Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2

We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent...

Full description

Saved in:
Bibliographic Details
Published inSolid state sciences Vol. 128; p. 106893
Main Authors Khireddine, A., Bouhemadou, A., Maabed, S., Bin-Omran, S., Khenata, R., Al-Douri, Y.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.06.2022
Subjects
Online AccessGet full text
ISSN1293-2558
1873-3085
DOI10.1016/j.solidstatesciences.2022.106893

Cover

Abstract We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent agreement with the available experimental counterparts. From the monocrystalline elastic constants numerically estimated through the stress-strain technique, a set of related properties, viz., mechanical stability, elastic anisotropy, brittle/ductile character, anisotropic sound velocities, polycrystalline elastic moduli, including isotropic bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. The electronic and optical properties are investigated through the state-of-the art FP-(L)APW + lo method with the accurate TB-mBJ potential. Ba2ZnP2 is an indirect semiconductor with a gap of 1.24 eV. The charge-carrier effective masses are calculated. The valence band maximum is less dispersive than the conduction band minimum. The microscopic origins of the electronic states composing the energy bands are determined via the PDOS diagrams. Topological analysis of the charge density shows that a covalent character is dominantly ruling the Zn–P bond inside the block ZnP4, while an ionic bonding is mainly ruling the bond between the cation Ba and the polyanion ZnP4. Frequency-dependent macroscopic linear optical functions are predicted in a wide energy range 0–30 eV. Within the visible spectra, the calculated magnitude of the absorption coefficient, reflectivity and refractive index are in the ranges ∼4−35×104cm−1, 29−36% and 3.18−3.47, respectively. The semi-classical Boltzmann transport theory within the constant relaxation time approximation is used to study the thermoelectric properties. The title compound has a figure of merit of ∼1.77 at 300 K, which makes it a potential candidate for thermoelectric applications. [Display omitted] •Some fundamental physical properties of the novel Zintl-phase Ba2ZnP2 are explored.•It is mechanically stable with moderate stiffness and a significant elastic anisotropy.•It is an indirect bandgap semiconductors with mixed covalent-ionic bond characters.•It exhibits an import absorption of the electromagnetic radiation in the visible and UV spectra.•It can be classified among the TE materials of performant thermoelectricity candidate for thermoelectric applications.
AbstractList We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent agreement with the available experimental counterparts. From the monocrystalline elastic constants numerically estimated through the stress-strain technique, a set of related properties, viz., mechanical stability, elastic anisotropy, brittle/ductile character, anisotropic sound velocities, polycrystalline elastic moduli, including isotropic bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. The electronic and optical properties are investigated through the state-of-the art FP-(L)APW + lo method with the accurate TB-mBJ potential. Ba2ZnP2 is an indirect semiconductor with a gap of 1.24 eV. The charge-carrier effective masses are calculated. The valence band maximum is less dispersive than the conduction band minimum. The microscopic origins of the electronic states composing the energy bands are determined via the PDOS diagrams. Topological analysis of the charge density shows that a covalent character is dominantly ruling the Zn–P bond inside the block ZnP4, while an ionic bonding is mainly ruling the bond between the cation Ba and the polyanion ZnP4. Frequency-dependent macroscopic linear optical functions are predicted in a wide energy range 0–30 eV. Within the visible spectra, the calculated magnitude of the absorption coefficient, reflectivity and refractive index are in the ranges ∼4−35×104cm−1, 29−36% and 3.18−3.47, respectively. The semi-classical Boltzmann transport theory within the constant relaxation time approximation is used to study the thermoelectric properties. The title compound has a figure of merit of ∼1.77 at 300 K, which makes it a potential candidate for thermoelectric applications. [Display omitted] •Some fundamental physical properties of the novel Zintl-phase Ba2ZnP2 are explored.•It is mechanically stable with moderate stiffness and a significant elastic anisotropy.•It is an indirect bandgap semiconductors with mixed covalent-ionic bond characters.•It exhibits an import absorption of the electromagnetic radiation in the visible and UV spectra.•It can be classified among the TE materials of performant thermoelectricity candidate for thermoelectric applications.
ArticleNumber 106893
Author Khireddine, A.
Khenata, R.
Maabed, S.
Al-Douri, Y.
Bin-Omran, S.
Bouhemadou, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Khireddine
  fullname: Khireddine, A.
  organization: Laboratory for Developing New Materials and their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
– sequence: 2
  givenname: A.
  orcidid: 0000-0002-5139-4172
  surname: Bouhemadou
  fullname: Bouhemadou, A.
  email: a_bouhemadou@yahoo.fr, abdelmadjid_bouhemadou@univ-setif.dz
  organization: Laboratory for Developing New Materials and their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
– sequence: 3
  givenname: S.
  surname: Maabed
  fullname: Maabed, S.
  organization: Département des Sciences de la Matière, Faculté des sciences, Université Amar Telidji, BP 37G, Laghouat, 03000, Algeria
– sequence: 4
  givenname: S.
  surname: Bin-Omran
  fullname: Bin-Omran, S.
  organization: Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
– sequence: 5
  givenname: R.
  surname: Khenata
  fullname: Khenata, R.
  organization: Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000, Mascara, Algeria
