Semantic Feature Learning via Dual Sequences for Defect Prediction

Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; p. 1
Main Authors Lin, Junhao, Lu, Lu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3051957

Cover

Abstract Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into the deep learning model to learn the semantic features. However, there are different ASTs with the same token sequence, and it is impossible to distinguish the tree structure of the ASTs only by a token sequence. To solve this problem, this paper proposes a framework called Semantic Feature Learning via Dual Sequences (SFLDS), which can capture the semantic and structural information in the AST for feature generation. Specifically, based on the AST, we select the representative nodes in the AST and convert the program source code into a simplified AST (S-AST). Our method introduces two sequences to represent the semantic and structural information of the S-AST, one is the result of traversing the S-AST node in pre-order, and another is composed of parent nodes. Then each token in the dual sequences is encoded as a numerical vector via mapping and word embedding. Finally, we use a bi-directional long short-term memory (BiLSTM) based neural network to automatically generate semantic features from the dual sequences for SDP. In addition, to leverage the statistical characteristics contained in the handcrafted metrics, we also propose a framework called Defect Prediction via SFLDS (DP-SFLDS) which combines the semantic features generated from SFLDS with handcrafted metrics to perform SDP. In our empirical studies, eight open-source Java projects from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our proposed approach can perform better than several state-of-the-art baseline SDP methods.
AbstractList Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing methods often serialize an Abstract Syntax Tree (AST) obtained from the program source code into a token sequence, which is then inputted into the deep learning model to learn the semantic features. However, there are different ASTs with the same token sequence, and it is impossible to distinguish the tree structure of the ASTs only by a token sequence. To solve this problem, this paper proposes a framework called Semantic Feature Learning via Dual Sequences (SFLDS), which can capture the semantic and structural information in the AST for feature generation. Specifically, based on the AST, we select the representative nodes in the AST and convert the program source code into a simplified AST (S-AST). Our method introduces two sequences to represent the semantic and structural information of the S-AST, one is the result of traversing the S-AST node in pre-order, and another is composed of parent nodes. Then each token in the dual sequences is encoded as a numerical vector via mapping and word embedding. Finally, we use a bi-directional long short-term memory (BiLSTM) based neural network to automatically generate semantic features from the dual sequences for SDP. In addition, to leverage the statistical characteristics contained in the handcrafted metrics, we also propose a framework called Defect Prediction via SFLDS (DP-SFLDS) which combines the semantic features generated from SFLDS with handcrafted metrics to perform SDP. In our empirical studies, eight open-source Java projects from the PROMISE repository are chosen as our empirical subjects. Experimental results show that our proposed approach can perform better than several state-of-the-art baseline SDP methods.
Author Lin, Junhao
Lu, Lu
Author_xml – sequence: 1
  givenname: Junhao
  surname: Lin
  fullname: Lin, Junhao
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006 China. (e-mail: 1164130065@qq.com)
– sequence: 2
  givenname: Lu
  surname: Lu
  fullname: Lu, Lu
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006 China and Modern Industrial Technology Research Institute, South China University of Technology, Meizhou 528400, China
BookMark eNptkU9r3DAQxU1JoGmST5CLoefd6r-lY7pJmsBCC9uexVgeBS2OtJXtlnz7aOOwhCW6SAzz3sz76Ut1ElPEqrqiZEkpMd-uV6vbzWbJCKNLTiQ1svlUnTGqzIJLrk7evT9Xl8OwJeXoUpLNWfV9g08Qx-DqO4RxylivEXIM8bH-F6C-maCvN_h3wuhwqH3K9Q16dGP9K2MX3BhSvKhOPfQDXr7d59Wfu9vfq_vF-uePh9X1euEE0ePCdAIpMEVlh8YLUKxVylAgRnvuEFrFQajWt6qV3HtCDXXESESlFQjT8PPqYfbtEmztLocnyM82QbCvhZQfLeSSpEdLhPSIrAPddEIRbLVnDfVadqwQUqZ4idlrijt4_g99fzCkxO6xWnAl8WD3WO0b1iL7Ost2ORUmw2i3acqxpLZMaKKVIkqWLjN3uZyGIaO3LoywRzVmCP1hwvxxxxP4kfZ4r49VV7MqIOJBYThTvNH8Bd7mozk
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s44196_024_00551_3
crossref_primary_10_3390_electronics12143075
crossref_primary_10_1016_j_infsof_2024_107646
crossref_primary_10_3390_app11114793
crossref_primary_10_1109_ACCESS_2023_3239266
crossref_primary_10_3934_DSFE_2021002
crossref_primary_10_1109_ACCESS_2022_3211401
crossref_primary_10_32604_cmc_2024_047407
crossref_primary_10_3390_math10173120
crossref_primary_10_1007_s10664_024_10495_z
crossref_primary_10_7717_peerj_cs_739
crossref_primary_10_1109_ACCESS_2024_3450673
crossref_primary_10_1016_j_jss_2023_111934
crossref_primary_10_1007_s42979_023_02224_y
crossref_primary_10_1016_j_jss_2022_111537
crossref_primary_10_1186_s44147_024_00453_3
crossref_primary_10_1007_s11042_022_14065_7
Cites_doi 10.1007/978-3-7908-2604-3_16
10.4304/jsw.6.11.2114-2120
10.1016/j.datak.2008.10.005
10.1109/QSIC.2012.19
10.1145/2950290.2950334
10.1109/32.295895
10.1145/2970276.2970326
10.1109/ICTAI.2017.00019
10.3115/v1/P14-1146
10.1049/iet-sen.2018.5131
10.1109/ICST47872.2019.9166448
10.1109/72.279181
10.1049/iet-sen.2017.0148
10.1109/ASE.2015.56
10.1109/ISSRE.2003.1251044
10.1109/TSE.2018.2836442
10.1145/2786805.2786813
10.1007/s11219-016-9353-3
10.1016/j.jss.2007.07.040
10.1016/j.ins.2018.10.056
10.1016/j.jss.2018.06.025
10.1109/32.689404
10.1109/TSE.2018.2877612
10.1145/2568225.2568320
10.1016/j.neunet.2005.06.042
10.1145/1368088.1368114
10.1109/TSE.2017.2659747
10.1145/1595696.1595713
10.3115/v1/W14-1618
10.1109/TSE.2016.2584050
10.1145/1368088.1368161
10.1145/2499393.2499395
10.1109/ICSE.2013.6606584
10.1109/TSE.1976.233837
10.1109/SYNASC.2016.046
10.1002/047084535X
10.1109/SECON.2018.8478911
10.1007/s10515-010-0069-5
10.1109/QRS.2015.14
10.1109/ICASSP.2013.6638947
10.1007/s11390-019-1959-z
10.1109/QRS.2017.42
10.1007/978-3-642-03969-0_21
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3051957
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_045fee2da87d460eb8f271f85d230569
10.1109/access.2021.3051957
10_1109_ACCESS_2021_3051957
9326378
Genre orig-research
GrantInformation_xml – fundername: Meizhou Produce and Research Fund
  grantid: 2019A0101019
– fundername: National Nature Science Foundation of China
  grantid: 61370103
– fundername: Guangzhou Produce and Research Fund
  grantid: 201902020004
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-9d4e1a2615de9f4a62b6691a098f3ceab63a46bfb6b53ff0191c095ee686a4973
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:27 EDT 2025
Tue Aug 19 19:11:11 EDT 2025
Sun Jun 29 16:36:46 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Wed Oct 01 04:43:50 EDT 2025
Wed Aug 27 06:01:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9d4e1a2615de9f4a62b6691a098f3ceab63a46bfb6b53ff0191c095ee686a4973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9544-2968
0000-0001-6372-7088
OpenAccessLink https://doaj.org/article/045fee2da87d460eb8f271f85d230569
PQID 2480866065
PQPubID 4845423
PageCount 1
ParticipantIDs unpaywall_primary_10_1109_access_2021_3051957
doaj_primary_oai_doaj_org_article_045fee2da87d460eb8f271f85d230569
crossref_primary_10_1109_ACCESS_2021_3051957
proquest_journals_2480866065
crossref_citationtrail_10_1109_ACCESS_2021_3051957
ieee_primary_9326378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References gupta (ref51) 2017
ref12
ref15
ref14
li (ref48) 2019
ref11
khanh dam (ref13) 2018
ref10
ref17
ref16
ref19
ref18
boehm (ref1) 1976
levy (ref20) 2014
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
halsted (ref9) 1977
ref35
ref34
ref37
ref36
ref31
ref30
ref33
kan (ref2) 2002
ref32
ref39
ref38
kingma (ref27) 2014
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref29
References_xml – ident: ref26
  doi: 10.1007/978-3-7908-2604-3_16
– year: 2002
  ident: ref2
  publication-title: Metrics and Models in Software Quality Engineering
– start-page: 1
  year: 2019
  ident: ref48
  article-title: Cross-project defect prediction via ASTToken2 Vec and BLSTM-based neural network
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref30
  doi: 10.4304/jsw.6.11.2114-2120
– ident: ref40
  doi: 10.1016/j.datak.2008.10.005
– ident: ref16
  doi: 10.1109/QSIC.2012.19
– ident: ref50
  doi: 10.1145/2950290.2950334
– ident: ref10
  doi: 10.1109/32.295895
– ident: ref49
  doi: 10.1145/2970276.2970326
– ident: ref47
  doi: 10.1109/ICTAI.2017.00019
– ident: ref19
  doi: 10.3115/v1/P14-1146
– ident: ref44
  doi: 10.1049/iet-sen.2018.5131
– ident: ref31
  doi: 10.1109/ICST47872.2019.9166448
– year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref22
  doi: 10.1109/72.279181
– start-page: 2177
  year: 2014
  ident: ref20
  article-title: Neural word embedding as implicit matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1049/iet-sen.2017.0148
– ident: ref6
  doi: 10.1109/ASE.2015.56
– start-page: 1345
  year: 2017
  ident: ref51
  article-title: Deepfix: Fixing common c language errors by deep learning
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref15
  doi: 10.1109/ISSRE.2003.1251044
– ident: ref25
  doi: 10.1109/TSE.2018.2836442
– ident: ref4
  doi: 10.1145/2786805.2786813
– year: 1977
  ident: ref9
  publication-title: Elements of Software Science
– year: 2018
  ident: ref13
  article-title: A deep tree-based model for software defect prediction
  publication-title: arXiv 1802 00921
– ident: ref29
  doi: 10.1007/s11219-016-9353-3
– ident: ref17
  doi: 10.1016/j.jss.2007.07.040
– ident: ref32
  doi: 10.1016/j.ins.2018.10.056
– ident: ref34
  doi: 10.1016/j.jss.2018.06.025
– ident: ref8
  doi: 10.1109/32.689404
– ident: ref11
  doi: 10.1109/TSE.2018.2877612
– ident: ref14
  doi: 10.1145/2568225.2568320
– ident: ref24
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref39
  doi: 10.1145/1368088.1368114
– ident: ref36
  doi: 10.1109/TSE.2017.2659747
– ident: ref41
  doi: 10.1145/1595696.1595713
– ident: ref18
  doi: 10.3115/v1/W14-1618
– ident: ref28
  doi: 10.1109/TSE.2016.2584050
– start-page: 592
  year: 1976
  ident: ref1
  article-title: Quantitative evaluation of software quality
  publication-title: Proc 22nd Int Conf Software Engineering
– ident: ref38
  doi: 10.1145/1368088.1368161
– ident: ref42
  doi: 10.1145/2499393.2499395
– ident: ref43
  doi: 10.1109/ICSE.2013.6606584
– ident: ref7
  doi: 10.1109/TSE.1976.233837
– ident: ref33
  doi: 10.1109/SYNASC.2016.046
– ident: ref21
  doi: 10.1002/047084535X
– ident: ref37
  doi: 10.1109/SECON.2018.8478911
– ident: ref5
  doi: 10.1007/s10515-010-0069-5
– ident: ref46
  doi: 10.1109/QRS.2015.14
– ident: ref23
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref45
  doi: 10.1007/s11390-019-1959-z
– ident: ref12
  doi: 10.1109/QRS.2017.42
– ident: ref3
  doi: 10.1007/978-3-642-03969-0_21
SSID ssj0000816957
Score 2.3195727
Snippet Software defect prediction (SDP) can help developers reasonably allocate limited resources for locating bugs and prioritizing their testing efforts. Existing...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms abstract syntax tree
bi-directional long short-term memory network
deep learning
Feature extraction
Logic gates
Measurement
Neural networks
Nodes
Semantics
Software
Software defect prediction
Software metrics
Source code
Vegetation
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHChRESkE-cGy2iePPY7ttVSEVIZVKvVm2M0YV2221bED012Mn3mgLCHGLIjuxPWPNm_H4DcD7aNJUqCSWtXKiZD7w0noZygobahvrUPX0xecfxdkl-3DFrzZgf7wLg4h98hlO0mN_lt_e-i6Fyg4S1mik2oRNKfVwV2uMp6QCEprLTCxUV_rgcDqNc4guIK0nTUIqyQStGZ-eoz8XVXmALx918zv784edzdZMzek2nK8GOWSYfJ10Szfx97_xN_7vLJ7B04w5yeGgJM9hA-cv4MkaE-EOHF3gTVzja08SJuwWSDLx6hfy_dqS4y72v1hlXZMIdMkxpkQQ8mmRTnqSdF_C5enJ5-lZmcsrlJ5ValnqlmFtowfFW9SBWUGdELq2lVah8WidaCwTLjjheBNCxIK1j4AMUShhmZbNK9ia387xNRCprLLM6wR-WC2tU8rxVmKEf95y6gqgq3U3PnOPpxIYM9P7IJU2g7BMEpbJwipgf-x0N1Bv_Lv5URLo2DTxZvcv4uKbvA1NBLABkbZWyZaJCp0KVNZB8ZYmX0oXsJMENn4ky6qAvZV6mLzHvxnKVPQHowPICyhHlfljqLYvfPlgqLt__8sbeJxaDQGePdhaLjp8GyHP0r3rdf0XSHf7Wg
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wB7GD8GIttAeeCRpIntOPZj1zFNSEyTRqXxZNnOGVUrpeoafuyvn524VQcSErwlkRM5-s6573yX7wDeepcmXFFjVgrDM2ZdlWlbu6xASjTVBkUnX_zxnJ9N2Ier6ipuuHX_wiBiV3yGeTjscvlTnP2sh5wE8TQ5lLQk3i0Oi8A8aC3yReMewg4PCaYB7EzOL0afQ0e5ksuMdrnJwyisOdRdD0IfFJIyp4G7BKe05Y461f7YZuUe43zUzhf61w89m205n9MnoNbT7mtOrvN2ZXJ7-5ui4_-_11PYi7w0HfWG9Awe4Pw57G6pFe7D8SV-9ThMbRp4Y7vENIqzfkm_T3V60vr7L9eV2aknw-kJhmKR9GIZskHBAl7A5PT9p_FZFlswZJYVYpXJhmGpfZRVNSgd05wYzmWpCykctagNp5px4ww3FXXO88XSetKGyAXXTNb0JQzm3-b4CtJaaKGZlYEgsbLWRghTNTV6imh1RUwCZI2EslGfPLTJmKkuTimkGo3H3ihVgE9F-BJ4t7lp0ctz_H34cYB4MzRoa3cXPBwqLlXlSa5DJI0WdcN4gUY4D4wTVUNCvCUT2A8Qbh4S8UrgaG0wKn4HbhRhwseMPkisEsg2RvTHVHvDvDfVg38cfwiPw2m_O3QEg9WyxdeeL63Mm7go7gA2rwty
  priority: 102
  providerName: Unpaywall
Title Semantic Feature Learning via Dual Sequences for Defect Prediction
URI https://ieeexplore.ieee.org/document/9326378
https://www.proquest.com/docview/2480866065
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09326378.pdf
https://doaj.org/article/045fee2da87d460eb8f271f85d230569
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOQAHBBREoKx84Eho7PjzuN1SVUhUlcpK5WSNnTGqtF2qZbcV_x478a5SIcGFa2Rbk5lJ5r3EfkPI-1TSTGw01sx4VYsQZQ1Bx7rBlkMLHk0vX_zlTJ3OxedLeTlq9ZX3hA3ywIPjDhPkiIi8A6M7oRr0JnLNopEdz-i3P7qXytiITPXvYMOUlbrIDLHGHk5ns3RHiRBy9rHNuCUXpFEp6hX7S4uVe2jz0WZ5A7_uYLEYFZ6TZ-RpQYx0Olj6nDzA5QvyZKQjuE-OLvA6eegq0IzoNiukRTb1O729Anq8SfMvtnumaYKp9BjzNg56vsr_aXJsXpL5yaevs9O6NEeog2jMuradQAaJ_8gObRSguFfKMmisiW1A8KoFoXz0yss2xoTkWEhwClEZBcLq9hXZW_5Y4mtCtQEDItgMXQTT4I3xstOYwFsAyX1F-NZPLhTl8NzAYuF6BtFYNzjXZee64tyKfNhNuhmEM_4-_CgHYDc0q173F1IuuJIL7l-5UJH9HL7dIhmbttpU5GAbTlee0J-OC5PYXKJvsiL1LsR_mAp928p7pr75H6a-JY_zmsPHnAOyt15t8F2CN2s_6TN50p9EnJCH87Pz6bff0770Rg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoEAOHJtt4vh5bLdUC3QrpLZSb5btjKuKZVstGxD8euzEG20BIW5RZCe2Z6z5Zjz-BuBtMGnSlwKLSlpeUOdZYZzwRYk1MbWxKDv64ukJn5zTDxfsYgN2h7swiNgln-EoPnZn-c21a2OobC9ijVrIO3CXBa9C9Le1hohKLCGhmEjUQlWp9vbH4zCL4ASSalRHrBKN0Jr56Vj6U1mVWwhzq53fmB_fzWy2ZmyOHsJ0Ncw-x-TzqF3akfv5G4Pj_87jETxIqDPf79XkMWzg_AncX-Mi3IaDU_wSVvnK5REVtgvME_XqZf7tyuSHbeh_usq7zgPUzQ8xpoLknxbxrCfK9ymcH707G0-KVGChcLSUy0I1FCsTfCjWoPLUcGI5V5UplfS1Q2N5bSi33nLLau8DGqxcgGSIXHJDlaifweb8eo7PIRfSSEOdivCHVsJYKS1rBAYA6AwjNgOyWnftEvt4LIIx050XUirdC0tHYekkrAx2h043PfnGv5sfRIEOTSNzdvciLL5OG1EHCOsRSWOkaCgv0UpPROUla0j0plQG21Fgw0eSrDLYWamHTrv8qyZUBo8wuIAsg2JQmT-GarrSl7eG-uLvf3kDW5Oz6bE-fn_y8SXciz36cM8ObC4XLb4KAGhpX3d6_wuhGv6r
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wB7GD8GIttAeeCRpIntOPZj1zFNSEyTRqXxZNnOGVUrpeoafuyvn524VQcSErwlkRM5-s6573yX7wDeepcmXFFjVgrDM2ZdlWlbu6xASjTVBkUnX_zxnJ9N2Ier6ipuuHX_wiBiV3yGeTjscvlTnP2sh5wE8TQ5lLQk3i0Oi8A8aC3yReMewg4PCaYB7EzOL0afQ0e5ksuMdrnJwyisOdRdD0IfFJIyp4G7BKe05Y461f7YZuUe43zUzhf61w89m205n9MnoNbT7mtOrvN2ZXJ7-5ui4_-_11PYi7w0HfWG9Awe4Pw57G6pFe7D8SV-9ThMbRp4Y7vENIqzfkm_T3V60vr7L9eV2aknw-kJhmKR9GIZskHBAl7A5PT9p_FZFlswZJYVYpXJhmGpfZRVNSgd05wYzmWpCykctagNp5px4ww3FXXO88XSetKGyAXXTNb0JQzm3-b4CtJaaKGZlYEgsbLWRghTNTV6imh1RUwCZI2EslGfPLTJmKkuTimkGo3H3ihVgE9F-BJ4t7lp0ctz_H34cYB4MzRoa3cXPBwqLlXlSa5DJI0WdcN4gUY4D4wTVUNCvCUT2A8Qbh4S8UrgaG0wKn4HbhRhwseMPkisEsg2RvTHVHvDvDfVg38cfwiPw2m_O3QEg9WyxdeeL63Mm7go7gA2rwty
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Feature+Learning+via+Dual+Sequences+for+Defect+Prediction&rft.jtitle=IEEE+access&rft.au=Junhao+Lin&rft.au=Lu+Lu&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=13112&rft.epage=13124&rft_id=info:doi/10.1109%2FACCESS.2021.3051957&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_045fee2da87d460eb8f271f85d230569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon