Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2
We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent...
Saved in:
Published in | Solid state sciences Vol. 128; p. 106893 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1293-2558 1873-3085 |
DOI | 10.1016/j.solidstatesciences.2022.106893 |
Cover
Abstract | We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent agreement with the available experimental counterparts. From the monocrystalline elastic constants numerically estimated through the stress-strain technique, a set of related properties, viz., mechanical stability, elastic anisotropy, brittle/ductile character, anisotropic sound velocities, polycrystalline elastic moduli, including isotropic bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. The electronic and optical properties are investigated through the state-of-the art FP-(L)APW + lo method with the accurate TB-mBJ potential. Ba2ZnP2 is an indirect semiconductor with a gap of 1.24 eV. The charge-carrier effective masses are calculated. The valence band maximum is less dispersive than the conduction band minimum. The microscopic origins of the electronic states composing the energy bands are determined via the PDOS diagrams. Topological analysis of the charge density shows that a covalent character is dominantly ruling the Zn–P bond inside the block ZnP4, while an ionic bonding is mainly ruling the bond between the cation Ba and the polyanion ZnP4. Frequency-dependent macroscopic linear optical functions are predicted in a wide energy range 0–30 eV. Within the visible spectra, the calculated magnitude of the absorption coefficient, reflectivity and refractive index are in the ranges ∼4−35×104cm−1, 29−36% and 3.18−3.47, respectively. The semi-classical Boltzmann transport theory within the constant relaxation time approximation is used to study the thermoelectric properties. The title compound has a figure of merit of ∼1.77 at 300 K, which makes it a potential candidate for thermoelectric applications.
[Display omitted]
•Some fundamental physical properties of the novel Zintl-phase Ba2ZnP2 are explored.•It is mechanically stable with moderate stiffness and a significant elastic anisotropy.•It is an indirect bandgap semiconductors with mixed covalent-ionic bond characters.•It exhibits an import absorption of the electromagnetic radiation in the visible and UV spectra.•It can be classified among the TE materials of performant thermoelectricity candidate for thermoelectric applications. |
---|---|
AbstractList | We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of the new Zintl phase dibarium zinc diphosphide Ba2ZnP2. The calculated structural parameters using the GGA-PBEsol functional are in excellent agreement with the available experimental counterparts. From the monocrystalline elastic constants numerically estimated through the stress-strain technique, a set of related properties, viz., mechanical stability, elastic anisotropy, brittle/ductile character, anisotropic sound velocities, polycrystalline elastic moduli, including isotropic bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature, are deduced. The electronic and optical properties are investigated through the state-of-the art FP-(L)APW + lo method with the accurate TB-mBJ potential. Ba2ZnP2 is an indirect semiconductor with a gap of 1.24 eV. The charge-carrier effective masses are calculated. The valence band maximum is less dispersive than the conduction band minimum. The microscopic origins of the electronic states composing the energy bands are determined via the PDOS diagrams. Topological analysis of the charge density shows that a covalent character is dominantly ruling the Zn–P bond inside the block ZnP4, while an ionic bonding is mainly ruling the bond between the cation Ba and the polyanion ZnP4. Frequency-dependent macroscopic linear optical functions are predicted in a wide energy range 0–30 eV. Within the visible spectra, the calculated magnitude of the absorption coefficient, reflectivity and refractive index are in the ranges ∼4−35×104cm−1, 29−36% and 3.18−3.47, respectively. The semi-classical Boltzmann transport theory within the constant relaxation time approximation is used to study the thermoelectric properties. The title compound has a figure of merit of ∼1.77 at 300 K, which makes it a potential candidate for thermoelectric applications.
[Display omitted]
•Some fundamental physical properties of the novel Zintl-phase Ba2ZnP2 are explored.•It is mechanically stable with moderate stiffness and a significant elastic anisotropy.•It is an indirect bandgap semiconductors with mixed covalent-ionic bond characters.•It exhibits an import absorption of the electromagnetic radiation in the visible and UV spectra.•It can be classified among the TE materials of performant thermoelectricity candidate for thermoelectric applications. |
ArticleNumber | 106893 |
Author | Khireddine, A. Khenata, R. Maabed, S. Al-Douri, Y. Bin-Omran, S. Bouhemadou, A. |
Author_xml | – sequence: 1 givenname: A. surname: Khireddine fullname: Khireddine, A. organization: Laboratory for Developing New Materials and their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria – sequence: 2 givenname: A. orcidid: 0000-0002-5139-4172 surname: Bouhemadou fullname: Bouhemadou, A. email: a_bouhemadou@yahoo.fr, abdelmadjid_bouhemadou@univ-setif.dz organization: Laboratory for Developing New Materials and their Characterizations, Department of Physics, Faculty of Science, University Ferhat Abbas Setif 1, Setif, 19000, Algeria – sequence: 3 givenname: S. surname: Maabed fullname: Maabed, S. organization: Département des Sciences de la Matière, Faculté des sciences, Université Amar Telidji, BP 37G, Laghouat, 03000, Algeria – sequence: 4 givenname: S. surname: Bin-Omran fullname: Bin-Omran, S. organization: Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia – sequence: 5 givenname: R. surname: Khenata fullname: Khenata, R. organization: Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000, Mascara, Algeria – sequence: 6 givenname: Y. orcidid: 0000-0002-5175-6372 surname: Al-Douri fullname: Al-Douri, Y. organization: Engineering Department, American University of Iraq-Sulaimani, P.O. Box 46001, Sulaimani, Kurdistan, Iraq |
BookMark | eNqVkD1PwzAQhi1UJNrCf_DIQIrjxEm8AVXLhyrBAEsZLMs5q65cO7KtSvx7EqUTLDDd6d5Xj3TPDE2cd4DQdU4WOcmr2_0iemvamGSCqAw4BXFBCaV9XDW8OEPTvKmLrCANm_Q75UVGGWsu0CzGPSGkqupyij5XVsZk1A0GCyoF74bdd_1JWixdi9MOwsGPqVG4C76DkAxE7PUQYuePYPHWuGSzbicj4AdJt-6NXqJzLW2Eq9Oco4_16n35lG1eH5-X95tMlaRJmaRQVppXSrW8kQAgtZY14bysGMgGVN0wUhDGap1LzYGXuqaUaKYUJ2VLijm6G7kq-BgDaNEFc5DhS-REDLLEXvyWJQZZYpTVI9Y_EMr0ZeNdCtLY_4BeRhD0Dx8NBHGqtSb0BkXrzd9h33Pam6k |
CitedBy_id | crossref_primary_10_1016_j_chemphys_2024_112260 crossref_primary_10_1016_j_chemphys_2024_112381 crossref_primary_10_1016_j_jmrt_2022_11_052 crossref_primary_10_1016_j_mssp_2023_107983 crossref_primary_10_1515_zna_2024_0057 crossref_primary_10_3390_condmat8030055 crossref_primary_10_1016_j_ssc_2025_115850 crossref_primary_10_1016_j_mseb_2024_117183 crossref_primary_10_1016_j_inoche_2023_111007 crossref_primary_10_1016_j_physb_2023_415499 crossref_primary_10_1016_j_jmrt_2023_02_015 crossref_primary_10_1016_j_comptc_2024_114947 crossref_primary_10_1016_j_mtcomm_2024_108696 crossref_primary_10_1007_s10904_024_03315_w crossref_primary_10_1016_j_mseb_2023_116768 crossref_primary_10_1016_j_physb_2023_415415 crossref_primary_10_1016_j_ijleo_2023_170960 crossref_primary_10_1016_j_ijleo_2023_170565 crossref_primary_10_1016_j_jmrt_2023_09_084 crossref_primary_10_1016_j_mtcomm_2024_111461 crossref_primary_10_1016_j_rinp_2024_107497 crossref_primary_10_1016_j_ssc_2023_115189 crossref_primary_10_3390_coatings13081426 crossref_primary_10_1016_j_chemphys_2024_112390 crossref_primary_10_1021_acs_energyfuels_2c03642 crossref_primary_10_1016_j_chemphys_2024_112279 crossref_primary_10_1016_j_jmrt_2022_12_148 crossref_primary_10_1016_j_cocom_2024_e00966 crossref_primary_10_1007_s43207_024_00449_y crossref_primary_10_1016_j_physb_2023_415242 crossref_primary_10_1016_j_ijleo_2023_171088 crossref_primary_10_1016_j_matchemphys_2023_127691 crossref_primary_10_1080_08927022_2022_2124297 crossref_primary_10_1515_zna_2024_0168 crossref_primary_10_1016_j_cplett_2022_139992 crossref_primary_10_1002_adts_202401066 crossref_primary_10_1007_s10853_024_10259_6 crossref_primary_10_1016_j_cjph_2024_03_013 crossref_primary_10_1016_j_rinp_2023_106251 crossref_primary_10_1063_5_0170089 crossref_primary_10_1088_2053_1591_ad95e2 crossref_primary_10_1016_j_ijleo_2022_170143 crossref_primary_10_1016_j_infrared_2022_104319 crossref_primary_10_1016_j_physe_2024_115970 crossref_primary_10_1016_j_rinp_2023_106812 crossref_primary_10_1142_S0217984924500957 crossref_primary_10_1088_1402_4896_ad6f77 crossref_primary_10_1016_j_comptc_2022_114006 crossref_primary_10_1016_j_matchemphys_2023_128115 crossref_primary_10_1080_00223131_2023_2246478 crossref_primary_10_1007_s11082_023_06057_0 crossref_primary_10_1016_j_jmmm_2022_170298 crossref_primary_10_1016_j_jmmm_2023_171605 crossref_primary_10_1016_j_ssc_2022_115063 crossref_primary_10_1016_j_ssc_2023_115361 crossref_primary_10_1016_j_apsusc_2022_154739 crossref_primary_10_1016_j_vacuum_2023_112269 crossref_primary_10_1021_acs_jpcc_3c04086 crossref_primary_10_1016_j_comptc_2023_114251 crossref_primary_10_1016_j_comptc_2022_113943 crossref_primary_10_1016_j_jmrt_2022_11_088 crossref_primary_10_1007_s11581_023_05172_y crossref_primary_10_1007_s10904_024_03518_1 crossref_primary_10_1142_S0217979224501716 crossref_primary_10_1016_j_chemphys_2023_112065 crossref_primary_10_1016_j_chemphys_2024_112463 crossref_primary_10_1016_j_rinp_2023_107042 crossref_primary_10_1016_j_jmmm_2023_170604 crossref_primary_10_1016_j_solener_2023_112199 crossref_primary_10_1016_j_jmrt_2023_01_085 crossref_primary_10_1002_admi_202400581 crossref_primary_10_1088_1402_4896_ad1c23 crossref_primary_10_1016_j_cap_2023_02_021 crossref_primary_10_1016_j_ssc_2022_114950 crossref_primary_10_1080_00268976_2024_2318018 crossref_primary_10_1002_qua_27368 crossref_primary_10_1016_j_jmrt_2022_10_037 crossref_primary_10_1016_j_cplett_2022_140254 crossref_primary_10_1016_j_comptc_2023_114354 crossref_primary_10_1080_14786435_2024_2380527 crossref_primary_10_1016_j_chemphys_2023_111915 crossref_primary_10_1142_S0217979225500754 crossref_primary_10_1016_j_jmrt_2022_08_017 crossref_primary_10_1515_htmp_2022_0241 crossref_primary_10_1016_j_physb_2024_416289 crossref_primary_10_1140_epjp_s13360_023_04121_y crossref_primary_10_1016_j_comptc_2022_113993 crossref_primary_10_1016_j_jmrt_2023_04_169 crossref_primary_10_1016_j_jmrt_2023_08_009 crossref_primary_10_1016_j_rinma_2024_100635 crossref_primary_10_1016_j_cocom_2023_e00809 crossref_primary_10_1016_j_jpcs_2023_111231 crossref_primary_10_1016_j_matchemphys_2022_127164 crossref_primary_10_1016_j_jmgm_2022_108370 crossref_primary_10_1021_acs_jpcc_3c03627 crossref_primary_10_1016_j_jpcs_2023_111232 crossref_primary_10_1016_j_mtcomm_2023_106001 crossref_primary_10_1016_j_ceramint_2023_05_042 |
Cites_doi | 10.3390/ma12050734 10.1016/j.apenergy.2020.115591 10.1021/acs.chemmater.0c02317 10.1021/acs.chemmater.9b04131 10.1080/08957959.2016.1167202 10.1063/1.5143061 10.1103/PhysRevB.83.195134 10.1021/j100203a036 10.1016/j.commatsci.2009.12.017 10.1016/j.infrared.2020.103476 10.1002/zaac.200400260 10.1088/0370-1298/65/5/307 10.1080/14786440808520496 10.1016/j.nanoen.2020.104771 10.1103/PhysRevB.94.125209 10.1088/0953-8984/9/2/014 10.1002/adfm.201000970 10.1021/acs.chemmater.0c03960 10.1080/0950083032000069249 10.3390/ma11112146 10.3390/ma12162554 10.1016/j.apenergy.2019.114388 10.3390/ma12040586 10.1021/cm050412c 10.1021/ic100296x 10.1103/PhysRevLett.100.165707 10.1103/PhysRevB.85.165149 10.1103/PhysRevLett.101.055504 10.1063/1.4792733 10.1103/PhysRevB.13.5188 10.1063/1.4915339 10.1002/aenm.202001229 10.1038/nature00865 10.1016/S0081-1947(08)60359-8 10.1016/j.cpc.2006.03.007 10.1063/1.1501133 10.1103/PhysRevB.46.6131 10.1063/1.446956 10.1002/ange.19390520102 10.1111/j.1151-2916.1988.tb05022.x 10.1016/j.jallcom.2018.09.338 10.1016/j.physb.2012.05.057 10.1007/s11664-016-5122-0 10.1016/j.jallcom.2015.01.038 10.1016/j.mssp.2021.106446 10.1016/j.comphy.2003.12.001 10.1016/j.physb.2010.10.057 10.1103/PhysRevB.41.7892 10.1016/j.cpc.2013.10.026 10.1021/ja027708t 10.1107/S0021889811038970 10.1063/1.1709819 10.1039/C9TA12211G 10.1103/PhysRevB.3.1462 10.1524/zkri.220.5.567.65075 10.1103/PhysRevLett.102.226401 10.1016/j.cpc.2006.03.005 10.1016/j.mtphys.2017.06.003 10.1016/0022-3697(63)90067-2 10.1016/j.jallcom.2020.154232 10.1088/0034-4885/44/8/002 10.1107/S0108768102009692 10.1103/PhysRevLett.100.136406 10.1103/PhysRevB.90.224104 10.1039/C6TA11234J 10.1021/cm060261t 10.1039/c2nr30585b 10.1073/pnas.1819157116 10.1039/C8QI00366A 10.3390/ma12050731 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Masson SAS |
Copyright_xml | – notice: 2022 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.solidstatesciences.2022.106893 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3085 |
ExternalDocumentID | 10_1016_j_solidstatesciences_2022_106893 S1293255822000887 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSM SSZ T5K ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c408t-a2e46f96ccd98aeeeaffa7099465ea8ec785030557f1af9e94f7220f5cc904d03 |
IEDL.DBID | .~1 |
ISSN | 1293-2558 |
IngestDate | Wed Oct 01 04:14:38 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:41:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First-principles calculations Electronic structure Elastic constants Optoelectronic properties Thermoelectric coefficients Zintl phases |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-a2e46f96ccd98aeeeaffa7099465ea8ec785030557f1af9e94f7220f5cc904d03 |
ORCID | 0000-0002-5139-4172 0000-0002-5175-6372 |
ParticipantIDs | crossref_primary_10_1016_j_solidstatesciences_2022_106893 crossref_citationtrail_10_1016_j_solidstatesciences_2022_106893 elsevier_sciencedirect_doi_10_1016_j_solidstatesciences_2022_106893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Solid state sciences |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Born, Huang (bib56) 1962 Langenberg, Ferreiro-Vila, Leborán, Fumega, Pardo, Rivadulla (bib68) 2016; 4 Nye (bib78) 1985 Hamidani, Bennecer (bib81) 2010; 48 Monkhorst, Park (bib31) 1976; 13 Toberer, Zevalkink, Crisosto, Snyder (bib20) 2010; 20 Blaha, Schwarz, Tran, Laskowski, Madsen, Marks (bib28) 2020; 152 Lloveras, Castán, Porta, Planes, Saxena (bib70) 2008; 100 Reuss, Angew (bib60) 1929; 9 Clark, Segall, Pickard, Hasnip, Probert, Refson, Payne (bib27) 2005; 220 Liu, Liu, Feng (bib62) 2011; 406 Koller, Tran, Blaha (bib34) 2011; 83 Kauzlarich (bib23) 2019; 12 Mao, Yu, Liu, Wang, Ju (bib75) 2015; 117 Ovchinnikov, Darone, Saparov, Bobev (bib14) 2018; 11 Saparov, Bobev (bib43) 2010; 49 Cube (bib77) 2016; 6 Bouhemadou, Allali, Boudiaf, Al Qarni, Bin-Omran, Khenata, Al -Douri (bib80) 2019; 774 Tran, Blaha (bib33) 2009; 102 Fischer, Almlof (bib32) 1992; 96 Gholikhani, Roshani, Dessouky, Papagiannakis (bib4) 2020; 261 Mori-Sánchez, Pendás, Luaña (bib51) 2002; 124 Lee, Mahanti (bib37) 2012; 85 Saha, Dutta (bib64) 2016; 94 Brown, Kauzlarich, Gascoin, Snyder (bib19) 2006; 18 Ouahrani, Khenata, Lasri, Reshak, Bouhemadou, Bin-Omran (bib52) 2012; 407 Chen, Sun, Duan, Huang, Peng (bib63) 2015; 630 Chiolerio, Garofalo, Mattiussi, Crepaldi, Fortunato, Iovieno (bib1) 2020; 277 Chen, Xue, Li, Zhang, Li, Wang, Liu, Sui, Liu, Cao, Ren, Chu, Wang, Zhang (bib21) 2019; 116 Chung, Buessem (bib76) 1967; 38 Matta, Boy (bib45) 2007 Mouhat, Coudert (bib57) 2014; 90 Zintl (bib22) 1939; 52 Zhang, Chen, Yao, Xue, Li, Bai, Huang, Li, Lin, Cao, Sui, Wang, Yu, Wang, Liu, Zhang (bib16) 2020; 32 Taylor, Maris, Elbaum (bib71) 1971; 3 Wendorff, Röhr (bib50) 2005; 631 Slack (bib83) 1979; 34 Fang, Zheng, Zhou, Chen, Zhang (bib36) 2017; 46 Hidayanti, Wati, Akbar (bib2) 2020; 29 Tvergaard, Hutchinson (bib69) 1988; 71 Chen, Li, Xue, Huang, Yao, Li, Zhang, Wang, Sui, Liu, Cao, Wang (bib8) 2020; 73 Ren, Liu, He, Lv, Gao, Xu (bib9) 2018; 5 Balvanz, Baranets, Bobev (bib25) 2020; C76 Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, Burke (bib30) 2008; 100 Groh, Devincre, Kubin, Roos, Feyel, Chaboche (bib72) 2003; 83 Pugh (bib65) 1954; 7 Cahill, Watson, Pohl (bib84) 1992; 46 Zhurova, Tsirelson (bib54) 2002; 58 Momma, Izumi (bib41) 2011; 44 Zhang, Yan, Li, Wang, Li, Chen, Cao, Sui, Lin, Liu, Xie, Zhang (bib17) 2020; 10 Li, Van Vliet, Zhu, Yip, Suresh (bib73) 2002; 418 Kunz Wille, Grewal, Bux, Kauzlarich (bib12) 2019; 12 Espinosa, Alkorta, Elguero, Molins (bib53) 2002; 117 Merad Boudia, Reshak, Ouahrani, Bentalha (bib79) 2013; 113 Liu, Chen, Xu, Lic, Wang (bib3) 2020; 8 Peng, Zevalkink (bib15) 2019; 12 Bader, Nguyen-Dang, Tal (bib48) 1981; 44 Bader, Essén (bib47) 1984; 80 Toberer, Zevalkink, Crisosto, Snyder (bib10) 2010; 20 Bader (bib46) 2003 Saha, Dutta (bib66) 2016; 94 Bedjaoui, Bouhemadou, Bin-Omran (bib58) 2016; 36 Shuai, Mao, Song, Zhang, Chen, Ren (bib7) 2017; 1 Vanderbilt (bib29) 1990; 41 Kumar R, Akande, El-Mellouhi, Park, Sanvito (bib5) 2020; 4 Ranganathan, Ostoja-Starzewski (bib74) 2008; 101 (bib24) 1996 McGuire, Reynolds, DiSalvo (bib6) 2005; 17 Zhou, Feng, Mao, Jiang, Zhu, Singh, Wang, Ren (bib18) 2020; 32 Anderson (bib67) 1963; 24 Otero-De-La-Roza, Johnson et, Luaña (bib49) 2014; 185 Rudysh, Shchepanskyi, Fedorchuk, Brik, Ma, Myronchuk, Piasecki (bib42) 2020; 826 Voigt (bib59) 1928 Ambrosch-Draxl, Sofo (bib35) 2006; 175 Mishra, Satpathy, Jepsen (bib85) 1997; 9 Zhai, Li, Mengmeng, Hu, Li, Yang, Yan, Zhang, Liu (bib55) 2022; 141 Balvanz, Qu, Baranets, Ertekin, Gorai, Bobev (bib11) 2020; 32 Rudysh, Piasecki, Myronchuk, Shchepanskyi, Stadnyk, Onufriv, Brik (bib26) 2020; 111 Madsen, Singh (bib39) 2006; 175 Cheikh, Lee, Peng, Zevalkink, Fleurial, Bux (bib13) 2019; 12 Hill (bib61) 1952; 65 Blanco, Francisco, Luaña (bib40) 2004; 158 Sun, Singh (bib44) 2017; 5 Xi, Long, Tang, Wang, Shuai (bib82) 2012; 4 Fang, Zheng, Zhou, Chen, Zhang (bib38) 2017; 46 Liu (10.1016/j.solidstatesciences.2022.106893_bib62) 2011; 406 Bader (10.1016/j.solidstatesciences.2022.106893_bib47) 1984; 80 Zhang (10.1016/j.solidstatesciences.2022.106893_bib17) 2020; 10 Langenberg (10.1016/j.solidstatesciences.2022.106893_bib68) 2016; 4 Tvergaard (10.1016/j.solidstatesciences.2022.106893_bib69) 1988; 71 Vanderbilt (10.1016/j.solidstatesciences.2022.106893_bib29) 1990; 41 Chung (10.1016/j.solidstatesciences.2022.106893_bib76) 1967; 38 Saparov (10.1016/j.solidstatesciences.2022.106893_bib43) 2010; 49 Toberer (10.1016/j.solidstatesciences.2022.106893_bib20) 2010; 20 Chen (10.1016/j.solidstatesciences.2022.106893_bib8) 2020; 73 Saha (10.1016/j.solidstatesciences.2022.106893_bib66) 2016; 94 Lloveras (10.1016/j.solidstatesciences.2022.106893_bib70) 2008; 100 Mao (10.1016/j.solidstatesciences.2022.106893_bib75) 2015; 117 Blaha (10.1016/j.solidstatesciences.2022.106893_bib28) 2020; 152 Liu (10.1016/j.solidstatesciences.2022.106893_bib3) 2020; 8 Chen (10.1016/j.solidstatesciences.2022.106893_bib63) 2015; 630 Groh (10.1016/j.solidstatesciences.2022.106893_bib72) 2003; 83 Rudysh (10.1016/j.solidstatesciences.2022.106893_bib42) 2020; 826 Gholikhani (10.1016/j.solidstatesciences.2022.106893_bib4) 2020; 261 Fang (10.1016/j.solidstatesciences.2022.106893_bib38) 2017; 46 Li (10.1016/j.solidstatesciences.2022.106893_bib73) 2002; 418 Hamidani (10.1016/j.solidstatesciences.2022.106893_bib81) 2010; 48 (10.1016/j.solidstatesciences.2022.106893_bib24) 1996 Blanco (10.1016/j.solidstatesciences.2022.106893_bib40) 2004; 158 Chen (10.1016/j.solidstatesciences.2022.106893_bib21) 2019; 116 Monkhorst (10.1016/j.solidstatesciences.2022.106893_bib31) 1976; 13 Ouahrani (10.1016/j.solidstatesciences.2022.106893_bib52) 2012; 407 Ambrosch-Draxl (10.1016/j.solidstatesciences.2022.106893_bib35) 2006; 175 Kunz Wille (10.1016/j.solidstatesciences.2022.106893_bib12) 2019; 12 Zhang (10.1016/j.solidstatesciences.2022.106893_bib16) 2020; 32 Hidayanti (10.1016/j.solidstatesciences.2022.106893_bib2) 2020; 29 Bedjaoui (10.1016/j.solidstatesciences.2022.106893_bib58) 2016; 36 Hill (10.1016/j.solidstatesciences.2022.106893_bib61) 1952; 65 Voigt (10.1016/j.solidstatesciences.2022.106893_bib59) 1928 Kumar R (10.1016/j.solidstatesciences.2022.106893_bib5) 2020; 4 Mouhat (10.1016/j.solidstatesciences.2022.106893_bib57) 2014; 90 Cube (10.1016/j.solidstatesciences.2022.106893_bib77) 2016; 6 Shuai (10.1016/j.solidstatesciences.2022.106893_bib7) 2017; 1 Bouhemadou (10.1016/j.solidstatesciences.2022.106893_bib80) 2019; 774 Bader (10.1016/j.solidstatesciences.2022.106893_bib46) 2003 Zhai (10.1016/j.solidstatesciences.2022.106893_bib55) 2022; 141 Xi (10.1016/j.solidstatesciences.2022.106893_bib82) 2012; 4 Mishra (10.1016/j.solidstatesciences.2022.106893_bib85) 1997; 9 Tran (10.1016/j.solidstatesciences.2022.106893_bib33) 2009; 102 Nye (10.1016/j.solidstatesciences.2022.106893_bib78) 1985 Ren (10.1016/j.solidstatesciences.2022.106893_bib9) 2018; 5 McGuire (10.1016/j.solidstatesciences.2022.106893_bib6) 2005; 17 Cahill (10.1016/j.solidstatesciences.2022.106893_bib84) 1992; 46 Chiolerio (10.1016/j.solidstatesciences.2022.106893_bib1) 2020; 277 Zhou (10.1016/j.solidstatesciences.2022.106893_bib18) 2020; 32 Perdew (10.1016/j.solidstatesciences.2022.106893_bib30) 2008; 100 Born (10.1016/j.solidstatesciences.2022.106893_bib56) 1962 Anderson (10.1016/j.solidstatesciences.2022.106893_bib67) 1963; 24 Merad Boudia (10.1016/j.solidstatesciences.2022.106893_bib79) 2013; 113 Toberer (10.1016/j.solidstatesciences.2022.106893_bib10) 2010; 20 Rudysh (10.1016/j.solidstatesciences.2022.106893_bib26) 2020; 111 Kauzlarich (10.1016/j.solidstatesciences.2022.106893_bib23) 2019; 12 Wendorff (10.1016/j.solidstatesciences.2022.106893_bib50) 2005; 631 Ovchinnikov (10.1016/j.solidstatesciences.2022.106893_bib14) 2018; 11 Matta (10.1016/j.solidstatesciences.2022.106893_bib45) 2007 Taylor (10.1016/j.solidstatesciences.2022.106893_bib71) 1971; 3 Ranganathan (10.1016/j.solidstatesciences.2022.106893_bib74) 2008; 101 Lee (10.1016/j.solidstatesciences.2022.106893_bib37) 2012; 85 Zhurova (10.1016/j.solidstatesciences.2022.106893_bib54) 2002; 58 Madsen (10.1016/j.solidstatesciences.2022.106893_bib39) 2006; 175 Pugh (10.1016/j.solidstatesciences.2022.106893_bib65) 1954; 7 Fang (10.1016/j.solidstatesciences.2022.106893_bib36) 2017; 46 Peng (10.1016/j.solidstatesciences.2022.106893_bib15) 2019; 12 Cheikh (10.1016/j.solidstatesciences.2022.106893_bib13) 2019; 12 Sun (10.1016/j.solidstatesciences.2022.106893_bib44) 2017; 5 Koller (10.1016/j.solidstatesciences.2022.106893_bib34) 2011; 83 Saha (10.1016/j.solidstatesciences.2022.106893_bib64) 2016; 94 Brown (10.1016/j.solidstatesciences.2022.106893_bib19) 2006; 18 Balvanz (10.1016/j.solidstatesciences.2022.106893_bib11) 2020; 32 Zintl (10.1016/j.solidstatesciences.2022.106893_bib22) 1939; 52 Fischer (10.1016/j.solidstatesciences.2022.106893_bib32) 1992; 96 Otero-De-La-Roza (10.1016/j.solidstatesciences.2022.106893_bib49) 2014; 185 Slack (10.1016/j.solidstatesciences.2022.106893_bib83) 1979; 34 Bader (10.1016/j.solidstatesciences.2022.106893_bib48) 1981; 44 Espinosa (10.1016/j.solidstatesciences.2022.106893_bib53) 2002; 117 Momma (10.1016/j.solidstatesciences.2022.106893_bib41) 2011; 44 Balvanz (10.1016/j.solidstatesciences.2022.106893_bib25) 2020; C76 Reuss (10.1016/j.solidstatesciences.2022.106893_bib60) 1929; 9 Mori-Sánchez (10.1016/j.solidstatesciences.2022.106893_bib51) 2002; 124 Clark (10.1016/j.solidstatesciences.2022.106893_bib27) 2005; 220 |
References_xml | – year: 2007 ident: bib45 article-title: An introduction to the quantum theory of atoms in molecules publication-title: The Quantum Theory of Atoms in Molecules from Solid State to DNA and Drug Design – volume: 3 start-page: 1462 year: 1971 end-page: 1472 ident: bib71 article-title: Focusing of phonons in crystalline solids due to elastic anisotropy publication-title: Phys. Rev. B – volume: 4 year: 2020 ident: bib5 article-title: Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides publication-title: Phy. Rev. Mater. – volume: 5 start-page: 2380 year: 2018 end-page: 2398 ident: bib9 article-title: Recent advances in inorganic material thermoelectrics publication-title: Inorg. Chem. Front. – volume: 100 year: 2008 ident: bib30 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. – year: 1928 ident: bib59 article-title: Lehrbuch der Kristallphysik (Textbook of crystal physics) – volume: 8 start-page: 513 year: 2020 end-page: 531 ident: bib3 article-title: Solar evaporation for simultaneous steam and power generation publication-title: J. Mater. Chem. – volume: 44 start-page: 1272 year: 2011 end-page: 1276 ident: bib41 article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. – volume: 117 start-page: 115903 year: 2015 end-page: 115912 ident: bib75 article-title: First-principles investigation on mechanical, electronic and thermodynamic properties of Mg publication-title: J. Appl. Phys. – volume: 185 start-page: 1007 year: 2014 end-page: 1018 ident: bib49 article-title: Critic2: a program for real-space analysis of quantum chemical interactions in solids publication-title: Comput. Phys. Commun. – volume: 11 year: 2018 ident: bib14 article-title: Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions publication-title: Materials – volume: 116 start-page: 2831 year: 2019 end-page: 2836 ident: bib21 article-title: Zintl-phase Eu publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: C76 start-page: 869 year: 2020 end-page: 873 ident: bib25 article-title: Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba publication-title: Acta Crystallogr. – volume: 13 year: 1976 ident: bib31 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 418 start-page: 307 year: 2002 end-page: 310 ident: bib73 article-title: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals publication-title: Nature (London) – volume: 4 start-page: 4348 year: 2012 end-page: 4369 ident: bib82 article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials publication-title: Nanoscale – volume: 65 start-page: 349 year: 1952 end-page: 354 ident: bib61 article-title: The elastic behavior of a crystalline aggregate publication-title: Proc. Phys. Soc. – year: 1962 ident: bib56 article-title: Dynamical Theory of Crystal Lattices – year: 1985 ident: bib78 article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices – volume: 52 year: 1939 ident: bib22 article-title: Intermetallische verbindungen (intermetallic compounds) publication-title: Angew. Chem. – volume: 44 start-page: 893 year: 1981 end-page: 948 ident: bib48 article-title: A topological theory of molecular structure publication-title: Rep. Prog. Phys. – volume: 34 start-page: 1 year: 1979 end-page: 71 ident: bib83 article-title: The thermal conductivity of nonmetallic crystals publication-title: Solid State Phys. – volume: 10 year: 2020 ident: bib17 article-title: A dual role by incorporation of magnesium in YbZn publication-title: Adv. Energy Mater. – volume: 48 start-page: 115 year: 2010 end-page: 123 ident: bib81 article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se) publication-title: Comput. Mater. Sci. – volume: 406 start-page: 345 year: 2011 end-page: 350 ident: bib62 article-title: Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO publication-title: Physica B – volume: 826 start-page: 154232 year: 2020 end-page: 154238 ident: bib42 article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor publication-title: J. Alloys Compd. – volume: 71 start-page: 157 year: 1988 end-page: 166 ident: bib69 article-title: Microcracking in ceramics induced by thermal expansion or elastic anisotropy publication-title: J. Am. Ceram. Soc. – volume: 46 start-page: 6131 year: 1992 end-page: 6140 ident: bib84 article-title: Lower limit to the thermal conductivity of disordered crystals publication-title: Phys. Rev. B – volume: 38 start-page: 2010 year: 1967 end-page: 2012 ident: bib76 article-title: The elastic anisotropy of crystals publication-title: J. Appl. Phys. – volume: 774 start-page: 299 year: 2019 end-page: 314 ident: bib80 article-title: Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh publication-title: J. Alloys Compd. – volume: 83 year: 2011 ident: bib34 article-title: Merits and limits of the modified Becke-Johnson exchange potential publication-title: Phys. Rev. B – volume: 80 start-page: 1943 year: 1984 end-page: 1960 ident: bib47 article-title: The characterization of atomic interactions publication-title: J. Chem. Phys. – volume: 12 year: 2019 ident: bib13 article-title: Thermoelectric properties of scandium sesquitelluride publication-title: Materials – volume: 12 start-page: 586 year: 2019 end-page: 588 ident: bib15 article-title: Limits of cation solubility in AMg publication-title: Materials – volume: 12 year: 2019 ident: bib23 article-title: Advances in Zintl phases publication-title: Mater – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: bib27 article-title: First-principles methods using CASTEP publication-title: Z. Kristallogr. – volume: 58 start-page: 567 year: 2002 end-page: 575 ident: bib54 article-title: Electron density and energy density view on the atomic interactions in SrTiO3 publication-title: Acta Crystallogr. B: Struct. Sci., Cryst. – volume: 32 start-page: 6983 year: 2020 end-page: 6989 ident: bib16 article-title: Promising Zintl-phase thermoelectric compound SrAgSb publication-title: Chem. Mater. – volume: 117 start-page: 5529 year: 2002 end-page: 5542 ident: bib53 article-title: From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems publication-title: J. Chem. Phys. – volume: 85 start-page: 1651491 year: 2012 end-page: 1651498 ident: bib37 article-title: Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors publication-title: Phys. Rev. B – volume: 261 year: 2020 ident: bib4 article-title: A critical review of roadway energy harvesting technologies publication-title: Appl. Energy – volume: 36 start-page: 198 year: 2016 end-page: 219 ident: bib58 article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr publication-title: High Pres. Res. – volume: 20 start-page: 4375 year: 2010 end-page: 4380 ident: bib10 article-title: The Zintl compound Ca publication-title: Adv. Funct. Mater. – volume: 175 start-page: 1 year: 2006 end-page: 14 ident: bib35 article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method publication-title: Comput. Phys. Commun. – volume: 111 year: 2020 ident: bib26 article-title: AgGaTe publication-title: Infrared Phys. Technol. – volume: 90 year: 2014 ident: bib57 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B – year: 1996 ident: bib24 publication-title: Chemistry, Structure and Bonding of Zintl Phases and Ions: Selected Topics and Recent Advances – volume: 102 start-page: 226401 year: 2009 end-page: 226404 ident: bib33 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. – volume: 101 year: 2008 ident: bib74 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. – volume: 32 start-page: 776 year: 2020 end-page: 784 ident: bib18 article-title: Thermoelectric properties of Zintl phase YbMg publication-title: Chem. Mater. – volume: 631 start-page: 338 year: 2005 end-page: 349 ident: bib50 article-title: Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies publication-title: Z. fur Anorg. Allg. Chem. – volume: 113 year: 2013 ident: bib79 article-title: Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi publication-title: J. Appl. Phys. – volume: 94 year: 2016 ident: bib64 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B – volume: 73 year: 2020 ident: bib8 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu publication-title: Nano Energy – volume: 49 start-page: 5173 year: 2010 end-page: 5179 ident: bib43 article-title: Isolated chains in the Zintl phases Ba publication-title: Inorg. Chem. – year: 2003 ident: bib46 article-title: Atoms in Molecules: a Quantum Theory – volume: 20 start-page: 4375 year: 2010 end-page: 4380 ident: bib20 article-title: The Zintl compound Ca publication-title: Adv. Funct. Mater. – volume: 4 year: 2016 ident: bib68 article-title: Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides publication-title: Appl. Phys. Lett. Mater. – volume: 18 start-page: 1873 year: 2006 end-page: 1877 ident: bib19 article-title: Yb publication-title: Chem. Mater. – volume: 175 start-page: 67 year: 2006 end-page: 71 ident: bib39 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. Phys. Commun – volume: 630 start-page: 202 year: 2015 end-page: 208 ident: bib63 article-title: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo publication-title: J. Alloys Compd. – volume: 83 start-page: 303 year: 2003 end-page: 313 ident: bib72 article-title: Dislocations and elastic anisotropy in heteroepitaxial metallic thin films publication-title: Phil. Mag. Lett. – volume: 100 year: 2008 ident: bib70 article-title: Influence of elastic anisotropy on structural nanoscale textures publication-title: Phys. Rev. Lett. – volume: 158 start-page: 57 year: 2004 end-page: 72 ident: bib40 article-title: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model publication-title: Comput. Phys. Commun. – volume: 124 start-page: 14721 year: 2002 end-page: 14723 ident: bib51 article-title: A classification of covalent, ionic, and metallic solids based on the electron density publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 4791 year: 2020 end-page: 4802 ident: bib2 article-title: Energy harvesting system design for converting noise into electrical energy publication-title: Int. J. Adv. Sci. – volume: 407 start-page: 3760 year: 2012 end-page: 3766 ident: bib52 article-title: First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds publication-title: Phys. B Condens. Matter – volume: 1 start-page: 74 year: 2017 end-page: 95 ident: bib7 article-title: Recent progress and future challenges on thermoelectric Zintl materials publication-title: Mater. Today Phys. – volume: 12 year: 2019 ident: bib12 article-title: Seebeck and figure of merit enhancement by rare earth doping in Yb publication-title: Materials – volume: 6 year: 2016 ident: bib77 article-title: Elastic anisotropy of crystals publication-title: AIP Adv. – volume: 46 start-page: 3030 year: 2017 end-page: 3035 ident: bib38 article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of publication-title: J. Electron. Mater. – volume: 17 start-page: 2875 year: 2005 end-page: 2884 ident: bib6 article-title: Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides publication-title: Chem. Mater. – volume: 141 start-page: 106446 year: 2022 ident: bib55 article-title: Phonon transport in Zintl Ba publication-title: J. Mater. Sci. Semicond – volume: 7 start-page: 823 year: 1954 end-page: 843 ident: bib65 article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals publication-title: Phil. Mag. – volume: 94 year: 2016 ident: bib66 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B – volume: 9 start-page: 49 year: 1929 end-page: 58 ident: bib60 article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals publication-title: Math. Mech. – volume: 277 start-page: 115591 year: 2020 end-page: 115599 ident: bib1 article-title: Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester publication-title: Appl. Energy – volume: 96 start-page: 9768 year: 1992 end-page: 9774 ident: bib32 article-title: General methods for geometry and wave function optimization publication-title: J. Phys. Chem. – volume: 5 start-page: 8499 year: 2017 end-page: 8509 ident: bib44 article-title: Thermoelectric properties of AMg publication-title: J. Mater. Chem. – volume: 32 start-page: 24 year: 2020 ident: bib11 article-title: New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu) publication-title: Chem. Mater. – volume: 46 start-page: 3030 year: 2017 end-page: 3035 ident: bib36 article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds publication-title: J. Electron. Mater. – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: bib29 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B – volume: 24 start-page: 909 year: 1963 end-page: 917 ident: bib67 article-title: A simplified method for calculating the Debye temperature from elastic constants publication-title: J. Phys. Chem. Solid. – volume: 9 start-page: 461 year: 1997 end-page: 470 ident: bib85 article-title: Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide publication-title: J. Phys. Condens. Matter – volume: 152 year: 2020 ident: bib28 article-title: WIEN2k: an APW+lo program for calculating the properties of solids publication-title: J. C – volume: 12 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib13 article-title: Thermoelectric properties of scandium sesquitelluride publication-title: Materials doi: 10.3390/ma12050734 – volume: 4 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib5 article-title: Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides publication-title: Phy. Rev. Mater. – volume: 277 start-page: 115591 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib1 article-title: Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115591 – volume: 32 start-page: 6983 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib16 article-title: Promising Zintl-phase thermoelectric compound SrAgSb publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02317 – volume: 32 start-page: 776 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib18 article-title: Thermoelectric properties of Zintl phase YbMg2Sb2 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04131 – volume: 36 start-page: 198 year: 2016 ident: 10.1016/j.solidstatesciences.2022.106893_bib58 article-title: Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation publication-title: High Pres. Res. doi: 10.1080/08957959.2016.1167202 – volume: 6 year: 2016 ident: 10.1016/j.solidstatesciences.2022.106893_bib77 article-title: Elastic anisotropy of crystals publication-title: AIP Adv. – volume: 152 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib28 article-title: WIEN2k: an APW+lo program for calculating the properties of solids publication-title: J. Chem. Phys. doi: 10.1063/1.5143061 – volume: 83 year: 2011 ident: 10.1016/j.solidstatesciences.2022.106893_bib34 article-title: Merits and limits of the modified Becke-Johnson exchange potential publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195134 – volume: 96 start-page: 9768 year: 1992 ident: 10.1016/j.solidstatesciences.2022.106893_bib32 article-title: General methods for geometry and wave function optimization publication-title: J. Phys. Chem. doi: 10.1021/j100203a036 – volume: 48 start-page: 115 year: 2010 ident: 10.1016/j.solidstatesciences.2022.106893_bib81 article-title: Electronic and optical properties of the orthorhombic compounds PdPX (X = S and Se) publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2009.12.017 – volume: 111 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib26 article-title: AgGaTe2 – the thermoelectric and solar cell material: structure, electronic, optical, elastic and vibrational features publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103476 – volume: 631 start-page: 338 year: 2005 ident: 10.1016/j.solidstatesciences.2022.106893_bib50 article-title: Binary indide AInx (x = 1, 2, 4; A = Ca, Sr, Ba, K, Rb)-structural chemistry and chemical bond studies publication-title: Z. fur Anorg. Allg. Chem. doi: 10.1002/zaac.200400260 – year: 1962 ident: 10.1016/j.solidstatesciences.2022.106893_bib56 – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.solidstatesciences.2022.106893_bib61 article-title: The elastic behavior of a crystalline aggregate publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1298/65/5/307 – volume: 7 start-page: 823 year: 1954 ident: 10.1016/j.solidstatesciences.2022.106893_bib65 article-title: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals publication-title: Phil. Mag. doi: 10.1080/14786440808520496 – volume: 73 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib8 article-title: Q. Zhang Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104771 – volume: 94 year: 2016 ident: 10.1016/j.solidstatesciences.2022.106893_bib66 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.125209 – year: 2007 ident: 10.1016/j.solidstatesciences.2022.106893_bib45 article-title: An introduction to the quantum theory of atoms in molecules – year: 1985 ident: 10.1016/j.solidstatesciences.2022.106893_bib78 – volume: 9 start-page: 461 year: 1997 ident: 10.1016/j.solidstatesciences.2022.106893_bib85 article-title: Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/9/2/014 – volume: 20 start-page: 4375 year: 2010 ident: 10.1016/j.solidstatesciences.2022.106893_bib10 article-title: The Zintl compound Ca5Al2Sb6for low‐cost thermoelectric power generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000970 – volume: 32 start-page: 24 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib11 article-title: New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03960 – volume: 83 start-page: 303 year: 2003 ident: 10.1016/j.solidstatesciences.2022.106893_bib72 article-title: Dislocations and elastic anisotropy in heteroepitaxial metallic thin films publication-title: Phil. Mag. Lett. doi: 10.1080/0950083032000069249 – volume: 11 year: 2018 ident: 10.1016/j.solidstatesciences.2022.106893_bib14 article-title: Exploratory work in the quaternary system of Ca-Eu-Cd-Sb: synthesis, crystal, and electronic structures of new Zintl solid solutions publication-title: Materials doi: 10.3390/ma11112146 – volume: 12 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib23 article-title: Advances in Zintl phases publication-title: Mater doi: 10.3390/ma12162554 – volume: 261 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib4 article-title: A critical review of roadway energy harvesting technologies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114388 – volume: 12 start-page: 586 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib15 article-title: Limits of cation solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) alloys publication-title: Materials doi: 10.3390/ma12040586 – volume: 17 start-page: 2875 year: 2005 ident: 10.1016/j.solidstatesciences.2022.106893_bib6 article-title: Exploring thallium compounds as thermoelectric materials: seventeen new thallium chalcogenides publication-title: Chem. Mater. doi: 10.1021/cm050412c – volume: 49 start-page: 5173 year: 2010 ident: 10.1016/j.solidstatesciences.2022.106893_bib43 article-title: Isolated chains in the Zintl phases Ba2ZnPn2 (pn = as, Sb, Bi); synthesis, structure, and bonding publication-title: Inorg. Chem. doi: 10.1021/ic100296x – volume: 100 year: 2008 ident: 10.1016/j.solidstatesciences.2022.106893_bib70 article-title: Influence of elastic anisotropy on structural nanoscale textures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.165707 – volume: 85 start-page: 1651491 year: 2012 ident: 10.1016/j.solidstatesciences.2022.106893_bib37 article-title: Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165149 – volume: 101 year: 2008 ident: 10.1016/j.solidstatesciences.2022.106893_bib74 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055504 – volume: 113 year: 2013 ident: 10.1016/j.solidstatesciences.2022.106893_bib79 article-title: Density functional theory calculation of the optical properties and topological analysis of the electron density of MBi2B2O7 (M = Ca, Zn) compounds publication-title: J. Appl. Phys. doi: 10.1063/1.4792733 – volume: 13 year: 1976 ident: 10.1016/j.solidstatesciences.2022.106893_bib31 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 117 start-page: 115903 year: 2015 ident: 10.1016/j.solidstatesciences.2022.106893_bib75 article-title: First-principles investigation on mechanical, electronic and thermodynamic properties of Mg2Sr under high pressure publication-title: J. Appl. Phys. doi: 10.1063/1.4915339 – volume: 10 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib17 article-title: A dual role by incorporation of magnesium in YbZn2Sb2 Zintl phase for enhanced thermoelectric performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001229 – volume: 418 start-page: 307 year: 2002 ident: 10.1016/j.solidstatesciences.2022.106893_bib73 article-title: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals publication-title: Nature (London) doi: 10.1038/nature00865 – volume: 34 start-page: 1 year: 1979 ident: 10.1016/j.solidstatesciences.2022.106893_bib83 article-title: The thermal conductivity of nonmetallic crystals publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60359-8 – volume: 175 start-page: 67 year: 2006 ident: 10.1016/j.solidstatesciences.2022.106893_bib39 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. Phys. Commun doi: 10.1016/j.cpc.2006.03.007 – volume: 117 start-page: 5529 year: 2002 ident: 10.1016/j.solidstatesciences.2022.106893_bib53 article-title: From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems publication-title: J. Chem. Phys. doi: 10.1063/1.1501133 – volume: 46 start-page: 6131 year: 1992 ident: 10.1016/j.solidstatesciences.2022.106893_bib84 article-title: Lower limit to the thermal conductivity of disordered crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 80 start-page: 1943 year: 1984 ident: 10.1016/j.solidstatesciences.2022.106893_bib47 article-title: The characterization of atomic interactions publication-title: J. Chem. Phys. doi: 10.1063/1.446956 – volume: 52 year: 1939 ident: 10.1016/j.solidstatesciences.2022.106893_bib22 article-title: Intermetallische verbindungen (intermetallic compounds) publication-title: Angew. Chem. doi: 10.1002/ange.19390520102 – volume: C76 start-page: 869 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib25 article-title: Synthesis, structural characterization, and electronic structure of the novel Zintl phase Ba2ZnP2 publication-title: Acta Crystallogr. – volume: 71 start-page: 157 year: 1988 ident: 10.1016/j.solidstatesciences.2022.106893_bib69 article-title: Microcracking in ceramics induced by thermal expansion or elastic anisotropy publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb05022.x – volume: 774 start-page: 299 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib80 article-title: Electronic, optical, elastic, thermoelectric and thermodynamic properties of the spinel oxides ZnRh2O4 and CdRh2O4 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.338 – volume: 407 start-page: 3760 year: 2012 ident: 10.1016/j.solidstatesciences.2022.106893_bib52 article-title: First and second harmonic generation of the XAl2Se4 (X=Zn, Cd, Hg) defect chalcopyrite compounds publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2012.05.057 – volume: 46 start-page: 3030 year: 2017 ident: 10.1016/j.solidstatesciences.2022.106893_bib38 article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-5122-0 – volume: 630 start-page: 202 year: 2015 ident: 10.1016/j.solidstatesciences.2022.106893_bib63 article-title: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.01.038 – volume: 141 start-page: 106446 year: 2022 ident: 10.1016/j.solidstatesciences.2022.106893_bib55 article-title: Phonon transport in Zintl Ba2ZnAs2 and Ba2ZnSb2: a first-principles study publication-title: J. Mater. Sci. Semicond doi: 10.1016/j.mssp.2021.106446 – volume: 94 year: 2016 ident: 10.1016/j.solidstatesciences.2022.106893_bib64 article-title: Elastic and thermal properties of the layered thermoelectrics BiOCuSe and LaOCuSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.125209 – volume: 158 start-page: 57 year: 2004 ident: 10.1016/j.solidstatesciences.2022.106893_bib40 article-title: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model publication-title: Comput. Phys. Commun. doi: 10.1016/j.comphy.2003.12.001 – volume: 9 start-page: 49 year: 1929 ident: 10.1016/j.solidstatesciences.2022.106893_bib60 article-title: Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals publication-title: Math. Mech. – volume: 406 start-page: 345 year: 2011 ident: 10.1016/j.solidstatesciences.2022.106893_bib62 article-title: Elasticity, electronic, chemical bonding and optical properties of monoclinic ZrO2 from first-principles publication-title: Physica B doi: 10.1016/j.physb.2010.10.057 – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.solidstatesciences.2022.106893_bib29 article-title: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 185 start-page: 1007 year: 2014 ident: 10.1016/j.solidstatesciences.2022.106893_bib49 article-title: Critic2: a program for real-space analysis of quantum chemical interactions in solids publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.10.026 – volume: 124 start-page: 14721 year: 2002 ident: 10.1016/j.solidstatesciences.2022.106893_bib51 article-title: A classification of covalent, ionic, and metallic solids based on the electron density publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027708t – volume: 44 start-page: 1272 year: 2011 ident: 10.1016/j.solidstatesciences.2022.106893_bib41 article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 46 start-page: 3030 year: 2017 ident: 10.1016/j.solidstatesciences.2022.106893_bib36 article-title: Validity of rigid-band Approximation in the study of thermoelectric properties of p-type FeNbSb-based half-heusler compounds publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-5122-0 – year: 1928 ident: 10.1016/j.solidstatesciences.2022.106893_bib59 – volume: 38 start-page: 2010 year: 1967 ident: 10.1016/j.solidstatesciences.2022.106893_bib76 article-title: The elastic anisotropy of crystals publication-title: J. Appl. Phys. doi: 10.1063/1.1709819 – volume: 8 start-page: 513 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib3 article-title: Solar evaporation for simultaneous steam and power generation publication-title: J. Mater. Chem. doi: 10.1039/C9TA12211G – volume: 29 start-page: 4791 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib2 article-title: Energy harvesting system design for converting noise into electrical energy publication-title: Int. J. Adv. Sci. – volume: 3 start-page: 1462 year: 1971 ident: 10.1016/j.solidstatesciences.2022.106893_bib71 article-title: Focusing of phonons in crystalline solids due to elastic anisotropy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.3.1462 – volume: 220 start-page: 567 year: 2005 ident: 10.1016/j.solidstatesciences.2022.106893_bib27 article-title: First-principles methods using CASTEP publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.5.567.65075 – year: 1996 ident: 10.1016/j.solidstatesciences.2022.106893_bib24 – volume: 102 start-page: 226401 year: 2009 ident: 10.1016/j.solidstatesciences.2022.106893_bib33 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 175 start-page: 1 year: 2006 ident: 10.1016/j.solidstatesciences.2022.106893_bib35 article-title: Linear optical properties of solids within the full potential linearized augmented plane wave method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.005 – volume: 1 start-page: 74 year: 2017 ident: 10.1016/j.solidstatesciences.2022.106893_bib7 article-title: Recent progress and future challenges on thermoelectric Zintl materials publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2017.06.003 – volume: 24 start-page: 909 year: 1963 ident: 10.1016/j.solidstatesciences.2022.106893_bib67 article-title: A simplified method for calculating the Debye temperature from elastic constants publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(63)90067-2 – volume: 826 start-page: 154232 year: 2020 ident: 10.1016/j.solidstatesciences.2022.106893_bib42 article-title: First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154232 – volume: 44 start-page: 893 year: 1981 ident: 10.1016/j.solidstatesciences.2022.106893_bib48 article-title: A topological theory of molecular structure publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/44/8/002 – volume: 58 start-page: 567 year: 2002 ident: 10.1016/j.solidstatesciences.2022.106893_bib54 article-title: Electron density and energy density view on the atomic interactions in SrTiO3 publication-title: Acta Crystallogr. B: Struct. Sci., Cryst. doi: 10.1107/S0108768102009692 – volume: 4 year: 2016 ident: 10.1016/j.solidstatesciences.2022.106893_bib68 article-title: Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides publication-title: Appl. Phys. Lett. Mater. – volume: 100 year: 2008 ident: 10.1016/j.solidstatesciences.2022.106893_bib30 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 90 year: 2014 ident: 10.1016/j.solidstatesciences.2022.106893_bib57 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.224104 – volume: 5 start-page: 8499 year: 2017 ident: 10.1016/j.solidstatesciences.2022.106893_bib44 article-title: Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X= Sb, Bi) Zintl compounds publication-title: J. Mater. Chem. doi: 10.1039/C6TA11234J – volume: 18 start-page: 1873 year: 2006 ident: 10.1016/j.solidstatesciences.2022.106893_bib19 article-title: Yb14MnSb11: new high efficiency thermoelectric material for power generation publication-title: Chem. Mater. doi: 10.1021/cm060261t – volume: 20 start-page: 4375 year: 2010 ident: 10.1016/j.solidstatesciences.2022.106893_bib20 article-title: The Zintl compound Ca5Al2Sb6 for low‐cost thermoelectric power generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000970 – volume: 4 start-page: 4348 year: 2012 ident: 10.1016/j.solidstatesciences.2022.106893_bib82 article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials publication-title: Nanoscale doi: 10.1039/c2nr30585b – volume: 116 start-page: 2831 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib21 article-title: Zintl-phase Eu2ZnSb2: a promising thermoelectric material with ultralow thermal conductivity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1819157116 – volume: 5 start-page: 2380 year: 2018 ident: 10.1016/j.solidstatesciences.2022.106893_bib9 article-title: Recent advances in inorganic material thermoelectrics publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00366A – volume: 12 year: 2019 ident: 10.1016/j.solidstatesciences.2022.106893_bib12 article-title: Seebeck and figure of merit enhancement by rare earth doping in Yb14−xRExZnSb11 (x = 0.5) publication-title: Materials doi: 10.3390/ma12050731 – year: 2003 ident: 10.1016/j.solidstatesciences.2022.106893_bib46 |
SSID | ssj0006674 |
Score | 2.6076183 |
Snippet | We report and discuss the results of a detailed first-principles calculations of the structural, elastic, electronic, optical and thermoelectric properties of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106893 |
SubjectTerms | Elastic constants Electronic structure First-principles calculations Optoelectronic properties Thermoelectric coefficients Zintl phases |
Title | Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2 |
URI | https://dx.doi.org/10.1016/j.solidstatesciences.2022.106893 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: ACRLP dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: .~1 dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: AIKHN dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3085 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006674 issn: 1293-2558 databaseCode: AKRWK dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5KBfUiPrE-yh48eGhs3tmcpIaWqlgELZR6CNvNLEZqEkr06G93Jw-r6EHBYzKbzfLtst_sMvMNISeGZxhRZEkNdIdrNphC4xHHYCqD6Q4YhmdhcvLNyB2O7auJM2mQoM6FwbDKau8v9_Rit67edCs0u1kcd--QqZRDrBgOiYxhRjmqf6k1ffa2DPNw3UKJGRtr2HqVnC5jvNT0xlGRuVP9AQW8TVOZXeZbP1PVJ_oZbJKNym-kvXJoW6QByTZZC-pybTvkoa_8YGXs0GVlmw5Ns-KumvIkoujqPaelNRY0w2v4Beqp0lSikSbpK8zpNE7yuZY9KnqjF9ycJrfmLhkP-vfBUKsqJ2jC1lmucRNsV_quEJHPOABwKbmnnEGFD3AGwmNOIQ7mSYNLH3xbegpG6Qjh63akW3ukmaQJ7BNqzcBTswxixpk98yzGbFCHLOFbbnH2aZHzGqRQVLLiWN1iHtbxY0_hd5hDhDksYW4R_6OHrJTY-MO3QT0v4ZdlEypG-HUvB__SyyFZx6cyjuyINPPFCxwrjyWftYsl2SYrvcvr4egd2pHw6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60BfUiPrE-9-DBg6F5bLKbk9SiVKtFUEH0ELabWYzUJJTq73c3j1bRg4LXTHYSZpb5ZpeZbwAOHeY4cewpC21fWBRdaYlYmGIqh9s-Og7zTHPy9SDo3dPLB_9hDrp1L4wpq6xifxnTi2hdPWlX1mznSdK-NUilE2KNcAbIOJuHJvV1TG5As3PR7w2mATkICjJm875lFizA0azMS3s4iYvmneojhsPbdbU44KH3M1p9QqDzFViuUkfSKf9uFeYwXYPFbj2xbR2eznQqrIXHZDbc5phkeXFdTUQaE5PtvWalNJEkNzfxY0OpSjJlhCTN3nFEHpN0MrLyZ41w5FS4j-mNuwH352d33Z5VDU-wJLX5xBIu0kCFgZRxyAUiCqUE0_kgDXwUHCXjfsEPxpQjVIghVUxbUvlShjaNbW8TGmmW4hYQb4hMOxrlUHA6ZB7nFPU5S4ZeUBx_WnBSGymSFbO4GXAxiuoSspfou5kjY-aoNHMLwqmGvGTZ-MPabu2X6MvOiTQo_FrL9r9oOYDF3t31VXR1MejvwJKRlGVlu9CYjN9wTycwk-F-tUE_AP9_85M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic%2C+electronic%2C+optical+and+thermoelectric+properties+of+the+novel+Zintl-phase+Ba2ZnP2&rft.jtitle=Solid+state+sciences&rft.au=Khireddine%2C+A.&rft.au=Bouhemadou%2C+A.&rft.au=Maabed%2C+S.&rft.au=Bin-Omran%2C+S.&rft.date=2022-06-01&rft.issn=1293-2558&rft.volume=128&rft.spage=106893&rft_id=info:doi/10.1016%2Fj.solidstatesciences.2022.106893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solidstatesciences_2022_106893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1293-2558&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1293-2558&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1293-2558&client=summon |