– sequence: 6
  givenname: Y.
  orcidid: 0000-0002-5175-6372
  surname: Al-Douri
  fullname: Al-Douri, Y.
  organization: Engineering Department, American University of Iraq-Sulaimani, P.O. Box 46001, Sulaimani, Kurdistan, Iraq
BookMark eNqVkD1PwzAQhi1UJNrCf_DIQIrjxEm8AVXLhyrBAEsZLMs5q65cO7KtSvx7EqUTLDDd6d5Xj3TPDE2cd4DQdU4WOcmr2_0iemvamGSCqAw4BXFBCaV9XDW8OEPTvKmLrCANm_Q75UVGGWsu0CzGPSGkqupyij5XVsZk1A0GCyoF74bdd_1JWixdi9MOwsGPqVG4C76DkAxE7PUQYuePYPHWuGSzbicj4AdJt-6NXqJzLW2Eq9Oco4_16n35lG1eH5-X95tMlaRJmaRQVppXSrW8kQAgtZY14bysGMgGVN0wUhDGap1LzYGXuqaUaKYUJ2VLijm6G7kq-BgDaNEFc5DhS-REDLLEXvyWJQZZYpTVI9Y_EMr0ZeNdCtLY_4BeRhD0Dx8NBHGqtSb0BkXrzd9h33Pam6k
CitedBy_id crossref_primary_10_1016_j_chemphys_2024_112260
crossref_primary_10_1016_j_chemphys_2024_112381
crossref_primary_10_1016_j_jmrt_2022_11_052
crossref_primary_10_1016_j_mssp_2023_107983
crossref_primary_10_1515_zna_2024_0057
crossref_primary_10_3390_condmat8030055
crossref_primary_10_1016_j_ssc_2025_115850
crossref_primary_10_1016_j_mseb_2024_117183
crossref_primary_10_1016_j_inoche_2023_111007
crossref_primary_10_1016_j_physb_2023_415499
crossref_primary_10_1016_j_jmrt_2023_02_015
crossref_primary_10_1016_j_comptc_2024_114947
crossref_primary_10_1016_j_mtcomm_2024_108696
crossref_primary_10_1007_s10904_024_03315_w
crossref_primary_10_1016_j_mseb_2023_116768
crossref_primary_10_1016_j_physb_2023_415415
crossref_primary_10_1016_j_ijleo_2023_170960
crossref_primary_10_1016_j_ijleo_2023_170565
crossref_primary_10_1016_j_jmrt_2023_09_084
crossref_primary_10_1016_j_mtcomm_2024_111461
crossref_primary_10_1016_j_rinp_2024_107497
crossref_primary_10_1016_j_ssc_2023_115189
crossref_primary_10_3390_coatings13081426
crossref_primary_10_1016_j_chemphys_2024_112390
crossref_primary_10_1021_acs_energyfuels_2c03642
crossref_primary_10_1016_j_chemphys_2024_112279
crossref_primary_10_1016_j_jmrt_2022_12_148
crossref_primary_10_1016_j_cocom_2024_e00966
crossref_primary_10_1007_s43207_024_00449_y
crossref_primary_10_1016_j_physb_2023_415242
crossref_primary_10_1016_j_ijleo_2023_171088
crossref_primary_10_1016_j_matchemphys_2023_127691
crossref_primary_10_1080_08927022_2022_2124297
crossref_primary_10_1515_zna_2024_0168
crossref_primary_10_1016_j_cplett_2022_139992
crossref_primary_10_1002_adts_202401066
crossref_primary_10_1007_s10853_024_10259_6
crossref_primary_10_1016_j_cjph_2024_03_013
crossref_primary_10_1016_j_rinp_2023_106251
crossref_primary_10_1063_5_0170089
crossref_primary_10_1088_2053_1591_ad95e2
crossref_primary_10_1016_j_ijleo_2022_170143
crossref_primary_10_1016_j_infrared_2022_104319
crossref_primary_10_1016_j_physe_2024_115970
crossref_primary_10_1016_j_rinp_2023_106812
crossref_primary_10_1142_S0217984924500957
crossref_primary_10_1088_1402_4896_ad6f77
crossref_primary_10_1016_j_comptc_2022_114006
crossref_primary_10_1016_j_matchemphys_2023_128115
crossref_primary_10_1080_00223131_2023_2246478
crossref_primary_10_1007_s11082_023_06057_0
crossref_primary_10_1016_j_jmmm_2022_170298
crossref_primary_10_1016_j_jmmm_2023_171605
crossref_primary_10_1016_j_ssc_2022_115063
crossref_primary_10_1016_j_ssc_2023_115361
crossref_primary_10_1016_j_apsusc_2022_154739
crossref_primary_10_1016_j_vacuum_2023_112269
crossref_primary_10_1021_acs_jpcc_3c04086
crossref_primary_10_1016_j_comptc_2023_114251
crossref_primary_10_1016_j_comptc_2022_113943
crossref_primary_10_1016_j_jmrt_2022_11_088
crossref_primary_10_1007_s11581_023_05172_y
crossref_primary_10_1007_s10904_024_03518_1
crossref_primary_10_1142_S0217979224501716
crossref_primary_10_1016_j_chemphys_2023_112065
crossref_primary_10_1016_j_chemphys_2024_112463
crossref_primary_10_1016_j_rinp_2023_107042
crossref_primary_10_1016_j_jmmm_2023_170604
crossref_primary_10_1016_j_solener_2023_112199
crossref_primary_10_1016_j_jmrt_2023_01_085
crossref_primary_10_1002_admi_202400581
crossref_primary_10_1088_1402_4896_ad1c23
crossref_primary_10_1016_j_cap_2023_02_021
crossref_primary_10_1016_j_ssc_2022_114950
crossref_primary_10_1080_00268976_2024_2318018
crossref_primary_10_1002_qua_27368
crossref_primary_10_1016_j_jmrt_2022_10_037
crossref_primary_10_1016_j_cplett_2022_140254
crossref_primary_10_1016_j_comptc_2023_114354
crossref_primary_10_1080_14786435_2024_2380527
crossref_primary_10_1016_j_chemphys_2023_111915
crossref_primary_10_1142_S0217979225500754
crossref_primary_10_1016_j_jmrt_2022_08_017
crossref_primary_10_1515_htmp_2022_0241
crossref_primary_10_1016_j_physb_2024_416289
crossref_primary_10_1140_epjp_s13360_023_04121_y
crossref_primary_10_1016_j_comptc_2022_113993
crossref_primary_10_1016_j_jmrt_2023_04_169
crossref_primary_10_1016_j_jmrt_2023_08_009
crossref_primary_10_1016_j_rinma_2024_100635
crossref_primary_10_1016_j_cocom_2023_e00809
crossref_primary_10_1016_j_jpcs_2023_111231
crossref_primary_10_1016_j_matchemphys_2022_127164
crossref_primary_10_1016_j_jmgm_2022_108370
crossref_primary_10_1021_acs_jpcc_3c03627
crossref_primary_10_1016_j_jpcs_2023_111232
crossref_primary_10_1016_j_mtcomm_2023_106001
crossref_primary_10_1016_j_ceramint_2023_05_042
Cites_doi 10.3390/ma12050734
10.1016/j.apenergy.2020.115591
10.1021/acs.chemmater.0c02317
10.1021/acs.chemmater.9b04131
10.1080/08957959.2016.1167202
10.1063/1.5143061
10.1103/PhysRevB.83.195134
10.1021/j100203a036
10.1016/j.commatsci.2009.12.017
10.1016/j.infrared.2020.103476
10.1002/zaac.200400260
10.1088/0370-1298/65/5/307
10.1080/14786440808520496
10.1016/j.nanoen.2020.104771
10.1103/PhysRevB.94.125209
10.1088/0953-8984/9/2/014
10.1002/adfm.201000970
10.1021/acs.chemmater.0c03960
10.1080/0950083032000069249
10.3390/ma11112146
10.3390/ma12162554
10.1016/j.apenergy.2019.114388
10.3390/ma12040586
10.1021/cm050412c
10.1021/ic100296x
10.1103/PhysRevLett.100.165707
10.1103/PhysRevB.85.165149
10.1103/PhysRevLett.101.055504
10.1063/1.4792733
10.1103/PhysRevB.13.5188
10.1063/1.4915339
10.1002/aenm.202001229
10.1038/nature00865
10.1016/S0081-1947(08)60359-8
10.1016/j.cpc.2006.03.007
10.1063/1.1501133
10.1103/PhysRevB.46.6131
10.1063/1.446956
10.1002/ange.19390520102
10.1111/j.1151-2916.1988.tb05022.x
10.1016/j.jallcom.2018.09.338
10.1016/j.physb.2012.05.057
10.1007/s11664-016-5122-0
10.1016/j.jallcom.2015.01.038
10.1016/j.mssp.2021.106446
10.1016/j.comphy.2003.12.001
10.1016/j.physb.2010.10.057
10.1103/PhysRevB.41.7892
10.1016/j.cpc.2013.10.026
10.1021/ja027708t
10.1107/S0021889811038970
10.1063/1.1709819
10.1039/C9TA12211G
10.1103/PhysRevB.3.1462
10.1524/zkri.220.5.567.65075
10.1103/PhysRevLett.102.226401
10.1016/j.cpc.2006.03.005
10.1016/j.mtphys.2017.06.003
10.1016/0022-3697(63)90067-2
10.1016/j.jallcom.2020.154232
10.1088/0034-4885/44/8/002
10.1107/S0108768102009692
10.1103/PhysRevLett.100.136406
10.1103/PhysRevB.90.224104
10.1039/C6TA11234J
10.1021/cm060261t
10.1039/c2nr30585b
10.1073/pnas.1819157116
10.1039/C8QI00366A
10.3390/ma12050731
ContentType Journal Article
Copyright 2022 Elsevier Masson SAS
Copyright_xml – notice: 2022 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.solidstatesciences.2022.106893
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3085
ExternalDocumentID 10_1016_j_solidstatesciences_2022_106893
S1293255822000887
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c408t-a2e46f96ccd98aeeeaffa7099465ea8ec785030557f1af9e94f7220f5cc904d03
IEDL.DBID .~1
ISSN 1293-2558
IngestDate Wed Oct 01 04:14:38 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:41:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-principles calculations
Electronic structure
Elastic constants
Optoelectronic properties
Thermoelectric coefficients
Zintl phases
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a2e46f96ccd98aeeeaffa7099465ea8ec785030557f1af9e94f7220f5cc904d03
ORCID 0000-0002-5139-4172
0000-0002-5175-6372
ParticipantIDs crossref_primary_10_1016_j_solidstatesciences_2022_106893
crossref_citationtrail_10_1016_j_solidstatesciences_2022_106893
elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2022_106893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Solid state sciences
PublicationYear 2022
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Born, Huang (bib56) 1962
Langenberg, Ferreiro-Vila, Leborán, Fumega, Pardo, Rivadulla (bib68) 2016; 4
Nye (bib78) 1985
Hamidani, Bennecer (bib81) 2010; 48
Monkhorst, Park (bib31) 1976; 13
Toberer, Zevalkink, Crisosto, Snyder (bib20) 2010; 20
Blaha, Schwarz, Tran, Laskowski, Madsen, Marks (bib28) 2020; 152
Lloveras, Castán, Porta, Planes, Saxena (bib70) 2008; 100
Reuss, Angew (bib60) 1929; 9
Clark, Segall, Pickard, Hasnip, Probert, Refson, Payne (bib27) 2005; 220
Liu, Liu, Feng (bib62) 2011; 406
Koller, Tran, Blaha (bib34) 2011; 83
Kauzlarich (bib23) 2019; 12
Mao, Yu, Liu, Wang, Ju (bib75) 2015; 117
Ovchinnikov, Darone, Saparov, Bobev (bib14) 2018; 11
Saparov, Bobev (bib43) 2010; 49
Cube (bib77) 2016; 6
Bouhemadou, Allali, Boudiaf, Al Qarni, Bin-Omran, Khenata, Al -Douri (bib80) 2019; 774
Tran, Blaha (bib33) 2009; 102
Fischer, Almlof (bib32) 1992; 96
Gholikhani, Roshani, Dessouky, Papagiannakis (bib4) 2020; 261
Mori-Sánchez, Pendás, Luaña (bib51) 2002; 124
Lee, Mahanti (bib37) 2012; 85
Saha, Dutta (bib64) 2016; 94
Brown, Kauzlarich, Gascoin, Snyder (bib19) 2006; 18
Ouahrani, Khenata, Lasri, Reshak, Bouhemadou, Bin-Omran (bib52) 2012; 407
Chen, Sun, Duan, Huang, Peng (bib63) 2015; 630
Chiolerio, Garofalo, Mattiussi, Crepaldi, Fortunato, Iovieno (bib1) 2020; 277
Chen, Xue, Li, Zhang, Li, Wang, Liu, Sui, Liu, Cao, Ren, Chu, Wang, Zhang (bib21) 2019; 116
Chung, Buessem (bib76) 1967; 38
Matta, Boy (bib45) 2007
Mouhat, Coudert (bib57) 2014; 90
Zintl (bib22) 1939; 52
Zhang, Chen, Yao, Xue, Li, Bai, Huang, Li, Lin, Cao, Sui, Wang, Yu, Wang, Liu, Zhang (bib16) 2020; 32
Taylor, Maris, Elbaum (bib71) 1971; 3
Wendorff, Röhr (bib50) 2005; 631
Slack (bib83) 1979; 34
Fang, Zheng, Zhou, Chen, Zhang (bib36) 2017; 46
Hidayanti, Wati, Akbar (bib2) 2020; 29
Tvergaard, Hutchinson (bib69) 1988; 71
Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib8) 2020; 73
Ren, Liu, He, Lv, Gao, Xu (bib9) 2018; 5
Balvanz, Baranets, Bobev (bib25) 2020; C76
Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib30) 2008; 100
Groh, Devincre, Kubin, Roos, Feyel, Chaboche (bib72) 2003; 83
Pugh (bib65) 1954; 7
Cahill, Watson, Pohl (bib84) 1992; 46
Zhurova, Tsirelson (bib54) 2002; 58
Momma, Izumi (bib41) 2011; 44
Zhang, Yan, Li, Wang, Li, Chen, Cao, Sui, Lin, Liu, Xie, Zhang (bib17) 2020; 10
Li, Van Vliet, Zhu, Yip, Suresh (bib73) 2002; 418
Kunz Wille, Grewal, Bux, Kauzlarich (bib12) 2019; 12
Espinosa, Alkorta, Elguero, Molins (bib53) 2002; 117
Merad Boudia, Reshak, Ouahrani, Bentalha (bib79) 2013; 113
Liu, Chen, Xu, Lic, Wang (bib3) 2020; 8
Peng, Zevalkink (bib15) 2019; 12
Bader, Nguyen-Dang, Tal (bib48) 1981; 44
Bader, Essén (bib47) 1984; 80
Toberer, Zevalkink, Crisosto, Snyder (bib10) 2010; 20
Bader (bib46) 2003
Saha, Dutta (bib66) 2016; 94
Bedjaoui, Bouhemadou, Bin-Omran (bib58) 2016; 36
Shuai, Mao, Song, Zhang, Chen, Ren (bib7) 2017; 1
Vanderbilt (bib29) 1990; 41
Kumar R, Akande, El-Mellouhi, Park, Sanvito (bib5) 2020; 4
Ranganathan, Ostoja-Starzewski (bib74) 2008; 101
(bib24) 1996
McGuire, Reynolds, DiSalvo (bib6) 2005; 17
Zhou, Feng, Mao, Jiang, Zhu, Singh, Wang, Ren (bib18) 2020; 32
Anderson (bib67) 1963; 24
Otero-De-La-Roza, Johnson et, Luaña (bib49) 2014; 185
Rudysh, Shchepanskyi, Fedorchuk, Brik, Ma, Myronchuk, Piasecki (bib42) 2020; 826
Voigt (bib59) 1928
Ambrosch-Draxl, Sofo (bib35) 2006; 175
Mishra, Satpathy, Jepsen (bib85) 1997; 9
Zhai, Li, Mengmeng, Hu, Li, Yang, Yan, Zhang, Liu (bib55) 2022; 141
Balvanz, Qu, Baranets, Ertekin, Gorai, Bobev (bib11) 2020; 32
Rudysh, Piasecki, Myronchuk, Shchepanskyi, Stadnyk, Onufriv, Brik (bib26) 2020; 111
Madsen, Singh (bib39) 2006; 175
Cheikh, Lee, Peng, Zevalkink, Fleurial, Bux (bib13) 2019; 12
Hill (bib61) 1952; 65
Blanco, Francisco, Luaña (bib40) 2004; 158
Sun, Singh (bib44) 2017; 5
Xi, Long, Tang, Wang, Shuai (bib82) 2012; 4
Fang, Zheng, Zhou, Chen, Zhang (bib38) 2017; 46
Liu (10.1016/j.solidstatesciences.2022.106893_bib62) 2011; 406
Bader (10.1016/j.solidstatesciences.2022.106893_bib47) 1984; 80
Zhang (10.1016/j.solidstatesciences.2022.106893_bib17) 2020; 10
Langenberg (10.1016/j.solidstatesciences.2022.106893_bib68) 2016; 4
Tvergaard (10.1016/j.solidstatesciences.2022.106893_bib69) 1988; 71
Vanderbilt (10.1016/j.solidstatesciences.2022.106893_bib29) 1990; 41
Chung (10.1016/j.solidstatesciences.2022.106893_bib76) 1967; 38
Saparov (10.1016/j.solidstatesciences.2022.106893_bib43) 2010; 49
Toberer (10.1016/j.solidstatesciences.2022.106893_bib20) 2010; 20
Chen (10.1016/j.solidstatesciences.2022.106893_bib8) 2020; 73
Saha (10.1016/j.solidstatesciences.2022.106893_bib66) 2016; 94
Lloveras (10.1016/j.solidstatesciences.2022.106893_bib70) 2008; 100
Mao (10.1016/j.solidstatesciences.2022.106893_bib75) 2015; 117
Blaha (10.1016/j.solidstatesciences.2022.106893_bib28) 2020; 152
Liu (10.1016/j.solidstatesciences.2022.106893_bib3) 2020; 8
Chen (10.1016/j.solidstatesciences.2022.106893_bib63) 2015; 630
Groh (10.1016/j.solidstatesciences.2022.106893_bib72) 2003; 83
Rudysh (10.1016/j.solidstatesciences.2022.106893_bib42) 2020; 826
Gholikhani (10.1016/j.solidstatesciences.2022.106893_bib4) 2020; 261
Fang (10.1016/j.solidstatesciences.2022.106893_bib38) 2017; 46
Li (10.1016/j.solidstatesciences.2022.106893_bib73) 2002; 418
Hamidani (10.1016/j.solidstatesciences.2022.106893_bib81) 2010; 48
(10.1016/j.solidstatesciences.2022.106893_bib24) 1996
Blanco (10.1016/j.solidstatesciences.2022.106893_bib40) 2004; 158
Chen (10.1016/j.solidstatesciences.2022.106893_bib21) 2019; 116
Monkhorst (10.1016/j.solidstatesciences.2022.106893_bib31) 1976; 13
Ouahrani (10.1016/j.solidstatesciences.2022.106893_bib52) 2012; 407
Ambrosch-Draxl (10.1016/j.solidstatesciences.2022.106893_bib35) 2006; 175
Kunz Wille (10.1016/j.solidstatesciences.2022.106893_bib12) 2019; 12
Zhang (10.1016/j.solidstatesciences.2022.106893_bib16) 2020; 32
Hidayanti (10.1016/j.solidstatesciences.2022.106893_bib2) 2020; 29
Bedjaoui (10.1016/j.solidstatesciences.2022.106893_bib58) 2016; 36
Hill (10.1016/j.solidstatesciences.2022.106893_bib61) 1952; 65
Voigt (10.1016/j.solidstatesciences.2022.106893_bib59) 1928
Kumar R (10.1016/j.solidstatesciences.2022.106893_bib5) 2020; 4
Mouhat (10.1016/j.solidstatesciences.2022.106893_bib57) 2014; 90
Cube (10.1016/j.solidstatesciences.2022.106893_bib77) 2016; 6
Shuai (10.1016/j.solidstatesciences.2022.106893_bib7) 2017; 1
Bouhemadou (10.1016/j.solidstatesciences.2022.106893_bib80) 2019; 774
Bader (10.1016/j.solidstatesciences.2022.106893_bib46) 2003
Zhai (10.1016/j.solidstatesciences.2022.106893_bib55) 2022; 141
Xi (10.1016/j.solidstatesciences.2022.106893_bib82) 2012; 4
Mishra (10.1016/j.solidstatesciences.2022.106893_bib85) 1997; 9
Tran (10.1016/j.solidstatesciences.2022.106893_bib33) 2009; 102
Nye (10.1016/j.solidstatesciences.2022.106893_bib78) 1985
Ren (10.1016/j.solidstatesciences.2022.106893_bib9) 2018; 5
McGuire (10.1016/j.solidstatesciences.2022.106893_bib6) 2005; 17
Cahill (10.1016/j.solidstatesciences.2022.106893_bib84) 1992; 46
Chiolerio (10.1016/j.solidstatesciences.2022.106893_bib1) 2020; 277
Zhou (10.1016/j.solidstatesciences.2022.106893_bib18) 2020; 32
Perdew (10.1016/j.solidstatesciences.2022.106893_bib30) 2008; 100
Born (10.1016/j.solidstatesciences.2022.106893_bib56) 1962
Anderson (10.1016/j.solidstatesciences.2022.106893_bib67) 1963; 24
Merad Boudia (10.1016/j.solidstatesciences.2022.106893_bib79) 2013; 113
Toberer (10.1016/j.solidstatesciences.2022.106893_bib10) 2010; 20
Rudysh (10.1016/j.solidstatesciences.2022.106893_bib26) 2020; 111
Kauzlarich (10.1016/j.solidstatesciences.2022.106893_bib23) 2019; 12
Wendorff (10.1016/j.solidstatesciences.2022.106893_bib50) 2005; 631
Ovchinnikov (10.1016/j.solidstatesciences.2022.106893_bib14) 2018; 11
Matta (10.1016/j.solidstatesciences.2022.106893_bib45) 2007
Taylor (10.1016/j.solidstatesciences.2022.106893_bib71) 1971; 3
Ranganathan (10.1016/j.solidstatesciences.2022.106893_bib74) 2008; 101
Lee (10.1016/j.solidstatesciences.2022.106893_bib37) 2012; 85
Zhurova (10.1016/j.solidstatesciences.2022.106893_bib54) 2002; 58
Madsen (10.1016/j.solidstatesciences.2022.106893_bib39) 2006; 175
Pugh (10.1016/j.solidstatesciences.2022.106893_bib65) 1954; 7
Fang (10.1016/j.solidstatesciences.2022.106893_bib36) 2017; 46
Peng (10.1016/j.solidstatesciences.2022.106893_bib15) 2019; 12
Cheikh (10.1016/j.solidstatesciences.2022.106893_bib13) 2019; 12
Sun (10.1016/j.solidstatesciences.2022.106893_bib44) 2017; 5
Koller (10.1016/j.solidstatesciences.2022.106893_bib34) 2011; 83
Saha (10.1016/j.solidstatesciences.2022.106893_bib64) 2016; 94
Brown (10.1016/j.solidstatesciences.2022.106893_bib19) 2006; 18
Balvanz (10.1016/j.solidstatesciences.2022.106893_bib11) 2020; 32
Zintl (10.1016/j.solidstatesciences.2022.106893_bib22) 1939; 52
Fischer (10.1016/j.solidstatesciences.2022.106893_bib32) 1992; 96
Otero-De-La-Roza (10.1016/j.solidstatesciences.2022.106893_bib49) 2014; 185
Slack (10.1016/j.solidstatesciences.2022.106893_bib83) 1979; 34
Bader (10.1016/j.solidstatesciences.2022.106893_bib48) 1981; 44
Espinosa (10.1016/j.solidstatesciences.2022.106893_bib53) 2002; 117
Momma (10.1016/j.solidstatesciences.2022.106893_bib41) 2011; 44
Balvanz (10.1016/j.solidstatesciences.2022.106893_bib25) 2020; C76
Reuss (10.1016/j.solidstatesciences.2022.106893_bib60) 1929; 9
Mori-Sánchez (10.1016/j.solidstatesciences.2022.106893_bib51) 2002; 124
Clark (10.1016/j.solidstatesciences.2022.106893_bib27) 2005; 220
References_xml – year: 2007
  ident: bib45
  article-title: An introduction to the quantum theory of atoms in molecules
  publication-title: The Quantum Theory of Atoms in Molecules from Solid State to DNA and Drug Design
– volume: 3
  start-page: 1462
  year: 1971
  end-page: 1472
  ident: bib71
  article-title: Focusing of phonons in crystalline solids due to elastic anisotropy
  publication-title: Phys. Rev. B
– volume: 4
  year: 2020
  ident: bib5
  article-title: Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides
  publication-title: Phy. Rev. Mater.
– volume: 5
  start-page: 2380
  year: 2018
  end-page: 2398
  ident: bib9
  article-title: Recent advances in inorganic material thermoelectrics
  publication-title: Inorg. Chem. Front.
– volume: 100
  year: 2008
  ident: bib30
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
– year: 1928
  ident: bib59
  article-title: Lehrbuch der Kristallphysik (Textbook of crystal physics)
– volume: 8
  start-page: 513
  year: 2020
  end-page: 531
  ident: bib3
  article-title: Solar evaporation for simultaneous steam and power generation
  publication-title: J. Mater. Chem.
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  ident: bib41
  article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J. Appl. Crystallogr.
– volume: 117
  start-page: 115903
  year: 2015
  end-page: 115912
  ident: bib75
  article-title: First-principles investigation on mechanical, electronic and thermodynamic properties of Mg
  publication-title: J. Appl. Phys.
– volume: 185
  start-page: 1007
  year: 2014
  end-page: 1018
  ident: bib49
  article-title: Critic2: a program for real-space analysis of quantum chemical interactions in solids
  publication-title: Comput. Phys. Commun.
– volume: 11
  year: 2018
  ident: bib14
  article-title: Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions
  publication-title: Materials
– volume: 116
  start-page: 2831
  year: 2019
  end-page: 2836
  ident: bib21
  article-title: Zintl-phase Eu
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: C76
  start-page: 869
  year: 2020
  end-page: 873
  ident: bib25
  article-title: Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba
  publication-title: Acta Crystallogr.
– volume: 13
  year: 1976
  ident: bib31
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 418
  start-page: 307
  year: 2002
  end-page: 310
  ident: bib73
  article-title: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals
  publication-title: Nature (London)
– volume: 4
  start-page: 4348
  year: 2012
  end-page: 4369
  ident: bib82
  article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials
  publication-title: Nanoscale
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: bib61
  article-title: The elastic behavior of a crystalline aggregate
  publication-title: Proc. Phys. Soc.
– year: 1962
  ident: bib56
  article-title: Dynamical Theory of Crystal Lattices
– year: 1985
  ident: bib78
  article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
– volume: 52
  year: 1939
  ident: bib22
  article-title: Intermetallische verbindungen (intermetallic compounds)
  publication-title: Angew. Chem.
– volume: 44
  start-page: 893
  year: 1981
  end-page: 948
  ident: bib48
  article-title: A topological theory of molecular structure
  publication-title: Rep. Prog. Phys.
– volume: 34
  start-page: 1
  year: 1979
  end-page: 71
  ident: bib83
  article-title: The thermal conductivity of nonmetallic crystals
  publication-title: Solid State Phys.
– volume: 10
  year: 2020
  ident: bib17
  article-title: A dual role by incorporation of magnesium in YbZn
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 115
  year: 2010
  end-page: 123
  ident: bib81
  article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se)
  publication-title: Comput. Mater. Sci.
– volume: 406
  start-page: 345
  year: 2011
  end-page: 350
  ident: bib62
  article-title: Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO
  publication-title: Physica B
– volume: 826
  start-page: 154232
  year: 2020
  end-page: 154238
  ident: bib42
  article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor
  publication-title: J. Alloys Compd.
– volume: 71
  start-page: 157
  year: 1988
  end-page: 166
  ident: bib69
  article-title: Microcracking in ceramics induced by thermal expansion or elastic anisotropy
  publication-title: J. Am. Ceram. Soc.
– volume: 46
  start-page: 6131
  year: 1992
  end-page: 6140
  ident: bib84
  article-title: Lower limit to the thermal conductivity of disordered crystals
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 2010
  year: 1967
  end-page: 2012
  ident: bib76
  article-title: The elastic anisotropy of crystals
  publication-title: J. Appl. Phys.
– volume: 774
  start-page: 299
  year: 2019
  end-page: 314
  ident: bib80
  article-title: Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh
  publication-title: J. Alloys Compd.
– volume: 83
  year: 2011
  ident: bib34
  article-title: Merits and limits of the modified Becke-Johnson exchange potential
  publication-title: Phys. Rev. B
– volume: 80
  start-page: 1943
  year: 1984
  end-page: 1960
  ident: bib47
  article-title: The characterization of atomic interactions
  publication-title: J. Chem. Phys.
– volume: 12
  year: 2019
  ident: bib13
  article-title: Thermoelectric properties of scandium sesquitelluride
  publication-title: Materials
– volume: 12
  start-page: 586
  year: 2019
  end-page: 588
  ident: bib15
  article-title: Limits of cation solubility in AMg
  publication-title: Materials
– volume: 12
  year: 2019
  ident: bib23
  article-title: Advances in Zintl phases
  publication-title: Mater
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: bib27
  article-title: First-principles methods using CASTEP
  publication-title: Z. Kristallogr.
– volume: 58
  start-page: 567
  year: 2002
  end-page: 575
  ident: bib54
  article-title: Electron density and energy density view on the atomic interactions in SrTiO3
  publication-title: Acta Crystallogr. B: Struct. Sci., Cryst.
– volume: 32
  start-page: 6983
  year: 2020
  end-page: 6989
  ident: bib16
  article-title: Promising Zintl-phase thermoelectric compound SrAgSb
  publication-title: Chem. Mater.
– volume: 117
  start-page: 5529
  year: 2002
  end-page: 5542
  ident: bib53
  article-title: From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems
  publication-title: J. Chem. Phys.
– volume: 85
  start-page: 1651491
  year: 2012
  end-page: 1651498
  ident: bib37
  article-title: Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors
  publication-title: Phys. Rev. B
– volume: 261
  year: 2020
  ident: bib4
  article-title: A critical review of roadway energy harvesting technologies
  publication-title: Appl. Energy
– volume: 36
  start-page: 198
  year: 2016
  end-page: 219
  ident: bib58
  article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr
  publication-title: High Pres. Res.
– volume: 20
  start-page: 4375
  year: 2010
  end-page: 4380
  ident: bib10
  article-title: The Zintl compound Ca
  publication-title: Adv. Funct. Mater.
– volume: 175
  start-page: 1
  year: 2006
  end-page: 14
  ident: bib35
  article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method
  publication-title: Comput. Phys. Commun.
– volume: 111
  year: 2020
  ident: bib26
  article-title: AgGaTe
  publication-title: Infrared Phys. Technol.
– volume: 90
  year: 2014
  ident: bib57
  article-title: Necessary and sufficient elastic stability conditions in various crystal systems
  publication-title: Phys. Rev. B
– year: 1996
  ident: bib24
  publication-title: Chemistry, Structure and Bonding of Zintl Phases and Ions: Selected Topics and Recent Advances
– volume: 102
  start-page: 226401
  year: 2009
  end-page: 226404
  ident: bib33
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2008
  ident: bib74
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 776
  year: 2020
  end-page: 784
  ident: bib18
  article-title: Thermoelectric properties of Zintl phase YbMg
  publication-title: Chem. Mater.
– volume: 631
  start-page: 338
  year: 2005
  end-page: 349
  ident: bib50
  article-title: Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies
  publication-title: Z. fur Anorg. Allg. Chem.
– volume: 113
  year: 2013
  ident: bib79
  article-title: Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi
  publication-title: J. Appl. Phys.
– volume: 94
  year: 2016
  ident: bib64
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
– volume: 73
  year: 2020
  ident: bib8
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu
  publication-title: Nano Energy
– volume: 49
  start-page: 5173
  year: 2010
  end-page: 5179
  ident: bib43
  article-title: Isolated chains in the Zintl phases Ba
  publication-title: Inorg. Chem.
– year: 2003
  ident: bib46
  article-title: Atoms in Molecules: a Quantum Theory
– volume: 20
  start-page: 4375
  year: 2010
  end-page: 4380
  ident: bib20
  article-title: The Zintl compound Ca
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2016
  ident: bib68
  article-title: Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides
  publication-title: Appl. Phys. Lett. Mater.
– volume: 18
  start-page: 1873
  year: 2006
  end-page: 1877
  ident: bib19
  article-title: Yb
  publication-title: Chem. Mater.
– volume: 175
  start-page: 67
  year: 2006
  end-page: 71
  ident: bib39
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun. Phys. Commun
– volume: 630
  start-page: 202
  year: 2015
  end-page: 208
  ident: bib63
  article-title: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo
  publication-title: J. Alloys Compd.
– volume: 83
  start-page: 303
  year: 2003
  end-page: 313
  ident: bib72
  article-title: Dislocations and elastic anisotropy in heteroepitaxial metallic thin films
  publication-title: Phil. Mag. Lett.
– volume: 100
  year: 2008
  ident: bib70
  article-title: Influence of elastic anisotropy on structural nanoscale textures
  publication-title: Phys. Rev. Lett.
– volume: 158
  start-page: 57
  year: 2004
  end-page: 72
  ident: bib40
  article-title: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model
  publication-title: Comput. Phys. Commun.
– volume: 124
  start-page: 14721
  year: 2002
  end-page: 14723
  ident: bib51
  article-title: A classification of covalent, ionic, and metallic solids based on the electron density
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 4791
  year: 2020
  end-page: 4802
  ident: bib2
  article-title: Energy harvesting system design for converting noise into electrical energy
  publication-title: Int. J. Adv. Sci.
– volume: 407
  start-page: 3760
  year: 2012
  end-page: 3766
  ident: bib52
  article-title: First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds
  publication-title: Phys. B Condens. Matter
– volume: 1
  start-page: 74
  year: 2017
  end-page: 95
  ident: bib7
  article-title: Recent progress and future challenges on thermoelectric Zintl materials
  publication-title: Mater. Today Phys.
– volume: 12
  year: 2019
  ident: bib12
  article-title: Seebeck and figure of merit enhancement by rare earth doping in Yb
  publication-title: Materials
– volume: 6
  year: 2016
  ident: bib77
  article-title: Elastic anisotropy of crystals
  publication-title: AIP Adv.
– volume: 46
  start-page: 3030
  year: 2017
  end-page: 3035
  ident: bib38
  article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of
  publication-title: J. Electron. Mater.
– volume: 17
  start-page: 2875
  year: 2005
  end-page: 2884
  ident: bib6
  article-title: Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides
  publication-title: Chem. Mater.
– volume: 141
  start-page: 106446
  year: 2022
  ident: bib55
  article-title: Phonon transport in Zintl Ba
  publication-title: J. Mater. Sci. Semicond
– volume: 7
  start-page: 823
  year: 1954
  end-page: 843
  ident: bib65
  article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
  publication-title: Phil. Mag.
– volume: 94
  year: 2016
  ident: bib66
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 49
  year: 1929
  end-page: 58
  ident: bib60
  article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals
  publication-title: Math. Mech.
– volume: 277
  start-page: 115591
  year: 2020
  end-page: 115599
  ident: bib1
  article-title: Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester
  publication-title: Appl. Energy
– volume: 96
  start-page: 9768
  year: 1992
  end-page: 9774
  ident: bib32
  article-title: General methods for geometry and wave function optimization
  publication-title: J. Phys. Chem.
– volume: 5
  start-page: 8499
  year: 2017
  end-page: 8509
  ident: bib44
  article-title: Thermoelectric properties of AMg
  publication-title: J. Mater. Chem.
– volume: 32
  start-page: 24
  year: 2020
  ident: bib11
  article-title: New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu)
  publication-title: Chem. Mater.
– volume: 46
  start-page: 3030
  year: 2017
  end-page: 3035
  ident: bib36
  article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds
  publication-title: J. Electron. Mater.
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: bib29
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 909
  year: 1963
  end-page: 917
  ident: bib67
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
– volume: 9
  start-page: 461
  year: 1997
  end-page: 470
  ident: bib85
  article-title: Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide
  publication-title: J. Phys. Condens. Matter
– volume: 152
  year: 2020
  ident: bib28
  article-title: WIEN2k: an APW+lo program for calculating the properties of solids
  publication-title: J. C
– volume: 12
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib13
  article-title: Thermoelectric properties of scandium sesquitelluride
  publication-title: Materials
  doi: 10.3390/ma12050734
– volume: 4
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib5
  article-title: Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides
  publication-title: Phy. Rev. Mater.
– volume: 277
  start-page: 115591
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib1
  article-title: Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115591
– volume: 32
  start-page: 6983
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib16
  article-title: Promising Zintl-phase thermoelectric compound SrAgSb
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02317
– volume: 32
  start-page: 776
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib18
  article-title: Thermoelectric properties of Zintl phase YbMg2Sb2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04131
– volume: 36
  start-page: 198
  year: 2016
  ident: 10.1016/j.solidstatesciences.2022.106893_bib58
  article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation
  publication-title: High Pres. Res.
  doi: 10.1080/08957959.2016.1167202
– volume: 6
  year: 2016
  ident: 10.1016/j.solidstatesciences.2022.106893_bib77
  article-title: Elastic anisotropy of crystals
  publication-title: AIP Adv.
– volume: 152
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib28
  article-title: WIEN2k: an APW+lo program for calculating the properties of solids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5143061
– volume: 83
  year: 2011
  ident: 10.1016/j.solidstatesciences.2022.106893_bib34
  article-title: Merits and limits of the modified Becke-Johnson exchange potential
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195134
– volume: 96
  start-page: 9768
  year: 1992
  ident: 10.1016/j.solidstatesciences.2022.106893_bib32
  article-title: General methods for geometry and wave function optimization
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100203a036
– volume: 48
  start-page: 115
  year: 2010
  ident: 10.1016/j.solidstatesciences.2022.106893_bib81
  article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se)
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.12.017
– volume: 111
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib26
  article-title: AgGaTe2 – the thermoelectric and solar cell material: structure, electronic, optical, elastic and vibrational features
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103476
– volume: 631
  start-page: 338
  year: 2005
  ident: 10.1016/j.solidstatesciences.2022.106893_bib50
  article-title: Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies
  publication-title: Z. fur Anorg. Allg. Chem.
  doi: 10.1002/zaac.200400260
– year: 1962
  ident: 10.1016/j.solidstatesciences.2022.106893_bib56
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.solidstatesciences.2022.106893_bib61
  article-title: The elastic behavior of a crystalline aggregate
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1298/65/5/307
– volume: 7
  start-page: 823
  year: 1954
  ident: 10.1016/j.solidstatesciences.2022.106893_bib65
  article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
  publication-title: Phil. Mag.
  doi: 10.1080/14786440808520496
– volume: 73
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib8
  article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104771
– volume: 94
  year: 2016
  ident: 10.1016/j.solidstatesciences.2022.106893_bib66
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.125209
– year: 2007
  ident: 10.1016/j.solidstatesciences.2022.106893_bib45
  article-title: An introduction to the quantum theory of atoms in molecules
– year: 1985
  ident: 10.1016/j.solidstatesciences.2022.106893_bib78
– volume: 9
  start-page: 461
  year: 1997
  ident: 10.1016/j.solidstatesciences.2022.106893_bib85
  article-title: Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/9/2/014
– volume: 20
  start-page: 4375
  year: 2010
  ident: 10.1016/j.solidstatesciences.2022.106893_bib10
  article-title: The Zintl compound Ca5Al2Sb6for low‐cost thermoelectric power generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000970
– volume: 32
  start-page: 24
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib11
  article-title: New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03960
– volume: 83
  start-page: 303
  year: 2003
  ident: 10.1016/j.solidstatesciences.2022.106893_bib72
  article-title: Dislocations and elastic anisotropy in heteroepitaxial metallic thin films
  publication-title: Phil. Mag. Lett.
  doi: 10.1080/0950083032000069249
– volume: 11
  year: 2018
  ident: 10.1016/j.solidstatesciences.2022.106893_bib14
  article-title: Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions
  publication-title: Materials
  doi: 10.3390/ma11112146
– volume: 12
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib23
  article-title: Advances in Zintl phases
  publication-title: Mater
  doi: 10.3390/ma12162554
– volume: 261
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib4
  article-title: A critical review of roadway energy harvesting technologies
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114388
– volume: 12
  start-page: 586
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib15
  article-title: Limits of cation solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) alloys
  publication-title: Materials
  doi: 10.3390/ma12040586
– volume: 17
  start-page: 2875
  year: 2005
  ident: 10.1016/j.solidstatesciences.2022.106893_bib6
  article-title: Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides
  publication-title: Chem. Mater.
  doi: 10.1021/cm050412c
– volume: 49
  start-page: 5173
  year: 2010
  ident: 10.1016/j.solidstatesciences.2022.106893_bib43
  article-title: Isolated chains in the Zintl phases Ba2ZnPn2 (pn = as, Sb, Bi); synthesis, structure, and bonding
  publication-title: Inorg. Chem.
  doi: 10.1021/ic100296x
– volume: 100
  year: 2008
  ident: 10.1016/j.solidstatesciences.2022.106893_bib70
  article-title: Influence of elastic anisotropy on structural nanoscale textures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.165707
– volume: 85
  start-page: 1651491
  year: 2012
  ident: 10.1016/j.solidstatesciences.2022.106893_bib37
  article-title: Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165149
– volume: 101
  year: 2008
  ident: 10.1016/j.solidstatesciences.2022.106893_bib74
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055504
– volume: 113
  year: 2013
  ident: 10.1016/j.solidstatesciences.2022.106893_bib79
  article-title: Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi2B2O7 (M = Ca, Zn) compounds
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4792733
– volume: 13
  year: 1976
  ident: 10.1016/j.solidstatesciences.2022.106893_bib31
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 117
  start-page: 115903
  year: 2015
  ident: 10.1016/j.solidstatesciences.2022.106893_bib75
  article-title: First-principles investigation on mechanical, electronic and thermodynamic properties of Mg2Sr under high pressure
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4915339
– volume: 10
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib17
  article-title: A dual role by incorporation of magnesium in YbZn2Sb2 Zintl phase for enhanced thermoelectric performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001229
– volume: 418
  start-page: 307
  year: 2002
  ident: 10.1016/j.solidstatesciences.2022.106893_bib73
  article-title: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals
  publication-title: Nature (London)
  doi: 10.1038/nature00865
– volume: 34
  start-page: 1
  year: 1979
  ident: 10.1016/j.solidstatesciences.2022.106893_bib83
  article-title: The thermal conductivity of nonmetallic crystals
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60359-8
– volume: 175
  start-page: 67
  year: 2006
  ident: 10.1016/j.solidstatesciences.2022.106893_bib39
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun. Phys. Commun
  doi: 10.1016/j.cpc.2006.03.007
– volume: 117
  start-page: 5529
  year: 2002
  ident: 10.1016/j.solidstatesciences.2022.106893_bib53
  article-title: From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1501133
– volume: 46
  start-page: 6131
  year: 1992
  ident: 10.1016/j.solidstatesciences.2022.106893_bib84
  article-title: Lower limit to the thermal conductivity of disordered crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6131
– volume: 80
  start-page: 1943
  year: 1984
  ident: 10.1016/j.solidstatesciences.2022.106893_bib47
  article-title: The characterization of atomic interactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.446956
– volume: 52
  year: 1939
  ident: 10.1016/j.solidstatesciences.2022.106893_bib22
  article-title: Intermetallische verbindungen (intermetallic compounds)
  publication-title: Angew. Chem.
  doi: 10.1002/ange.19390520102
– volume: C76
  start-page: 869
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib25
  article-title: Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba2ZnP2
  publication-title: Acta Crystallogr.
– volume: 71
  start-page: 157
  year: 1988
  ident: 10.1016/j.solidstatesciences.2022.106893_bib69
  article-title: Microcracking in ceramics induced by thermal expansion or elastic anisotropy
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb05022.x
– volume: 774
  start-page: 299
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib80
  article-title: Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.338
– volume: 407
  start-page: 3760
  year: 2012
  ident: 10.1016/j.solidstatesciences.2022.106893_bib52
  article-title: First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2012.05.057
– volume: 46
  start-page: 3030
  year: 2017
  ident: 10.1016/j.solidstatesciences.2022.106893_bib38
  article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-5122-0
– volume: 630
  start-page: 202
  year: 2015
  ident: 10.1016/j.solidstatesciences.2022.106893_bib63
  article-title: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.01.038
– volume: 141
  start-page: 106446
  year: 2022
  ident: 10.1016/j.solidstatesciences.2022.106893_bib55
  article-title: Phonon transport in Zintl Ba2ZnAs2 and Ba2ZnSb2: a first-principles study
  publication-title: J. Mater. Sci. Semicond
  doi: 10.1016/j.mssp.2021.106446
– volume: 94
  year: 2016
  ident: 10.1016/j.solidstatesciences.2022.106893_bib64
  article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.125209
– volume: 158
  start-page: 57
  year: 2004
  ident: 10.1016/j.solidstatesciences.2022.106893_bib40
  article-title: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.comphy.2003.12.001
– volume: 9
  start-page: 49
  year: 1929
  ident: 10.1016/j.solidstatesciences.2022.106893_bib60
  article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals
  publication-title: Math. Mech.
– volume: 406
  start-page: 345
  year: 2011
  ident: 10.1016/j.solidstatesciences.2022.106893_bib62
  article-title: Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO2 from first-principles
  publication-title: Physica B
  doi: 10.1016/j.physb.2010.10.057
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.solidstatesciences.2022.106893_bib29
  article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 185
  start-page: 1007
  year: 2014
  ident: 10.1016/j.solidstatesciences.2022.106893_bib49
  article-title: Critic2: a program for real-space analysis of quantum chemical interactions in solids
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.10.026
– volume: 124
  start-page: 14721
  year: 2002
  ident: 10.1016/j.solidstatesciences.2022.106893_bib51
  article-title: A classification of covalent, ionic, and metallic solids based on the electron density
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja027708t
– volume: 44
  start-page: 1272
  year: 2011
  ident: 10.1016/j.solidstatesciences.2022.106893_bib41
  article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 46
  start-page: 3030
  year: 2017
  ident: 10.1016/j.solidstatesciences.2022.106893_bib36
  article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-5122-0
– year: 1928
  ident: 10.1016/j.solidstatesciences.2022.106893_bib59
– volume: 38
  start-page: 2010
  year: 1967
  ident: 10.1016/j.solidstatesciences.2022.106893_bib76
  article-title: The elastic anisotropy of crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709819
– volume: 8
  start-page: 513
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib3
  article-title: Solar evaporation for simultaneous steam and power generation
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA12211G
– volume: 29
  start-page: 4791
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib2
  article-title: Energy harvesting system design for converting noise into electrical energy
  publication-title: Int. J. Adv. Sci.
– volume: 3
  start-page: 1462
  year: 1971
  ident: 10.1016/j.solidstatesciences.2022.106893_bib71
  article-title: Focusing of phonons in crystalline solids due to elastic anisotropy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.3.1462
– volume: 220
  start-page: 567
  year: 2005
  ident: 10.1016/j.solidstatesciences.2022.106893_bib27
  article-title: First-principles methods using CASTEP
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.220.5.567.65075
– year: 1996
  ident: 10.1016/j.solidstatesciences.2022.106893_bib24
– volume: 102
  start-page: 226401
  year: 2009
  ident: 10.1016/j.solidstatesciences.2022.106893_bib33
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
– volume: 175
  start-page: 1
  year: 2006
  ident: 10.1016/j.solidstatesciences.2022.106893_bib35
  article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.005
– volume: 1
  start-page: 74
  year: 2017
  ident: 10.1016/j.solidstatesciences.2022.106893_bib7
  article-title: Recent progress and future challenges on thermoelectric Zintl materials
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2017.06.003
– volume: 24
  start-page: 909
  year: 1963
  ident: 10.1016/j.solidstatesciences.2022.106893_bib67
  article-title: A simplified method for calculating the Debye temperature from elastic constants
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(63)90067-2
– volume: 826
  start-page: 154232
  year: 2020
  ident: 10.1016/j.solidstatesciences.2022.106893_bib42
  article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154232
– volume: 44
  start-page: 893
  year: 1981
  ident: 10.1016/j.solidstatesciences.2022.106893_bib48
  article-title: A topological theory of molecular structure
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/44/8/002
– volume: 58
  start-page: 567
  year: 2002
  ident: 10.1016/j.solidstatesciences.2022.106893_bib54
  article-title: Electron density and energy density view on the atomic interactions in SrTiO3
  publication-title: Acta Crystallogr. B: Struct. Sci., Cryst.
  doi: 10.1107/S0108768102009692
– volume: 4
  year: 2016
  ident: 10.1016/j.solidstatesciences.2022.106893_bib68
  article-title: Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides
  publication-title: Appl. Phys. Lett. Mater.
– volume: 100
  year: 2008
  ident: 10.1016/j.solidstatesciences.2022.106893_bib30
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 90
  year: 2014
  ident: 10.1016/j.solidstatesciences.2022.106893_bib57
  article-title: Necessary and sufficient elastic stability conditions in various crystal systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.224104
– volume: 5
  start-page: 8499
  year: 2017
  ident: 10.1016/j.solidstatesciences.2022.106893_bib44
  article-title: Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X= Sb, Bi) Zintl compounds
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA11234J
– volume: 18
  start-page: 1873
  year: 2006
  ident: 10.1016/j.solidstatesciences.2022.106893_bib19
  article-title: Yb14MnSb11: new high efficiency thermoelectric material for power generation
  publication-title: Chem. Mater.
  doi: 10.1021/cm060261t
– volume: 20
  start-page: 4375
  year: 2010
  ident: 10.1016/j.solidstatesciences.2022.106893_bib20
  article-title: The Zintl compound Ca5Al2Sb6 for low‐cost thermoelectric power generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000970
– volume: 4
  start-page: 4348
  year: 2012
  ident: 10.1016/j.solidstatesciences.2022.106893_bib82
  article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials
  publication-title: Nanoscale
  doi: 10.1039/c2nr30585b
– volume: 116
  start-page: 2831
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib21
  article-title: Zintl-phase Eu2ZnSb2: a promising thermoelectric material with ultralow thermal conductivity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1819157116
– volume: 5
  start-page: 2380
  year: 2018
  ident: 10.1016/j.solidstatesciences.2022.106893_bib9
  article-title: Recent advances in inorganic material thermoelectrics
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00366A
– volume: 12
  year: 2019
  ident: 10.1016/j.solidstatesciences.2022.106893_bib12
  article-title: Seebeck and figure of merit enhancement by rare earth doping in Yb14−xRExZnSb11 (x = 0.5)
  publication-title: Materials
  doi: 10.3390/ma12050731
– year: 2003
  ident: 10.1016/j.solidstatesciences.2022.106893_bib46
SSID ssj0006674
Score 2.6076183
Snippet We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106893
SubjectTerms Elastic constants
Electronic structure
First-principles calculations
Optoelectronic properties
Thermoelectric coefficients
Zintl phases
Title Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2
URI https://dx.doi.org/10.1016/j.solidstatesciences.2022.106893
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: ACRLP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: .~1
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: AIKHN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006674
  issn: 1293-2558
  databaseCode: AKRWK
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5KBfUiPrE-yh48eGhs3tmcpIaWqlgELZR6CNvNLEZqEkr06G93Jw-r6EHBYzKbzfLtst_sMvMNISeGZxhRZEkNdIdrNphC4xHHYCqD6Q4YhmdhcvLNyB2O7auJM2mQoM6FwbDKau8v9_Rit67edCs0u1kcd--QqZRDrBgOiYxhRjmqf6k1ffa2DPNw3UKJGRtr2HqVnC5jvNT0xlGRuVP9AQW8TVOZXeZbP1PVJ_oZbJKNym-kvXJoW6QByTZZC-pybTvkoa_8YGXs0GVlmw5Ns-KumvIkoujqPaelNRY0w2v4Beqp0lSikSbpK8zpNE7yuZY9KnqjF9ycJrfmLhkP-vfBUKsqJ2jC1lmucRNsV_quEJHPOABwKbmnnEGFD3AGwmNOIQ7mSYNLH3xbegpG6Qjh63akW3ukmaQJ7BNqzcBTswxixpk98yzGbFCHLOFbbnH2aZHzGqRQVLLiWN1iHtbxY0_hd5hDhDksYW4R_6OHrJTY-MO3QT0v4ZdlEypG-HUvB__SyyFZx6cyjuyINPPFCxwrjyWftYsl2SYrvcvr4egd2pHw6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60BfUiPrE-9-DBg6F5bLKbk9SiVKtFUEH0ELabWYzUJJTq73c3j1bRg4LXTHYSZpb5ZpeZbwAOHeY4cewpC21fWBRdaYlYmGIqh9s-Og7zTHPy9SDo3dPLB_9hDrp1L4wpq6xifxnTi2hdPWlX1mznSdK-NUilE2KNcAbIOJuHJvV1TG5As3PR7w2mATkICjJm875lFizA0azMS3s4iYvmneojhsPbdbU44KH3M1p9QqDzFViuUkfSKf9uFeYwXYPFbj2xbR2eznQqrIXHZDbc5phkeXFdTUQaE5PtvWalNJEkNzfxY0OpSjJlhCTN3nFEHpN0MrLyZ41w5FS4j-mNuwH352d33Z5VDU-wJLX5xBIu0kCFgZRxyAUiCqUE0_kgDXwUHCXjfsEPxpQjVIghVUxbUvlShjaNbW8TGmmW4hYQb4hMOxrlUHA6ZB7nFPU5S4ZeUBx_WnBSGymSFbO4GXAxiuoSspfou5kjY-aoNHMLwqmGvGTZ-MPabu2X6MvOiTQo_FrL9r9oOYDF3t31VXR1MejvwJKRlGVlu9CYjN9wTycwk-F-tUE_AP9_85M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%2C+electronic%2C+optical+and+thermoelectric+properties+of+the+novel+Zintl-phase+Ba2ZnP2&rft.jtitle=Solid+state+sciences&rft.au=Khireddine%2C+A.&rft.au=Bouhemadou%2C+A.&rft.au=Maabed%2C+S.&rft.au=Bin-Omran%2C+S.&rft.date=2022-06-01&rft.issn=1293-2558&rft.volume=128&rft.spage=106893&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2022.106893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solidstatesciences_2022_106893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon