Semantic Feature Learning via Dual Sequences for Defect Prediction
Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into...
Saved in:
Published in | IEEE access Vol. 9; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3051957 |
Cover
Abstract | Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into the deep learning model to learn the semantic features. However, there are different ASTs with the same token sequence, and it is impossible to distinguish the tree structure of the ASTs only by a token sequence. To solve this problem, this paper proposes a framework called Semantic Feature Learning via Dual Sequences (SFLDS), which can capture the semantic and structural information in the AST for feature generation. Specifically, based on the AST, we select the representative nodes in the AST and convert the program source code into a simplified AST (S-AST). Our method introduces two sequences to represent the semantic and structural information of the S-AST, one is the result of traversing the S-AST node in pre-order, and another is composed of parent nodes. Then each token in the dual sequences is encoded as a numerical vector via mapping and word embedding. Finally, we use a bi-directional long short-term memory (BiLSTM) based neural network to automatically generate semantic features from the dual sequences for SDP. In addition, to leverage the statistical characteristics contained in the handcrafted metrics, we also propose a framework called Defect Prediction via SFLDS (DP-SFLDS) which combines the semantic features generated from SFLDS with handcrafted metrics to perform SDP. In our empirical studies, eight open-source Java projects from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our proposed approach can perform better than several state-of-the-art baseline SDP methods. |
---|---|
AbstractList | Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into the deep learning model to learn the semantic features. However, there are different ASTs with the same token sequence, and it is impossible to distinguish the tree structure of the ASTs only by a token sequence. To solve this problem, this paper proposes a framework called Semantic Feature Learning via Dual Sequences (SFLDS), which can capture the semantic and structural information in the AST for feature generation. Specifically, based on the AST, we select the representative nodes in the AST and convert the program source code into a simplified AST (S-AST). Our method introduces two sequences to represent the semantic and structural information of the S-AST, one is the result of traversing the S-AST node in pre-order, and another is composed of parent nodes. Then each token in the dual sequences is encoded as a numerical vector via mapping and word embedding. Finally, we use a bi-directional long short-term memory (BiLSTM) based neural network to automatically generate semantic features from the dual sequences for SDP. In addition, to leverage the statistical characteristics contained in the handcrafted metrics, we also propose a framework called Defect Prediction via SFLDS (DP-SFLDS) which combines the semantic features generated from SFLDS with handcrafted metrics to perform SDP. In our empirical studies, eight open-source Java projects from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our proposed approach can perform better than several state-of-the-art baseline SDP methods. |
Author | Lin, Junhao Lu, Lu |
Author_xml | – sequence: 1 givenname: Junhao surname: Lin fullname: Lin, Junhao organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006 China. (e-mail: 1164130065@qq.com) – sequence: 2 givenname: Lu surname: Lu fullname: Lu, Lu organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006 China and Modern Industrial Technology Research Institute, South China University of Technology, Meizhou 528400, China |
BookMark | eNptkU9r3DAQxU1JoGmST5CLoefd6r-lY7pJmsBCC9uexVgeBS2OtJXtlnz7aOOwhCW6SAzz3sz76Ut1ElPEqrqiZEkpMd-uV6vbzWbJCKNLTiQ1svlUnTGqzIJLrk7evT9Xl8OwJeXoUpLNWfV9g08Qx-DqO4RxylivEXIM8bH-F6C-maCvN_h3wuhwqH3K9Q16dGP9K2MX3BhSvKhOPfQDXr7d59Wfu9vfq_vF-uePh9X1euEE0ePCdAIpMEVlh8YLUKxVylAgRnvuEFrFQajWt6qV3HtCDXXESESlFQjT8PPqYfbtEmztLocnyM82QbCvhZQfLeSSpEdLhPSIrAPddEIRbLVnDfVadqwQUqZ4idlrijt4_g99fzCkxO6xWnAl8WD3WO0b1iL7Ost2ORUmw2i3acqxpLZMaKKVIkqWLjN3uZyGIaO3LoywRzVmCP1hwvxxxxP4kfZ4r49VV7MqIOJBYThTvNH8Bd7mozk |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s44196_024_00551_3 crossref_primary_10_3390_electronics12143075 crossref_primary_10_1016_j_infsof_2024_107646 crossref_primary_10_3390_app11114793 crossref_primary_10_1109_ACCESS_2023_3239266 crossref_primary_10_3934_DSFE_2021002 crossref_primary_10_1109_ACCESS_2022_3211401 crossref_primary_10_32604_cmc_2024_047407 crossref_primary_10_3390_math10173120 crossref_primary_10_1007_s10664_024_10495_z crossref_primary_10_7717_peerj_cs_739 crossref_primary_10_1109_ACCESS_2024_3450673 crossref_primary_10_1016_j_jss_2023_111934 crossref_primary_10_1007_s42979_023_02224_y crossref_primary_10_1016_j_jss_2022_111537 crossref_primary_10_1186_s44147_024_00453_3 crossref_primary_10_1007_s11042_022_14065_7 |
Cites_doi | 10.1007/978-3-7908-2604-3_16 10.4304/jsw.6.11.2114-2120 10.1016/j.datak.2008.10.005 10.1109/QSIC.2012.19 10.1145/2950290.2950334 10.1109/32.295895 10.1145/2970276.2970326 10.1109/ICTAI.2017.00019 10.3115/v1/P14-1146 10.1049/iet-sen.2018.5131 10.1109/ICST47872.2019.9166448 10.1109/72.279181 10.1049/iet-sen.2017.0148 10.1109/ASE.2015.56 10.1109/ISSRE.2003.1251044 10.1109/TSE.2018.2836442 10.1145/2786805.2786813 10.1007/s11219-016-9353-3 10.1016/j.jss.2007.07.040 10.1016/j.ins.2018.10.056 10.1016/j.jss.2018.06.025 10.1109/32.689404 10.1109/TSE.2018.2877612 10.1145/2568225.2568320 10.1016/j.neunet.2005.06.042 10.1145/1368088.1368114 10.1109/TSE.2017.2659747 10.1145/1595696.1595713 10.3115/v1/W14-1618 10.1109/TSE.2016.2584050 10.1145/1368088.1368161 10.1145/2499393.2499395 10.1109/ICSE.2013.6606584 10.1109/TSE.1976.233837 10.1109/SYNASC.2016.046 10.1002/047084535X 10.1109/SECON.2018.8478911 10.1007/s10515-010-0069-5 10.1109/QRS.2015.14 10.1109/ICASSP.2013.6638947 10.1007/s11390-019-1959-z 10.1109/QRS.2017.42 10.1007/978-3-642-03969-0_21 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
DOI | 10.1109/ACCESS.2021.3051957 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_045fee2da87d460eb8f271f85d230569 10.1109/access.2021.3051957 10_1109_ACCESS_2021_3051957 9326378 |
Genre | orig-research |
GrantInformation_xml | – fundername: Meizhou Produce and Research Fund grantid: 2019A0101019 – fundername: National Nature Science Foundation of China grantid: 61370103 – fundername: Guangzhou Produce and Research Fund grantid: 201902020004 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
ID | FETCH-LOGICAL-c408t-9d4e1a2615de9f4a62b6691a098f3ceab63a46bfb6b53ff0191c095ee686a4973 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Tue Aug 19 19:11:11 EDT 2025 Sun Jun 29 16:36:46 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Wed Oct 01 04:43:50 EDT 2025 Wed Aug 27 06:01:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-9d4e1a2615de9f4a62b6691a098f3ceab63a46bfb6b53ff0191c095ee686a4973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9544-2968 0000-0001-6372-7088 |
OpenAccessLink | https://doaj.org/article/045fee2da87d460eb8f271f85d230569 |
PQID | 2480866065 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1109_access_2021_3051957 doaj_primary_oai_doaj_org_article_045fee2da87d460eb8f271f85d230569 crossref_primary_10_1109_ACCESS_2021_3051957 proquest_journals_2480866065 crossref_citationtrail_10_1109_ACCESS_2021_3051957 ieee_primary_9326378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | gupta (ref51) 2017 ref12 ref15 ref14 li (ref48) 2019 ref11 khanh dam (ref13) 2018 ref10 ref17 ref16 ref19 ref18 boehm (ref1) 1976 levy (ref20) 2014 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 halsted (ref9) 1977 ref35 ref34 ref37 ref36 ref31 ref30 ref33 kan (ref2) 2002 ref32 ref39 ref38 kingma (ref27) 2014 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref29 |
References_xml | – ident: ref26 doi: 10.1007/978-3-7908-2604-3_16 – year: 2002 ident: ref2 publication-title: Metrics and Models in Software Quality Engineering – start-page: 1 year: 2019 ident: ref48 article-title: Cross-project defect prediction via ASTToken2 Vec and BLSTM-based neural network publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref30 doi: 10.4304/jsw.6.11.2114-2120 – ident: ref40 doi: 10.1016/j.datak.2008.10.005 – ident: ref16 doi: 10.1109/QSIC.2012.19 – ident: ref50 doi: 10.1145/2950290.2950334 – ident: ref10 doi: 10.1109/32.295895 – ident: ref49 doi: 10.1145/2970276.2970326 – ident: ref47 doi: 10.1109/ICTAI.2017.00019 – ident: ref19 doi: 10.3115/v1/P14-1146 – ident: ref44 doi: 10.1049/iet-sen.2018.5131 – ident: ref31 doi: 10.1109/ICST47872.2019.9166448 – year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref22 doi: 10.1109/72.279181 – start-page: 2177 year: 2014 ident: ref20 article-title: Neural word embedding as implicit matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1049/iet-sen.2017.0148 – ident: ref6 doi: 10.1109/ASE.2015.56 – start-page: 1345 year: 2017 ident: ref51 article-title: Deepfix: Fixing common c language errors by deep learning publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref15 doi: 10.1109/ISSRE.2003.1251044 – ident: ref25 doi: 10.1109/TSE.2018.2836442 – ident: ref4 doi: 10.1145/2786805.2786813 – year: 1977 ident: ref9 publication-title: Elements of Software Science – year: 2018 ident: ref13 article-title: A deep tree-based model for software defect prediction publication-title: arXiv 1802 00921 – ident: ref29 doi: 10.1007/s11219-016-9353-3 – ident: ref17 doi: 10.1016/j.jss.2007.07.040 – ident: ref32 doi: 10.1016/j.ins.2018.10.056 – ident: ref34 doi: 10.1016/j.jss.2018.06.025 – ident: ref8 doi: 10.1109/32.689404 – ident: ref11 doi: 10.1109/TSE.2018.2877612 – ident: ref14 doi: 10.1145/2568225.2568320 – ident: ref24 doi: 10.1016/j.neunet.2005.06.042 – ident: ref39 doi: 10.1145/1368088.1368114 – ident: ref36 doi: 10.1109/TSE.2017.2659747 – ident: ref41 doi: 10.1145/1595696.1595713 – ident: ref18 doi: 10.3115/v1/W14-1618 – ident: ref28 doi: 10.1109/TSE.2016.2584050 – start-page: 592 year: 1976 ident: ref1 article-title: Quantitative evaluation of software quality publication-title: Proc 22nd Int Conf Software Engineering – ident: ref38 doi: 10.1145/1368088.1368161 – ident: ref42 doi: 10.1145/2499393.2499395 – ident: ref43 doi: 10.1109/ICSE.2013.6606584 – ident: ref7 doi: 10.1109/TSE.1976.233837 – ident: ref33 doi: 10.1109/SYNASC.2016.046 – ident: ref21 doi: 10.1002/047084535X – ident: ref37 doi: 10.1109/SECON.2018.8478911 – ident: ref5 doi: 10.1007/s10515-010-0069-5 – ident: ref46 doi: 10.1109/QRS.2015.14 – ident: ref23 doi: 10.1109/ICASSP.2013.6638947 – ident: ref45 doi: 10.1007/s11390-019-1959-z – ident: ref12 doi: 10.1109/QRS.2017.42 – ident: ref3 doi: 10.1007/978-3-642-03969-0_21 |
SSID | ssj0000816957 |
Score | 2.3195727 |
Snippet | Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing... |
SourceID | doaj unpaywall proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | abstract syntax tree bi-directional long short-term memory network deep learning Feature extraction Logic gates Measurement Neural networks Nodes Semantics Software Software defect prediction Software metrics Source code Vegetation |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHChRESkE-cGy2iePPY7ttVSEVIZVKvVm2M0YV2221bED012Mn3mgLCHGLIjuxPWPNm_H4DcD7aNJUqCSWtXKiZD7w0noZygobahvrUPX0xecfxdkl-3DFrzZgf7wLg4h98hlO0mN_lt_e-i6Fyg4S1mik2oRNKfVwV2uMp6QCEprLTCxUV_rgcDqNc4guIK0nTUIqyQStGZ-eoz8XVXmALx918zv784edzdZMzek2nK8GOWSYfJ10Szfx97_xN_7vLJ7B04w5yeGgJM9hA-cv4MkaE-EOHF3gTVzja08SJuwWSDLx6hfy_dqS4y72v1hlXZMIdMkxpkQQ8mmRTnqSdF_C5enJ5-lZmcsrlJ5ValnqlmFtowfFW9SBWUGdELq2lVah8WidaCwTLjjheBNCxIK1j4AMUShhmZbNK9ia387xNRCprLLM6wR-WC2tU8rxVmKEf95y6gqgq3U3PnOPpxIYM9P7IJU2g7BMEpbJwipgf-x0N1Bv_Lv5URLo2DTxZvcv4uKbvA1NBLABkbZWyZaJCp0KVNZB8ZYmX0oXsJMENn4ky6qAvZV6mLzHvxnKVPQHowPICyhHlfljqLYvfPlgqLt__8sbeJxaDQGePdhaLjp8GyHP0r3rdf0XSHf7Wg priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wB7GD8GIttAeeCRpIntOPZj1zFNSEyTRqXxZNnOGVUrpeoafuyvn524VQcSErwlkRM5-s6573yX7wDeepcmXFFjVgrDM2ZdlWlbu6xASjTVBkUnX_zxnJ9N2Ier6ipuuHX_wiBiV3yGeTjscvlTnP2sh5wE8TQ5lLQk3i0Oi8A8aC3yReMewg4PCaYB7EzOL0afQ0e5ksuMdrnJwyisOdRdD0IfFJIyp4G7BKe05Y461f7YZuUe43zUzhf61w89m205n9MnoNbT7mtOrvN2ZXJ7-5ui4_-_11PYi7w0HfWG9Awe4Pw57G6pFe7D8SV-9ThMbRp4Y7vENIqzfkm_T3V60vr7L9eV2aknw-kJhmKR9GIZskHBAl7A5PT9p_FZFlswZJYVYpXJhmGpfZRVNSgd05wYzmWpCykctagNp5px4ww3FXXO88XSetKGyAXXTNb0JQzm3-b4CtJaaKGZlYEgsbLWRghTNTV6imh1RUwCZI2EslGfPLTJmKkuTimkGo3H3ihVgE9F-BJ4t7lp0ctz_H34cYB4MzRoa3cXPBwqLlXlSa5DJI0WdcN4gUY4D4wTVUNCvCUT2A8Qbh4S8UrgaG0wKn4HbhRhwseMPkisEsg2RvTHVHvDvDfVg38cfwiPw2m_O3QEg9WyxdeeL63Mm7go7gA2rwty priority: 102 providerName: Unpaywall |
Title | Semantic Feature Learning via Dual Sequences for Defect Prediction |
URI | https://ieeexplore.ieee.org/document/9326378 https://www.proquest.com/docview/2480866065 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09326378.pdf https://doaj.org/article/045fee2da87d460eb8f271f85d230569 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOQAHBBREoKx84Eho7PjzuN1SVUhUlcpK5WSNnTGqtF2qZbcV_x478a5SIcGFa2Rbk5lJ5r3EfkPI-1TSTGw01sx4VYsQZQ1Bx7rBlkMLHk0vX_zlTJ3OxedLeTlq9ZX3hA3ywIPjDhPkiIi8A6M7oRr0JnLNopEdz-i3P7qXytiITPXvYMOUlbrIDLHGHk5ns3RHiRBy9rHNuCUXpFEp6hX7S4uVe2jz0WZ5A7_uYLEYFZ6TZ-RpQYx0Olj6nDzA5QvyZKQjuE-OLvA6eegq0IzoNiukRTb1O729Anq8SfMvtnumaYKp9BjzNg56vsr_aXJsXpL5yaevs9O6NEeog2jMuradQAaJ_8gObRSguFfKMmisiW1A8KoFoXz0yss2xoTkWEhwClEZBcLq9hXZW_5Y4mtCtQEDItgMXQTT4I3xstOYwFsAyX1F-NZPLhTl8NzAYuF6BtFYNzjXZee64tyKfNhNuhmEM_4-_CgHYDc0q173F1IuuJIL7l-5UJH9HL7dIhmbttpU5GAbTlee0J-OC5PYXKJvsiL1LsR_mAp928p7pr75H6a-JY_zmsPHnAOyt15t8F2CN2s_6TN50p9EnJCH87Pz6bff0770Rg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoEAOHJtt4vh5bLdUC3QrpLZSb5btjKuKZVstGxD8euzEG20BIW5RZCe2Z6z5Zjz-BuBtMGnSlwKLSlpeUOdZYZzwRYk1MbWxKDv64ukJn5zTDxfsYgN2h7swiNgln-EoPnZn-c21a2OobC9ijVrIO3CXBa9C9Le1hohKLCGhmEjUQlWp9vbH4zCL4ASSalRHrBKN0Jr56Vj6U1mVWwhzq53fmB_fzWy2ZmyOHsJ0Ncw-x-TzqF3akfv5G4Pj_87jETxIqDPf79XkMWzg_AncX-Mi3IaDU_wSVvnK5REVtgvME_XqZf7tyuSHbeh_usq7zgPUzQ8xpoLknxbxrCfK9ymcH707G0-KVGChcLSUy0I1FCsTfCjWoPLUcGI5V5UplfS1Q2N5bSi33nLLau8DGqxcgGSIXHJDlaifweb8eo7PIRfSSEOdivCHVsJYKS1rBAYA6AwjNgOyWnftEvt4LIIx050XUirdC0tHYekkrAx2h043PfnGv5sfRIEOTSNzdvciLL5OG1EHCOsRSWOkaCgv0UpPROUla0j0plQG21Fgw0eSrDLYWamHTrv8qyZUBo8wuIAsg2JQmT-GarrSl7eG-uLvf3kDW5Oz6bE-fn_y8SXciz36cM8ObC4XLb4KAGhpX3d6_wuhGv6r |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wB7GD8GIttAeeCRpIntOPZj1zFNSEyTRqXxZNnOGVUrpeoafuyvn524VQcSErwlkRM5-s6573yX7wDeepcmXFFjVgrDM2ZdlWlbu6xASjTVBkUnX_zxnJ9N2Ier6ipuuHX_wiBiV3yGeTjscvlTnP2sh5wE8TQ5lLQk3i0Oi8A8aC3yReMewg4PCaYB7EzOL0afQ0e5ksuMdrnJwyisOdRdD0IfFJIyp4G7BKe05Y461f7YZuUe43zUzhf61w89m205n9MnoNbT7mtOrvN2ZXJ7-5ui4_-_11PYi7w0HfWG9Awe4Pw57G6pFe7D8SV-9ThMbRp4Y7vENIqzfkm_T3V60vr7L9eV2aknw-kJhmKR9GIZskHBAl7A5PT9p_FZFlswZJYVYpXJhmGpfZRVNSgd05wYzmWpCykctagNp5px4ww3FXXO88XSetKGyAXXTNb0JQzm3-b4CtJaaKGZlYEgsbLWRghTNTV6imh1RUwCZI2EslGfPLTJmKkuTimkGo3H3ihVgE9F-BJ4t7lp0ctz_H34cYB4MzRoa3cXPBwqLlXlSa5DJI0WdcN4gUY4D4wTVUNCvCUT2A8Qbh4S8UrgaG0wKn4HbhRhwseMPkisEsg2RvTHVHvDvDfVg38cfwiPw2m_O3QEg9WyxdeeL63Mm7go7gA2rwty |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Feature+Learning+via+Dual+Sequences+for+Defect+Prediction&rft.jtitle=IEEE+access&rft.au=Junhao+Lin&rft.au=Lu+Lu&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=13112&rft.epage=13124&rft_id=info:doi/10.1109%2FACCESS.2021.3051957&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_045fee2da87d460eb8f271f85d230569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |