.07.032 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.2979999 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 59636 |
| ExternalDocumentID | oai_doaj_org_article_d7cba503deef4f7abca7b0c0a9dbaa30 10.1109/access.2020.2979999 10_1109_ACCESS_2020_2979999 9032176 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Fund for Distinguished Young Scholars of Jilin City grantid: 20190104128 – fundername: Natural Research Fund of Science and Technology Department, Jilin Province grantid: 20170101125JC funderid: 10.13039/501100011789 – fundername: Science and Technology Program of Department of Education, Jilin Province grantid: JJKH20200117KJ funderid: 10.13039/501100010211 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-a836a5efc6a30eb4ef221af9920db221c734a8571e9ac53711b34d70aa5e35ce3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:35 EDT 2025 Tue Aug 19 22:43:57 EDT 2025 Sun Jun 29 15:42:31 EDT 2025 Wed Oct 01 02:06:20 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Aug 27 02:35:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-a836a5efc6a30eb4ef221af9920db221c734a8571e9ac53711b34d70aa5e35ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7825-994X 0000-0002-0308-3919 0000-0002-3316-914X 0000-0002-5079-3788 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9032176 |
| PQID | 2453686088 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2020_2979999 crossref_citationtrail_10_1109_ACCESS_2020_2979999 proquest_journals_2453686088 ieee_primary_9032176 doaj_primary_oai_doaj_org_article_d7cba503deef4f7abca7b0c0a9dbaa30 unpaywall_primary_10_1109_access_2020_2979999 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ying (ref17) 2018; 38 ref31 zhang (ref5) 2018; 17 liu (ref9) 2013; 10 sun (ref22) 2014; 14 ref30 li (ref24) 2018; 38 ref33 ref11 ref32 ref10 liu (ref4) 2010 ref2 ref1 lecun (ref29) 2015; 521 ref18 wang (ref21) 2018; 38 cui (ref19) 2017; 37 yang (ref16) 2017; 37 ref23 ref26 ref25 ref20 ref28 ref27 ref8 ref7 ref3 ref6 |
| References_xml | – ident: ref8 doi: 10.1016/j.neucom.2010.12.003 – ident: ref6 doi: 10.3390/s16111835 – ident: ref26 doi: 10.1109/ACCESS.2018.2837621 – volume: 38 start-page: 31 year: 2018 ident: ref17 article-title: Transient stability assessment in bulk power grid using v-nonparallel support vector machine publication-title: J Northeastern Electr Power Univ – volume: 14 start-page: 609 year: 2014 ident: ref22 article-title: BLDC motor speed control system fault diagnosis based on LRGF neural network and adaptive lifting scheme publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.10.010 – ident: ref12 doi: 10.1007/s11424-017-6232-3 – ident: ref35 doi: 10.1016/j.jksuci.2018.03.010 – volume: 10 start-page: 687 year: 2013 ident: ref9 article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2012.2230628 – volume: 37 start-page: 45 year: 2017 ident: ref16 article-title: Real-time prediction for wind power based on Kalman filter and suport vector mahines publication-title: J Northeastern Electr Power Univ – ident: ref28 doi: 10.3390/s17020425 – ident: ref25 doi: 10.1109/ACCESS.2018.2833851 – ident: ref3 doi: 10.1016/j.jprocont.2012.02.012 – ident: ref14 doi: 10.1109/TASE.2015.2487523 – volume: 37 start-page: 56 year: 2017 ident: ref19 article-title: Gear fault diagnosis based on Hilbert envelope spectrum and SVM publication-title: J Northeastern Electr Power Univ – ident: ref31 doi: 10.1016/j.engappai.2016.10.002 – start-page: 3932 year: 2010 ident: ref4 article-title: Improved state-X² fault detection of navigation systems based on neural network publication-title: Proc IEEE Conf Decis and Control – volume: 17 start-page: 25 year: 2018 ident: ref5 article-title: Residual chi-square test and davar based on fault diagnosis and positioning publication-title: NAVIGATION AND CONTROL – ident: ref1 doi: 10.1109/ACCESS.2014.2302442 – ident: ref10 doi: 10.1007/s12555-012-0142-x – ident: ref7 doi: 10.1016/j.robot.2017.06.002 – ident: ref11 doi: 10.1002/cjce.22962 – ident: ref20 doi: 10.1109/WCCAIS.2014.6916571 – volume: 38 start-page: 82 year: 2018 ident: ref24 article-title: Application Study of self-organizing map network based on immune genetic algorithm publication-title: J Northeastern Electr Power Univ – volume: 521 start-page: 436 year: 2015 ident: ref29 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref23 doi: 10.1016/j.neucom.2016.10.076 – ident: ref32 doi: 10.1142/S1793351X1940004X – ident: ref34 doi: 10.1016/j.eswa.2018.08.050 – ident: ref13 doi: 10.1109/ACCESS.2017.2785763 – ident: ref30 doi: 10.1016/j.neunet.2014.09.003 – ident: ref2 doi: 10.1016/j.cja.2013.04.039 – ident: ref33 doi: 10.1016/j.neucom.2019.08.029 – volume: 38 start-page: 80 year: 2018 ident: ref21 article-title: Research on technologies of self healing control on smart distribution network publication-title: J Northeastern Electr Power Univ – ident: ref18 doi: 10.1016/j.applthermaleng.2016.07.109 – ident: ref15 doi: 10.1016/j.eswa.2011.02.043 – ident: ref27 doi: 10.1016/j.neucom.2017.07.032 |
| SSID | ssj0000816957 |
| Score | 2.1847014 |
| Snippet | Deep belief network (DBN) is now being recognized as a powerful and eminently practical tool for large scale data processing. The main characteristics of DBN... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 59618 |
| SubjectTerms | Algorithms Belief networks data association extraction Data processing Datasets Design optimization Fault detection Fault diagnosis Genetic algorithms Gyroscopes IMUs Inertial platforms Neurons Optimized DBN Robot sensing systems Robots Search algorithms Support vector machines Training weight value optimization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFB-kF_Ug1ipG2zIHj8ZOMl8Zb93dLlVoBXGht_DmCwprtnSziP71vkzSmFLQi7cQZoaX33t5H8nj9wh5F5VzmAW4PITIc8E9vlLCxxyEcxEY82Xqqry4VOcr8flKXk1GfXU9YT09cA_cidfOgmTc42EiarAOtGWOgfEWgKdqnVVmUkwlH1wVykg90AwVzJyczuf4RFgQluxD2f3LSmyvf0JRYuwfRqzcyzYf75ob-PkD1utJ4Fk-J8-GjJGe9pLuk0eheUGeTngEDwgsoAU6QTqfYXDydAm7dUsXfTfd9ZZuIv10sdp-pF_QUXy__oVLFrNLukhdHBQaT9E3Yxzy9OvGblp6NlKBvySr5dm3-Xk-zE7InWBVm0PFFcgQnUKMghUhlmUB0ZiSeYuXTnMBldRFMOAk10VhufCaAW7i0gX-iuw1mya8JrTUUWEdoZwMQhgRgSPuWqBOLMQqxIyUdzDWbiAW7-ZbrOtUYDBT99jXHfb1gH1G3o-bbnpejb8vn3X6GZd2pNjpBppKPZhK_S9TychBp93xEMM4FmQqI4d32q6HF3hbl0JyVSn0wRnJRwt4ICqkqZb3RH3zP0R9S550Z_bfeg7JXnu7C0eY_bT2OBn6b6VwAcA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2ILAvygSNp3dhxYm59bLUgbUGISsspGr-kakNb0VQL--uZuG7pgoQEtygaRxPN53nEk28Iee2lMZgFmNQ5z1PBLW4pYX0KwhgPjNksdFVeTOX5TLy_zC_jB7fwL4xzLjSfuW57Gc7y567-XvRk1pKnqV6pBHpUrOUV45hPy-7K-rvkSOaYi3fI0Wz6cfClnSjXlyrl4WzyRSTW7EGYQYhFYca6WXueFRhff4WjwNofx6zcyjjvbRYr-HENdX0QfCYPSbVTe9tzctXdNLprbn5jdPz_93pEHsS8lA62QHpM7rjFE3L_gK3wmMAYGqAH9kyHGAItncCmbuh427M3X9Olp-8uZuu39AO6o6_zGxQZD6d0HHpFKCwsxQiA0c7ST0u9bOjZnnD8KZlNzj6PztM4oSE1gpVNCiWXkDtvJHDmtHA-y_rglcqY1XhpCi6gzIu-U2ByXvT7mgtbMMBFPDeOPyOdxXLhnhOaFV5itSJN7oRQwgMH4IXIGdfgS-cTku0MVZlIX95O0airUMYwVQ1GI8Rs1Vq3itZNyJv9otWWvePv4sMWAXvRlno73EBrVXEnV7YwGlAti-gWvgBtoNDMMFBWo8osIcethfcPieZMyOkOT1V0E-sqEwjQUqKnT0i6x9gfqm5xe0vVk3-UPyWd5tvGvcQMqtGv4jb5Cc1yFp8 priority: 102 providerName: Unpaywall |
| Title | Data Association-Based Fault Diagnosis of IMUs: Optimized DBN Design and Wheeled Robot Evaluation |
| URI | https://ieeexplore.ieee.org/document/9032176 https://www.proquest.com/docview/2453686088 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09032176.pdf https://doaj.org/article/d7cba503deef4f7abca7b0c0a9dbaa30 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacgAOvAoiUFY-cGy2TuzYCbd9dFWQdkGIlcopGr-kiiWp2ESI_npsJxu2gBC3KBonY322Zzwef4PQa8uVcl6Aio2xNGZUuynFtI2BKWWBEJ2GrMrlil-s2bvL7PIAnQ53YYwxIfnMjP1jOMvXtWp9qOysINR50PwQHYqcd3e1hniKLyBRZKInFkpIcTaZzVwf3BYwJePUn14Fftdfxidw9PdFVW75l3fb6hp-fIfNZs_ULB6i5U7JLsPky7ht5Fjd_Mbf-L-9eIQe9D4nnnSD5DE6MNUTdH-PifAYwRwawHtYxVNn3jReQLtp8LzLx7va4trit8v19g1-75aar1c3TmQ-XeF5yAPBUGnsVndnyTT-WMu6wecDmfhTtF6cf5pdxH31hVgxkjcx5JRDZqziQImRzNg0TcAWRUq0dI9KUAZ5JhJTgMqoSBJJmRYEXCOaKUOfoaOqrsxzhFNhuduJcJUZxgpmgQJQwTJCJdjc2AilO1hK1VOT-woZmzJsUUhRdliWHsuyxzJCp0Oj646Z49_iU4_3IOpptcMLh03Zz9JSCyXBqaXdyGVWgFQgJFEECi2dyiRCxx7P4SM9lBE62Y2esl8CtmXKMspz7lbxCMXDiPpDVQh1MW-p-uLvf3mJ7nmpLv5zgo6ab6155TyiRo5CJGEUJsQI3VmvPkw-_wSZGgrv |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeBh74GtMKwzwA49L58R2nPC2tqs6WIuEVmlv1vlLmijJRBMh9tdjJ2noACHeoshOzvqd7872-XcIvXOp1j4K0JG1jkaMGj-lmHERMK0dEGKSJqtyvkhnS_bhml_voJP-Loy1tkk-s8Pw2Jzlm1LXYavsNCfUR9DpA_SQM8Z4e1ur31EJJSRyLjpqoZjkp2fjsR-FXwQmZJiE86uG4fWX-2lY-ruyKvcizL26uIUf32G12nI20ydovhGzzTH5MqwrNdR3vzE4_u84nqLHXdSJz1o1eYZ2bPEc7W9xER4gmEAFeAutaOQdnMFTqFcVnrQZeTdrXDp8MV-u3-NP3th8vbnzTSajBZ40mSAYCoO9ffe-zODPpSorfN7Tib9Ay-n51XgWdfUXIs1IVkWQ0RS4dToFSqxi1iVJDC7PE2KUf9SCMsi4iG0OmlMRx4oyIwj4TpRrSw_RblEW9gjhRLjUr0VSzS1jOXNAAahgnFAFLrNugJINLFJ35OShRsZKNosUkssWSxmwlB2WA3TSd7ptuTn-3XwU8O6bBmLt5oXHRnbzVBqhFXixjNdd5gQoDUIRTSA3yotMBugg4Nl_pINygI432iM7I7CWCeM0zVJvxwco6jXqD1GhqYx5T9SXf__LW7Q3u5pfysuLxcdX6FHo0e4GHaPd6lttX_v4qFJvmmnxEwntC5c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2ILAvygSNp3dhxYm59bLUgbUGISsspGr-kakNb0VQL--uZuG7pgoQEtygaRxPN53nEk28Iee2lMZgFmNQ5z1PBLW4pYX0KwhgPjNksdFVeTOX5TLy_zC_jB7fwL4xzLjSfuW57Gc7y567-XvRk1pKnqV6pBHpUrOUV45hPy-7K-rvkSOaYi3fI0Wz6cfClnSjXlyrl4WzyRSTW7EGYQYhFYca6WXueFRhff4WjwNofx6zcyjjvbRYr-HENdX0QfCYPSbVTe9tzctXdNLprbn5jdPz_93pEHsS8lA62QHpM7rjFE3L_gK3wmMAYGqAH9kyHGAItncCmbuh427M3X9Olp-8uZuu39AO6o6_zGxQZD6d0HHpFKCwsxQiA0c7ST0u9bOjZnnD8KZlNzj6PztM4oSE1gpVNCiWXkDtvJHDmtHA-y_rglcqY1XhpCi6gzIu-U2ByXvT7mgtbMMBFPDeOPyOdxXLhnhOaFV5itSJN7oRQwgMH4IXIGdfgS-cTku0MVZlIX95O0airUMYwVQ1GI8Rs1Vq3itZNyJv9otWWvePv4sMWAXvRlno73EBrVXEnV7YwGlAti-gWvgBtoNDMMFBWo8osIcethfcPieZMyOkOT1V0E-sqEwjQUqKnT0i6x9gfqm5xe0vVk3-UPyWd5tvGvcQMqtGv4jb5Cc1yFp8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Association-Based+Fault+Diagnosis+of+IMUs%3A+Optimized+DBN+Design+and+Wheeled+Robot+Evaluation&rft.jtitle=IEEE+access&rft.au=Xia%2C+Linlin&rft.au=Zhang%2C+Shufeng&rft.au=Shen%2C+Ran&rft.au=Cui%2C+Jiashuo&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=59618&rft.epage=59636&rft_id=info:doi/10.1109%2FACCESS.2020.2979999&rft.externalDocID=9032176 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |