Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm
Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage req...
        Saved in:
      
    
          | Published in | IEEE access Vol. 8; pp. 195929 - 195945 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2020
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2020.3031718 | 
Cover
| Abstract | Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage requirement by ignoring the less-informative features. Feature selection can be considered as a combinatorial optimization problem. In this paper, the authors have presented a new feature selection algorithm called Mayfly-Harmony Search (MA-HS) based on two meta-heuristics namely Mayfly Algorithm and Harmony Search. Mayfly Algorithm has not hitherto been used for feature selection problems to the best of the author's knowledge. An S-shaped transfer function is incorporated for converting it into a binary version of Mayfly Algorithm. When different candidate solutions obtained from various regions of the search space using Mayfly Algorithm are taken into the harmony memory and processed by Harmony Search, a superior solution can be ensured. This is the primary reason for proposing a hybrid of Mayfly Algorithm and Harmony Search. Thus, combining harmony search with Mayfly Algorithm leads to an increased exploitation of the search space and an overall improvement in the performance of Mayfly-Harmony Search (MA-HS) algorithm. The proposed algorithm has been applied on 18 UCI datasets and compared with 12 other state-of-the-art meta-heuristic FS methods. Experiments have also been performed on three high-dimensional microarray datasets. The results obtained support the superior performance of the algorithm compared to the other methods. The source code of the proposed algorithm can be found using the link as follows: https://github.com/trin07/MA-HS . | 
    
|---|---|
| AbstractList | Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage requirement by ignoring the less-informative features. Feature selection can be considered as a combinatorial optimization problem. In this paper, the authors have presented a new feature selection algorithm called Mayfly-Harmony Search (MA-HS) based on two meta-heuristics namely Mayfly Algorithm and Harmony Search. Mayfly Algorithm has not hitherto been used for feature selection problems to the best of the author's knowledge. An S-shaped transfer function is incorporated for converting it into a binary version of Mayfly Algorithm. When different candidate solutions obtained from various regions of the search space using Mayfly Algorithm are taken into the harmony memory and processed by Harmony Search, a superior solution can be ensured. This is the primary reason for proposing a hybrid of Mayfly Algorithm and Harmony Search. Thus, combining harmony search with Mayfly Algorithm leads to an increased exploitation of the search space and an overall improvement in the performance of Mayfly-Harmony Search (MA-HS) algorithm. The proposed algorithm has been applied on 18 UCI datasets and compared with 12 other state-of-the-art meta-heuristic FS methods. Experiments have also been performed on three high-dimensional microarray datasets. The results obtained support the superior performance of the algorithm compared to the other methods. The source code of the proposed algorithm can be found using the link as follows: https://github.com/trin07/MA-HS. | 
    
| Author | Bhattacharyya, Trinav Geem, Zong Woo Chatterjee, Bitanu Yoon, Jin Hee Sarkar, Ram Singh, Pawan Kumar  | 
    
| Author_xml | – sequence: 1 givenname: Trinav orcidid: 0000-0002-6273-9076 surname: Bhattacharyya fullname: Bhattacharyya, Trinav organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India – sequence: 2 givenname: Bitanu orcidid: 0000-0003-3169-3156 surname: Chatterjee fullname: Chatterjee, Bitanu organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India – sequence: 3 givenname: Pawan Kumar orcidid: 0000-0002-9598-7981 surname: Singh fullname: Singh, Pawan Kumar organization: Department of Information Technology, Jadavpur University, Kolkata, India – sequence: 4 givenname: Jin Hee orcidid: 0000-0002-1437-1350 surname: Yoon fullname: Yoon, Jin Hee organization: School of Mathematics and Statistics, Sejong University, Seoul, South Korea – sequence: 5 givenname: Zong Woo orcidid: 0000-0002-0370-5562 surname: Geem fullname: Geem, Zong Woo email: geem@gachon.ac.kr organization: Department of Energy IT, Gachon University, Seongnam, South Korea – sequence: 6 givenname: Ram orcidid: 0000-0001-8813-4086 surname: Sarkar fullname: Sarkar, Ram organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India  | 
    
| BookMark | eNptUctuEzEUtVCRKKFf0I0l1hP8HNvsoqglRS0sAmvLse8UR5NxsGdUzd8zYaoIRXhj6-iexz1-j6661AFCt5QsKSXm02q9vttul4wwsuSEU0X1G3TNaG0qLnl99c_7HbopZU-moydIqmv09cmNTTvi2OGNy4fUjZ_xCn-DF7wZdzkG_AS9qzYw5Fj66PE9uH7IgLfQgu9j6vCqfU459r8OH9DbxrUFbl7vBfp5f_djvakev395WK8eKy-I7ivjhZbSh1AT0MCD19pT7wC42SlgO86kUkFSzZjxVHLwumZ0mhQTorjgC_Qw64bk9vaY48Hl0SYX7V8g5Wfr8pS1Bctdo8A1TIRABJHNLghGAwuNnqzEJL5AYtYauqMbX1zbngUpsad6rfMeSrGneu1rvRPt40w75vR7gNLbfRpyN21tmZDKKEHMKaiZp3xOpWRorI-9O5XWZxfbs8P8gZcO_IJ7mev_rNuZFQHgzDCM1ULV_A_d5qWd | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_1016_j_eswa_2021_114778 crossref_primary_10_1109_ACCESS_2022_3221194 crossref_primary_10_1371_journal_pone_0292961 crossref_primary_10_1109_ACCESS_2021_3138403 crossref_primary_10_1177_0309524X211024654 crossref_primary_10_1007_s00521_024_09565_6 crossref_primary_10_1016_j_heliyon_2024_e24192 crossref_primary_10_1007_s11042_022_12539_2 crossref_primary_10_1177_20552076241297002 crossref_primary_10_1109_ACCESS_2023_3320738 crossref_primary_10_1007_s42235_024_00539_x crossref_primary_10_1109_ACCESS_2022_3203400 crossref_primary_10_3390_s23010280 crossref_primary_10_7717_peerj_cs_2084 crossref_primary_10_1007_s12083_024_01706_x crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1109_ACCESS_2020_3035531 crossref_primary_10_1007_s13042_022_01617_4 crossref_primary_10_1109_ACCESS_2021_3118961 crossref_primary_10_1007_s00521_022_07261_x crossref_primary_10_1016_j_eswa_2022_118293 crossref_primary_10_1016_j_compeleceng_2024_109904 crossref_primary_10_1016_j_eswa_2023_119765 crossref_primary_10_32604_cmc_2021_017854 crossref_primary_10_1016_j_asoc_2025_112872 crossref_primary_10_1007_s00521_023_08936_9 crossref_primary_10_3390_w15040701 crossref_primary_10_1049_cit2_12084 crossref_primary_10_1007_s11831_023_09900_5 crossref_primary_10_3390_analytics3020013 crossref_primary_10_1016_j_eswa_2022_116834 crossref_primary_10_1093_jcde_qwae046 crossref_primary_10_3390_en15124263 crossref_primary_10_1007_s11042_022_13158_7 crossref_primary_10_1016_j_knosys_2023_110494 crossref_primary_10_1007_s44196_024_00458_z crossref_primary_10_1038_s41598_022_18993_0 crossref_primary_10_1109_ACCESS_2023_3259459 crossref_primary_10_1016_j_compbiomed_2023_106854 crossref_primary_10_3390_diagnostics13111946 crossref_primary_10_1109_ACCESS_2021_3063053 crossref_primary_10_1371_journal_pone_0273155 crossref_primary_10_1016_j_asoc_2024_112638 crossref_primary_10_3390_a16050237 crossref_primary_10_32604_cmes_2024_053825 crossref_primary_10_1016_j_asoc_2021_107698 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_4018_IJSIR_313665 crossref_primary_10_3390_s22041396 crossref_primary_10_1038_s41598_024_80558_0 crossref_primary_10_1093_jcde_qwac040 crossref_primary_10_3390_su162310307 crossref_primary_10_3390_a16030167 crossref_primary_10_1109_ACCESS_2021_3117853 crossref_primary_10_1109_ACCESS_2022_3196910 crossref_primary_10_1007_s00202_023_01943_y crossref_primary_10_1007_s12652_022_04422_7 crossref_primary_10_3390_a17070290 crossref_primary_10_1109_ACCESS_2024_3424791 crossref_primary_10_30572_2018_KJE_160107 crossref_primary_10_3390_s22176405 crossref_primary_10_3390_diagnostics11050895 crossref_primary_10_1016_j_asoc_2022_109462 crossref_primary_10_1038_s41598_021_02731_z crossref_primary_10_1016_j_jksuci_2023_01_020 crossref_primary_10_1016_j_eswa_2023_119745 crossref_primary_10_3390_diagnostics11020315 crossref_primary_10_3390_math9182335 crossref_primary_10_1007_s00500_023_09153_1 crossref_primary_10_3390_su17062718 crossref_primary_10_3390_biomimetics8040381  | 
    
| Cites_doi | 10.1007/BF01096763 10.1007/s12559-017-9542-9 10.1126/science.220.4598.671 10.1016/j.knosys.2018.05.009 10.1080/18756891.2016.1237191 10.1016/j.compstruc.2012.09.003 10.1007/11539902_92 10.1007/978-3-030-10674-4 10.1109/MHS.1995.494215 10.1109/ICPR.2006.632 10.1016/j.eswa.2019.06.044 10.1007/s10489-018-1190-6 10.1016/j.eswa.2018.09.015 10.1016/j.jksuci.2018.06.003 10.1890/0012-9658(2002)083[0612:PCICIM]2.0.CO;2 10.1016/j.asoc.2019.106041 10.1061/40685(2003)151 10.1109/ICSMC.1997.637339 10.1080/03052150500384759 10.1016/j.artmed.2004.01.007 10.1109/ICTCS.2017.43 10.1007/s11047-009-9175-3 10.1109/TCBB.2015.2476796 10.1504/IJAPR.2015.068929 10.1016/j.compbiolchem.2007.09.005 10.1016/j.cie.2020.106559 10.1016/j.asoc.2019.105677 10.1007/978-1-4419-1153-7_1167 10.1016/B978-012213810-2/50004-9 10.1016/j.neucom.2017.04.053 10.3844/ajassp.2005.1552.1557 10.1109/ACCESS.2019.2906757 10.1080/00031305.1992.10475879 10.1093/oso/9780195131581.001.0001 10.1016/j.chemolab.2018.11.010 10.1007/978-3-540-73007-1_39 10.1007/978-981-10-7566-7_46 10.1007/s00500-016-2093-2 10.1016/j.neucom.2015.06.083 10.1109/MCSE.2007.55 10.1109/ACCESS.2020.3007291 10.1007/s11517-018-1874-4 10.1109/TPAMI.2005.159 10.1016/j.asoc.2018.02.051 10.1142/9789814343138_0005 10.1016/j.patrec.2007.05.011 10.1007/s10898-013-0134-2 10.1016/j.asoc.2011.11.030 10.1016/j.ijrobp.2009.07.1641 10.1016/j.ins.2009.03.004 10.2528/PIER07082403 10.1109/ACCESS.2019.2912792 10.1016/j.jocs.2017.07.018 10.1016/j.ins.2017.08.047 10.1109/ICDIM.2008.4746793 10.1016/j.asoc.2014.02.006 10.1016/j.cma.2004.09.007 10.1177/003754970107600201 10.1109/CEC.2007.4425083 10.3390/app10062122 10.1023/A:1022602019183 10.1016/j.advengsoft.2016.01.008 10.1007/s11721-007-0002-0 10.1016/S0305-0548(97)00031-2 10.1016/j.jocs.2015.10.011 10.1109/ACCESS.2020.2988157 10.1023/A:1015059928466 10.1016/j.advengsoft.2015.01.010 10.1007/s10489-019-01513-5 10.1016/j.eswa.2018.06.057 10.1016/j.applthermaleng.2008.05.018 10.1109/MCI.2006.329691 10.1109/ACCESS.2018.2831633 10.1504/IJBIC.2010.032124 10.1038/srep10312 10.1504/IJCSM.2016.080073 10.1016/B978-1-55860-247-2.50037-1 10.1016/j.amc.2007.09.004 10.1109/TEVC.2020.2968743 10.1109/SoCPaR.2009.21 10.1016/0003-3472(89)90084-5 10.1109/ICNN.1995.488968 10.5120/9391-3813 10.1016/j.eswa.2017.04.017 10.1016/j.compstruc.2004.01.002 10.1007/978-3-642-12538-6_6 10.1109/4235.585893 10.1016/j.ins.2019.08.040  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2020.3031718 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 195945 | 
    
| ExternalDocumentID | oai_doaj_org_article_3af7eaf24dd0405fbd421d2df8b7e415 10.1109/access.2020.3031718 10_1109_ACCESS_2020_3031718 9226476  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Korea Government (MSIT) grantid: 2020R1A2C1A01011131 funderid: 10.13039/501100003621  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-9c4855cdd60e8e3dc88c1caee39b7e2b32577d518229c153ec86218e348227343 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:51:39 EDT 2025 Tue Aug 19 20:13:11 EDT 2025 Mon Jun 30 02:16:14 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Wed Oct 01 03:37:40 EDT 2025 Wed Aug 27 02:29:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-9c4855cdd60e8e3dc88c1caee39b7e2b32577d518229c153ec86218e348227343 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8813-4086 0000-0002-6273-9076 0000-0003-3169-3156 0000-0002-1437-1350 0000-0002-0370-5562 0000-0002-9598-7981  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09226476.pdf | 
    
| PQID | 2457974094 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | ieee_primary_9226476 proquest_journals_2457974094 doaj_primary_oai_doaj_org_article_3af7eaf24dd0405fbd421d2df8b7e415 crossref_primary_10_1109_ACCESS_2020_3031718 unpaywall_primary_10_1109_access_2020_3031718 crossref_citationtrail_10_1109_ACCESS_2020_3031718  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01  | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – year: 2020 text: 20200000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2020 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref57 ref56 ref59 ref53 ref55 bonabeau (ref24) 1999 ref54 dua (ref95) 2017 guha (ref100) 2020 ref51 ref50 ref46 ref45 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref6 ref5 ref101 ref40 erdal (ref73) 2008; 9 anaraki (ref103) 2011 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref39 ref38 kirkpatrick (ref31) 1983; 220 aljarah (ref48) 2018; 10 ref23 ref25 ref20 ref21 ref28 ref27 jovi? (ref3) 2015 li (ref76) 2008; 16 ref13 ref14 ref97 guha (ref16) 2019 ref96 ref99 ref11 ref98 ref10 ref17 kononenko (ref4) 1994 ref18 fard (ref41) 2016 ref92 ref94 ref90 ref89 zhang (ref58) 2019; 49 ref86 ref85 ref88 ref87 altman (ref91) 1992; 46 alkareem (ref82) 2012 ref81 van rossum (ref93) 2011 ref83 yang (ref29) 2010 song (ref12) 2020; 24 ghosh (ref19) 2018; 57 ref79 ref78 geem (ref80) 2006 ref75 ref104 ref74 ref105 ref102 ref2 ref1 zervoudakis (ref22) 2020; 145 ref71 ref70 ref72 li (ref77) 2006; 27 ref68 ref67 ref69 ghosh (ref15) 2018 ref64 ref63 ref66 ref65 abdel-basset (ref52) 2020 koza (ref26) 1992; 1 dong (ref84) 2008; 6625 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref39 doi: 10.1007/BF01096763 – volume: 10 start-page: 478 year: 2018 ident: ref48 article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm publication-title: Cognit Comput doi: 10.1007/s12559-017-9542-9 – volume: 220 start-page: 671 year: 1983 ident: ref31 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – year: 2020 ident: ref100 publication-title: arXiv 2005 04593 – ident: ref97 doi: 10.1016/j.knosys.2018.05.009 – ident: ref81 doi: 10.1080/18756891.2016.1237191 – ident: ref33 doi: 10.1016/j.compstruc.2012.09.003 – ident: ref69 doi: 10.1007/11539902_92 – ident: ref61 doi: 10.1007/978-3-030-10674-4 – ident: ref87 doi: 10.1109/MHS.1995.494215 – ident: ref66 doi: 10.1109/ICPR.2006.632 – start-page: 1 year: 2019 ident: ref16 article-title: Deluge based genetic algorithm for feature selection publication-title: Evol Intell – ident: ref57 doi: 10.1016/j.eswa.2019.06.044 – ident: ref62 doi: 10.1007/s10489-018-1190-6 – ident: ref101 doi: 10.1016/j.eswa.2018.09.015 – ident: ref55 doi: 10.1016/j.jksuci.2018.06.003 – ident: ref86 doi: 10.1890/0012-9658(2002)083[0612:PCICIM]2.0.CO;2 – ident: ref56 doi: 10.1016/j.asoc.2019.106041 – ident: ref68 doi: 10.1061/40685(2003)151 – ident: ref8 doi: 10.1109/ICSMC.1997.637339 – ident: ref42 doi: 10.1080/03052150500384759 – ident: ref10 doi: 10.1016/j.artmed.2004.01.007 – ident: ref92 doi: 10.1109/ICTCS.2017.43 – ident: ref50 doi: 10.1007/s11047-009-9175-3 – ident: ref59 doi: 10.1109/TCBB.2015.2476796 – volume: 16 start-page: 535 year: 2008 ident: ref76 article-title: New procedure for simulating arbitrary slip surface f soil slope in stability analysis publication-title: J Hydraulic Eng – ident: ref104 doi: 10.1504/IJAPR.2015.068929 – ident: ref96 doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 145 year: 2020 ident: ref22 article-title: A mayfly optimization algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106559 – ident: ref89 doi: 10.1016/j.asoc.2019.105677 – ident: ref23 doi: 10.1007/978-1-4419-1153-7_1167 – ident: ref7 doi: 10.1016/B978-012213810-2/50004-9 – ident: ref102 doi: 10.1016/j.neucom.2017.04.053 – ident: ref78 doi: 10.3844/ajassp.2005.1552.1557 – ident: ref99 doi: 10.1109/ACCESS.2019.2906757 – volume: 1 year: 1992 ident: ref26 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – volume: 46 start-page: 175 year: 1992 ident: ref91 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer Statistician doi: 10.1080/00031305.1992.10475879 – year: 1999 ident: ref24 publication-title: Swarm Intelligence From Natural to Artificial Systems doi: 10.1093/oso/9780195131581.001.0001 – ident: ref51 doi: 10.1016/j.chemolab.2018.11.010 – ident: ref70 doi: 10.1007/978-3-540-73007-1_39 – start-page: 471 year: 2018 ident: ref15 article-title: Feature selection using histogram-based multi-objective Ga for handwritten Devanagari numeral recognition publication-title: Intelligent Engineering Informatics doi: 10.1007/978-981-10-7566-7_46 – ident: ref47 doi: 10.1007/s00500-016-2093-2 – ident: ref9 doi: 10.1016/j.neucom.2015.06.083 – ident: ref94 doi: 10.1109/MCSE.2007.55 – ident: ref13 doi: 10.1109/ACCESS.2020.3007291 – start-page: 47 year: 2012 ident: ref82 article-title: Edge preserving image enhancement via harmony search algorithm publication-title: Proc 4th Conf Data Mining Optim (DMO) – volume: 57 start-page: 159 year: 2018 ident: ref19 article-title: Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1874-4 – ident: ref6 doi: 10.1109/TPAMI.2005.159 – ident: ref11 doi: 10.1016/j.asoc.2018.02.051 – ident: ref43 doi: 10.1142/9789814343138_0005 – ident: ref44 doi: 10.1016/j.patrec.2007.05.011 – ident: ref1 doi: 10.1007/s10898-013-0134-2 – start-page: 33 year: 2016 ident: ref41 article-title: Red deer algorithm (RDA); a new optimization algorithm inspired by red deer's mating publication-title: Proc Int Conf Ind Eng – ident: ref14 doi: 10.1016/j.asoc.2011.11.030 – volume: 6625 year: 2008 ident: ref84 article-title: Improved harmony search for detection with photon density wave publication-title: Proc SPIE – ident: ref83 doi: 10.1016/j.ijrobp.2009.07.1641 – ident: ref32 doi: 10.1016/j.ins.2009.03.004 – ident: ref34 doi: 10.2528/PIER07082403 – ident: ref64 doi: 10.1109/ACCESS.2019.2912792 – ident: ref60 doi: 10.1016/j.jocs.2017.07.018 – ident: ref54 doi: 10.1016/j.ins.2017.08.047 – year: 2017 ident: ref95 publication-title: UCI Machine Learning Repository – ident: ref74 doi: 10.1109/ICDIM.2008.4746793 – ident: ref37 doi: 10.1016/j.asoc.2014.02.006 – start-page: 171 year: 1994 ident: ref4 article-title: Estimating attributes: Analysis and extensions of RELIEF publication-title: Machine Learning ECML-94 – ident: ref71 doi: 10.1016/j.cma.2004.09.007 – ident: ref21 doi: 10.1177/003754970107600201 – ident: ref35 doi: 10.1109/CEC.2007.4425083 – start-page: 1 year: 2006 ident: ref80 article-title: Application of harmony search to multi-objective optimization for satellite heat pipe design publication-title: Proc of – ident: ref67 doi: 10.3390/app10062122 – ident: ref88 doi: 10.1023/A:1022602019183 – ident: ref98 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref46 doi: 10.1007/s11721-007-0002-0 – ident: ref40 doi: 10.1016/S0305-0548(97)00031-2 – year: 2011 ident: ref93 publication-title: Python Reference Manual – ident: ref63 doi: 10.1016/j.jocs.2015.10.011 – ident: ref17 doi: 10.1109/ACCESS.2020.2988157 – ident: ref25 doi: 10.1023/A:1015059928466 – ident: ref49 doi: 10.1016/j.advengsoft.2015.01.010 – ident: ref90 doi: 10.1007/s10489-019-01513-5 – ident: ref18 doi: 10.1016/j.eswa.2018.06.057 – ident: ref79 doi: 10.1016/j.applthermaleng.2008.05.018 – ident: ref28 doi: 10.1109/MCI.2006.329691 – start-page: 1200 year: 2015 ident: ref3 article-title: A review of feature selection methods with applications publication-title: Proc 38th Int Conv Inf Commun Technol Electron Microelectron (MIPRO) – ident: ref65 doi: 10.1109/ACCESS.2018.2831633 – ident: ref30 doi: 10.1504/IJBIC.2010.032124 – start-page: 1 year: 2011 ident: ref103 article-title: Improving fuzzy-rough quick reduct for feature selection publication-title: Proc 19th Iranian Conf Electr Eng – ident: ref2 doi: 10.1038/srep10312 – ident: ref105 doi: 10.1504/IJCSM.2016.080073 – volume: 27 start-page: 1714 year: 2006 ident: ref77 article-title: Location of non-circular slip surface using the modified harmony search method based on correcting strategy publication-title: Yantu Lixue (Rock Soil Mech ) – ident: ref5 doi: 10.1016/B978-1-55860-247-2.50037-1 – start-page: 1 year: 2020 ident: ref52 article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection publication-title: Artif Intell Rev – volume: 49 start-page: 2889 year: 2019 ident: ref58 article-title: A filter-based bare-bone particle swarm optimization algorithm for unsupervised feature selection publication-title: Int J Speech Technol – ident: ref75 doi: 10.1016/j.amc.2007.09.004 – volume: 24 start-page: 882 year: 2020 ident: ref12 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.2968743 – volume: 9 start-page: 215 year: 2008 ident: ref73 article-title: Effect of beam spacing in the harmony search based optimum design of grillages publication-title: Asian J Civil Eng – ident: ref36 doi: 10.1109/SoCPaR.2009.21 – ident: ref85 doi: 10.1016/0003-3472(89)90084-5 – ident: ref27 doi: 10.1109/ICNN.1995.488968 – ident: ref38 doi: 10.5120/9391-3813 – ident: ref45 doi: 10.1016/j.eswa.2017.04.017 – ident: ref72 doi: 10.1016/j.compstruc.2004.01.002 – start-page: 65 year: 2010 ident: ref29 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) doi: 10.1007/978-3-642-12538-6_6 – ident: ref20 doi: 10.1109/4235.585893 – ident: ref53 doi: 10.1016/j.ins.2019.08.040  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.4712384 | 
    
| Snippet | Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 195929 | 
    
| SubjectTerms | Algorithms Combinatorial analysis Data mining Datasets Feature extraction Feature selection harmony search Heuristic algorithms Heuristic methods hybrid method Knowledge management MA-HS algorithm Machine learning Machine learning algorithms mayfly optimization meta-heuristic Optimization Search problems Searching Source code Transfer functions UCI datasets  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLrQHBKUVKVD5wLEWie3ENrdlBYpW2l4oEjfL8UdBCgEtWVX594yT7CqoUrn0ajnWZObZnhfHbxA6U6GyLhSccODKhOc5JSbkiqShMBVsf5T3J6bLn0V5yxd3-d2k1Ff8J2yQBx4cd85MEN4Eyp0DvOWhcpxmjrogK-GH6-U0lWpCpvo1WGaFysUoM5Sl6nw2n8MbASGkwFMBySKW-ZhsRb1i_1hi5U22ubtunk33x9T1ZOO53kd7Y8aIZ4OlB-iDbz6jTxMdwUO0WJou1B1-aHBpVgCs7gLPMKxfuOzijSy89K0hpV8Pssw45n3rlcc3fREciAye1b-fVg_t_eMXdHt99WtekrFIArE8lS1RNsq7WOeK1EvPnJXSZtZ4zxQ4iFYM5qRweRaF3S0sb94Ch8mgJ4cWwTj7inaap8YfIcyMYCJzUhoWOE-d4lFfroJZmkGDqBJEN_7SdlQQj4Usat0ziVTpwck6OlmPTk7Qj-1Dz4OAxr-7X8ZAbLtG9eu-ATChR0zo9zCRoMMYxu0gKt4WFkWCTjZh1eNMfdGU5wI4FbDcBJFtqP8y1fTlK9-Y-u1_mHqMPsYxh486J2inXa39KaQ5bfW9R_QrPrz0MQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgURKMgHjvU2DyeOuS0rqqjScoFKvVmOH1CRZqslEQq_nnHijbaAELfImiR2vhl7xs58A_BWuFobVzDKMFamLM9TqlwuaOwKVePyl7LxxHT9sagu2cVVfnUAp3MujLV2_PnMLvzleJZvNrr3W2Vnwmd98uIQDnlZTLla836KLyAhch6IhZJYnC1XKxwDhoApRqaou9wX9thbfEaO_lBU5Y5_ea9vb9XwQzXN3lJz_gjWu05Of5h8W_RdvdA_f-Nv_N9RPIaHwecky0lJnsCBbZ_Cgz0mwmO4WKvBNQO5bkmltqiawzuyJDgDkmrwOV1kbTtFK9tPxM7Ee4791pJPYxkdxJYsmy-b7XX39eYZXJ5_-LyqaCizQDWLy44K7QlitDFFbEubGV2WOtHK2kzU3KZ1hlbNTZ54aniNE6TVGAUlKMmwhWcsew5H7aa1L4Bkimc8MWWpMsdYbATzDHU12nmCDbyOIN19f6kDB7kvhdHIMRaJhZxAkx40GUCL4HS-6Xai4Pi3-HsP7Czq-bPHBgRBBnOUmXLcKpcyY3AWy11tWJqY1LgSh4w-TQTHHrj5IQGzCE52aiKDrX-XKcs5RmUYJ0dAZ9X5o6tqLIB5p6sv__6WV3DfS00bPSdw1G17-xpdn65-M-r8LzM3_JE priority: 102 providerName: IEEE  | 
    
| Title | Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9226476 https://www.proquest.com/docview/2457974094 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09226476.pdf https://doaj.org/article/3af7eaf24dd0405fbd421d2df8b7e415  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9QwFA46exAP_lrF6jrk4NHMTNO0ab3VwaUszCLowHoKaX7oYO0OY4vWv96XNDPMKgh6KyEtKd_Ly_uSvO8h9LKwtdI2Y4QBVyYsTSmRNi3IwmayhuWPMn9iurrMqjW7uEqvwoabz4UxxvjLZ2bmHv1Z_sY0P_g8o048rZjnBQOPCly-cDmgPJtttb2NTrIUYvEJOllfvis_uopycVaQxJ9NPg_CmnPpaxACKaTAVcGauSv1cbQcedX-UGblRsR5p2-3cvgum-Zo8Tm_j8R-2OOdky-zvqtn6udvio7__18P0L0Ql-JyNKSH6JZpH6G7R2qFp-hiJQfbDHjT4kruwHyH17jE4CVxNbi8L7wynSSV6UfxZ-yiy35n8Htfagfwx2Xz6Xq36T5_fYzW528_LCsSSjEQxRZ5RwrlRGSU1tnC5CbRKs9VrKQxSVFzQ-sEZj7Xaezk4xU4UaOAKcXQk0ELT1jyBE3a69Y8RTiRPOGxznOZWMYWumBOxa4GXxBDA68jRPeICBV0yl25jEZ4vrIoRLlcgnEKB6MIMEbo1eGl7SjT8ffubxzUh65OY9s3ACwiTFmRSMuNtJRpDZ4utbVmNNZU2xx-GeKeCJ06KA8fCbhF6GxvOCL4g2-CspQDcwMuHSFyMKY_hjoa6I2hPvvH_mdo0u168wJCpa6e-i2Gqc9qnIa58Qv5nQzE | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoAUfODbbPOw44basWoXS9EIr9WY5fpSKkK2WRCj99R0n2WgLCHGLLDux883YM7bnG4APmS2Vtgn1KfrKPmUs8qVlmR_YRJa4_EW0PzEtzpL8gp5cssstOJhiYYwx_eUzM3OP_Vm-XqrWbZUdZi7qkycP4CGjlLIhWmvaUXEpJDLGR2qhMMgO54sFjgKdwAh9U5Re7lJ7bCw_PUv_mFblnoW509Y3svslq2pjsTl-CsW6m8Mdk--ztiln6vY3Bsf_HcczeDJanWQ-iMlz2DL1C3i8wUW4CyeF7GzVkeua5HKFwtl9JHOCcyDJOxfVRQrTSD837UDtTJzt2K4M-don0kF0yby6Wq6um28_XsLF8dH5IvfHRAu-okHa-JlyFDFK6yQwqYm1SlMVKmlMnJXcRGWMes01Cx05vMIp0ij0g0KsSbGExzR-Bdv1sjavgcSSxzzUaSpjS2mgM-o46krU9BALeOlBtP7_Qo0s5C4ZRiV6byTIxACacKCJETQPDqZGNwMJx7-rf3LATlUdg3ZfgCCIUSFFLC030kZUa5zHmC01jUIdaZvikNGq8WDXATe9ZMTMg721mIhR23-KiDKOfhl6yh74k-j80VXZp8C819U3f__Ke9jJz4tTcfr57MtbeORaDNs-e7DdrFqzj4ZQU77r5f8OkI__3g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9QwFA46exAP_lrFrqvk4NHMTNO0abzVwaUszCLowHoKaX7osLU7jC1r_et9aTPDrIKgtxJeS8L38vK-JvkeQq-Fq7RxGSMMuDJhaUqJcqkgc5epCpY_yoYd0-VFVq7Y-WV6GX64DXdhrLXD4TM79Y_DXv7a1j_4LKNePE3McsEgogKXF_4OKM-mG-PuoqMshVx8go5WFx-Kz76iXJwJkgx7ky-CsOZMDTUIgRRS4KrgzdyX-jhYjgbV_lBm5VbGea9rNqq_UXV9sPicPURy1-3xzMnVtGurqf75m6Lj_4_rEXoQ8lJcjI70GN2xzRN0_0Ct8BidL1Xv6h6vG1yqLbhv_xYXGKIkLnt_7wsvbatIabtR_Bn77LLbWvxxKLUD-OOi_nK9Xbdfvz1Fq7P3nxYlCaUYiGbzvCVCexEZbUw2t7lNjM5zHWtlbSIqbmmVwMznJo29fLyGIGo1MKUYLBm08IQlz9CkuW7sc4QTxRMemzxXiWNsbgTzKnYVxIIYGngVIbpDROqgU-7LZdRy4CtzIYvFApxTehhlgDFCb_YvbUaZjr-bv_NQ7029xvbQALDIMGVlohy3ylFmDES61FWG0dhQ43IYMuQ9ETr2UO4_EnCL0OnOcWSIB98lZSkH5gZcOkJk70x_dHV00FtdPflH-1M0abedfQmpUlu9CvPhF3HPCs4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mayfly+in+Harmony%3A+A+New+Hybrid+Meta-Heuristic+Feature+Selection+Algorithm&rft.jtitle=IEEE+access&rft.au=Bhattacharyya%2C+Trinav&rft.au=Chatterjee%2C+Bitanu&rft.au=Singh%2C+Pawan+Kumar&rft.au=Yoon%2C+Jin+Hee&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=195929&rft.epage=195945&rft_id=info:doi/10.1109%2FACCESS.2020.3031718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3031718 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |