Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm

Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage req...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 195929 - 195945
Main Authors Bhattacharyya, Trinav, Chatterjee, Bitanu, Singh, Pawan Kumar, Yoon, Jin Hee, Geem, Zong Woo, Sarkar, Ram
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3031718

Cover

Abstract Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage requirement by ignoring the less-informative features. Feature selection can be considered as a combinatorial optimization problem. In this paper, the authors have presented a new feature selection algorithm called Mayfly-Harmony Search (MA-HS) based on two meta-heuristics namely Mayfly Algorithm and Harmony Search. Mayfly Algorithm has not hitherto been used for feature selection problems to the best of the author's knowledge. An S-shaped transfer function is incorporated for converting it into a binary version of Mayfly Algorithm. When different candidate solutions obtained from various regions of the search space using Mayfly Algorithm are taken into the harmony memory and processed by Harmony Search, a superior solution can be ensured. This is the primary reason for proposing a hybrid of Mayfly Algorithm and Harmony Search. Thus, combining harmony search with Mayfly Algorithm leads to an increased exploitation of the search space and an overall improvement in the performance of Mayfly-Harmony Search (MA-HS) algorithm. The proposed algorithm has been applied on 18 UCI datasets and compared with 12 other state-of-the-art meta-heuristic FS methods. Experiments have also been performed on three high-dimensional microarray datasets. The results obtained support the superior performance of the algorithm compared to the other methods. The source code of the proposed algorithm can be found using the link as follows: https://github.com/trin07/MA-HS .
AbstractList Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine learning or data mining algorithms. This helps to minimize the time requirement to train a learning algorithm as well as to lessen the storage requirement by ignoring the less-informative features. Feature selection can be considered as a combinatorial optimization problem. In this paper, the authors have presented a new feature selection algorithm called Mayfly-Harmony Search (MA-HS) based on two meta-heuristics namely Mayfly Algorithm and Harmony Search. Mayfly Algorithm has not hitherto been used for feature selection problems to the best of the author's knowledge. An S-shaped transfer function is incorporated for converting it into a binary version of Mayfly Algorithm. When different candidate solutions obtained from various regions of the search space using Mayfly Algorithm are taken into the harmony memory and processed by Harmony Search, a superior solution can be ensured. This is the primary reason for proposing a hybrid of Mayfly Algorithm and Harmony Search. Thus, combining harmony search with Mayfly Algorithm leads to an increased exploitation of the search space and an overall improvement in the performance of Mayfly-Harmony Search (MA-HS) algorithm. The proposed algorithm has been applied on 18 UCI datasets and compared with 12 other state-of-the-art meta-heuristic FS methods. Experiments have also been performed on three high-dimensional microarray datasets. The results obtained support the superior performance of the algorithm compared to the other methods. The source code of the proposed algorithm can be found using the link as follows: https://github.com/trin07/MA-HS.
Author Bhattacharyya, Trinav
Geem, Zong Woo
Chatterjee, Bitanu
Yoon, Jin Hee
Sarkar, Ram
Singh, Pawan Kumar
Author_xml – sequence: 1
  givenname: Trinav
  orcidid: 0000-0002-6273-9076
  surname: Bhattacharyya
  fullname: Bhattacharyya, Trinav
  organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
– sequence: 2
  givenname: Bitanu
  orcidid: 0000-0003-3169-3156
  surname: Chatterjee
  fullname: Chatterjee, Bitanu
  organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
– sequence: 3
  givenname: Pawan Kumar
  orcidid: 0000-0002-9598-7981
  surname: Singh
  fullname: Singh, Pawan Kumar
  organization: Department of Information Technology, Jadavpur University, Kolkata, India
– sequence: 4
  givenname: Jin Hee
  orcidid: 0000-0002-1437-1350
  surname: Yoon
  fullname: Yoon, Jin Hee
  organization: School of Mathematics and Statistics, Sejong University, Seoul, South Korea
– sequence: 5
  givenname: Zong Woo
  orcidid: 0000-0002-0370-5562
  surname: Geem
  fullname: Geem, Zong Woo
  email: geem@gachon.ac.kr
  organization: Department of Energy IT, Gachon University, Seongnam, South Korea
– sequence: 6
  givenname: Ram
  orcidid: 0000-0001-8813-4086
  surname: Sarkar
  fullname: Sarkar, Ram
  organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
BookMark eNptUctuEzEUtVCRKKFf0I0l1hP8HNvsoqglRS0sAmvLse8UR5NxsGdUzd8zYaoIRXhj6-iexz1-j6661AFCt5QsKSXm02q9vttul4wwsuSEU0X1G3TNaG0qLnl99c_7HbopZU-moydIqmv09cmNTTvi2OGNy4fUjZ_xCn-DF7wZdzkG_AS9qzYw5Fj66PE9uH7IgLfQgu9j6vCqfU459r8OH9DbxrUFbl7vBfp5f_djvakev395WK8eKy-I7ivjhZbSh1AT0MCD19pT7wC42SlgO86kUkFSzZjxVHLwumZ0mhQTorjgC_Qw64bk9vaY48Hl0SYX7V8g5Wfr8pS1Bctdo8A1TIRABJHNLghGAwuNnqzEJL5AYtYauqMbX1zbngUpsad6rfMeSrGneu1rvRPt40w75vR7gNLbfRpyN21tmZDKKEHMKaiZp3xOpWRorI-9O5XWZxfbs8P8gZcO_IJ7mev_rNuZFQHgzDCM1ULV_A_d5qWd
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1371_journal_pone_0292961
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1177_0309524X211024654
crossref_primary_10_1007_s00521_024_09565_6
crossref_primary_10_1016_j_heliyon_2024_e24192
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_1177_20552076241297002
crossref_primary_10_1109_ACCESS_2023_3320738
crossref_primary_10_1007_s42235_024_00539_x
crossref_primary_10_1109_ACCESS_2022_3203400
crossref_primary_10_3390_s23010280
crossref_primary_10_7717_peerj_cs_2084
crossref_primary_10_1007_s12083_024_01706_x
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1109_ACCESS_2020_3035531
crossref_primary_10_1007_s13042_022_01617_4
crossref_primary_10_1109_ACCESS_2021_3118961
crossref_primary_10_1007_s00521_022_07261_x
crossref_primary_10_1016_j_eswa_2022_118293
crossref_primary_10_1016_j_compeleceng_2024_109904
crossref_primary_10_1016_j_eswa_2023_119765
crossref_primary_10_32604_cmc_2021_017854
crossref_primary_10_1016_j_asoc_2025_112872
crossref_primary_10_1007_s00521_023_08936_9
crossref_primary_10_3390_w15040701
crossref_primary_10_1049_cit2_12084
crossref_primary_10_1007_s11831_023_09900_5
crossref_primary_10_3390_analytics3020013
crossref_primary_10_1016_j_eswa_2022_116834
crossref_primary_10_1093_jcde_qwae046
crossref_primary_10_3390_en15124263
crossref_primary_10_1007_s11042_022_13158_7
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_1007_s44196_024_00458_z
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1109_ACCESS_2023_3259459
crossref_primary_10_1016_j_compbiomed_2023_106854
crossref_primary_10_3390_diagnostics13111946
crossref_primary_10_1109_ACCESS_2021_3063053
crossref_primary_10_1371_journal_pone_0273155
crossref_primary_10_1016_j_asoc_2024_112638
crossref_primary_10_3390_a16050237
crossref_primary_10_32604_cmes_2024_053825
crossref_primary_10_1016_j_asoc_2021_107698
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_4018_IJSIR_313665
crossref_primary_10_3390_s22041396
crossref_primary_10_1038_s41598_024_80558_0
crossref_primary_10_1093_jcde_qwac040
crossref_primary_10_3390_su162310307
crossref_primary_10_3390_a16030167
crossref_primary_10_1109_ACCESS_2021_3117853
crossref_primary_10_1109_ACCESS_2022_3196910
crossref_primary_10_1007_s00202_023_01943_y
crossref_primary_10_1007_s12652_022_04422_7
crossref_primary_10_3390_a17070290
crossref_primary_10_1109_ACCESS_2024_3424791
crossref_primary_10_30572_2018_KJE_160107
crossref_primary_10_3390_s22176405
crossref_primary_10_3390_diagnostics11050895
crossref_primary_10_1016_j_asoc_2022_109462
crossref_primary_10_1038_s41598_021_02731_z
crossref_primary_10_1016_j_jksuci_2023_01_020
crossref_primary_10_1016_j_eswa_2023_119745
crossref_primary_10_3390_diagnostics11020315
crossref_primary_10_3390_math9182335
crossref_primary_10_1007_s00500_023_09153_1
crossref_primary_10_3390_su17062718
crossref_primary_10_3390_biomimetics8040381
Cites_doi 10.1007/BF01096763
10.1007/s12559-017-9542-9
10.1126/science.220.4598.671
10.1016/j.knosys.2018.05.009
10.1080/18756891.2016.1237191
10.1016/j.compstruc.2012.09.003
10.1007/11539902_92
10.1007/978-3-030-10674-4
10.1109/MHS.1995.494215
10.1109/ICPR.2006.632
10.1016/j.eswa.2019.06.044
10.1007/s10489-018-1190-6
10.1016/j.eswa.2018.09.015
10.1016/j.jksuci.2018.06.003
10.1890/0012-9658(2002)083[0612:PCICIM]2.0.CO;2
10.1016/j.asoc.2019.106041
10.1061/40685(2003)151
10.1109/ICSMC.1997.637339
10.1080/03052150500384759
10.1016/j.artmed.2004.01.007
10.1109/ICTCS.2017.43
10.1007/s11047-009-9175-3
10.1109/TCBB.2015.2476796
10.1504/IJAPR.2015.068929
10.1016/j.compbiolchem.2007.09.005
10.1016/j.cie.2020.106559
10.1016/j.asoc.2019.105677
10.1007/978-1-4419-1153-7_1167
10.1016/B978-012213810-2/50004-9
10.1016/j.neucom.2017.04.053
10.3844/ajassp.2005.1552.1557
10.1109/ACCESS.2019.2906757
10.1080/00031305.1992.10475879
10.1093/oso/9780195131581.001.0001
10.1016/j.chemolab.2018.11.010
10.1007/978-3-540-73007-1_39
10.1007/978-981-10-7566-7_46
10.1007/s00500-016-2093-2
10.1016/j.neucom.2015.06.083
10.1109/MCSE.2007.55
10.1109/ACCESS.2020.3007291
10.1007/s11517-018-1874-4
10.1109/TPAMI.2005.159
10.1016/j.asoc.2018.02.051
10.1142/9789814343138_0005
10.1016/j.patrec.2007.05.011
10.1007/s10898-013-0134-2
10.1016/j.asoc.2011.11.030
10.1016/j.ijrobp.2009.07.1641
10.1016/j.ins.2009.03.004
10.2528/PIER07082403
10.1109/ACCESS.2019.2912792
10.1016/j.jocs.2017.07.018
10.1016/j.ins.2017.08.047
10.1109/ICDIM.2008.4746793
10.1016/j.asoc.2014.02.006
10.1016/j.cma.2004.09.007
10.1177/003754970107600201
10.1109/CEC.2007.4425083
10.3390/app10062122
10.1023/A:1022602019183
10.1016/j.advengsoft.2016.01.008
10.1007/s11721-007-0002-0
10.1016/S0305-0548(97)00031-2
10.1016/j.jocs.2015.10.011
10.1109/ACCESS.2020.2988157
10.1023/A:1015059928466
10.1016/j.advengsoft.2015.01.010
10.1007/s10489-019-01513-5
10.1016/j.eswa.2018.06.057
10.1016/j.applthermaleng.2008.05.018
10.1109/MCI.2006.329691
10.1109/ACCESS.2018.2831633
10.1504/IJBIC.2010.032124
10.1038/srep10312
10.1504/IJCSM.2016.080073
10.1016/B978-1-55860-247-2.50037-1
10.1016/j.amc.2007.09.004
10.1109/TEVC.2020.2968743
10.1109/SoCPaR.2009.21
10.1016/0003-3472(89)90084-5
10.1109/ICNN.1995.488968
10.5120/9391-3813
10.1016/j.eswa.2017.04.017
10.1016/j.compstruc.2004.01.002
10.1007/978-3-642-12538-6_6
10.1109/4235.585893
10.1016/j.ins.2019.08.040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3031718
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 195945
ExternalDocumentID oai_doaj_org_article_3af7eaf24dd0405fbd421d2df8b7e415
10.1109/access.2020.3031718
10_1109_ACCESS_2020_3031718
9226476
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Korea Government (MSIT)
  grantid: 2020R1A2C1A01011131
  funderid: 10.13039/501100003621
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-9c4855cdd60e8e3dc88c1caee39b7e2b32577d518229c153ec86218e348227343
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:39 EDT 2025
Tue Aug 19 20:13:11 EDT 2025
Mon Jun 30 02:16:14 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Wed Oct 01 03:37:40 EDT 2025
Wed Aug 27 02:29:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9c4855cdd60e8e3dc88c1caee39b7e2b32577d518229c153ec86218e348227343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8813-4086
0000-0002-6273-9076
0000-0003-3169-3156
0000-0002-1437-1350
0000-0002-0370-5562
0000-0002-9598-7981
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09226476.pdf
PQID 2457974094
PQPubID 4845423
PageCount 17
ParticipantIDs ieee_primary_9226476
proquest_journals_2457974094
doaj_primary_oai_doaj_org_article_3af7eaf24dd0405fbd421d2df8b7e415
crossref_primary_10_1109_ACCESS_2020_3031718
unpaywall_primary_10_1109_access_2020_3031718
crossref_citationtrail_10_1109_ACCESS_2020_3031718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref53
ref55
bonabeau (ref24) 1999
ref54
dua (ref95) 2017
guha (ref100) 2020
ref51
ref50
ref46
ref45
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref6
ref5
ref101
ref40
erdal (ref73) 2008; 9
anaraki (ref103) 2011
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref39
ref38
kirkpatrick (ref31) 1983; 220
aljarah (ref48) 2018; 10
ref23
ref25
ref20
ref21
ref28
ref27
jovi? (ref3) 2015
li (ref76) 2008; 16
ref13
ref14
ref97
guha (ref16) 2019
ref96
ref99
ref11
ref98
ref10
ref17
kononenko (ref4) 1994
ref18
fard (ref41) 2016
ref92
ref94
ref90
ref89
zhang (ref58) 2019; 49
ref86
ref85
ref88
ref87
altman (ref91) 1992; 46
alkareem (ref82) 2012
ref81
van rossum (ref93) 2011
ref83
yang (ref29) 2010
song (ref12) 2020; 24
ghosh (ref19) 2018; 57
ref79
ref78
geem (ref80) 2006
ref75
ref104
ref74
ref105
ref102
ref2
ref1
zervoudakis (ref22) 2020; 145
ref71
ref70
ref72
li (ref77) 2006; 27
ref68
ref67
ref69
ghosh (ref15) 2018
ref64
ref63
ref66
ref65
abdel-basset (ref52) 2020
koza (ref26) 1992; 1
dong (ref84) 2008; 6625
ref60
ref62
ref61
References_xml – ident: ref39
  doi: 10.1007/BF01096763
– volume: 10
  start-page: 478
  year: 2018
  ident: ref48
  article-title: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm
  publication-title: Cognit Comput
  doi: 10.1007/s12559-017-9542-9
– volume: 220
  start-page: 671
  year: 1983
  ident: ref31
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– year: 2020
  ident: ref100
  publication-title: arXiv 2005 04593
– ident: ref97
  doi: 10.1016/j.knosys.2018.05.009
– ident: ref81
  doi: 10.1080/18756891.2016.1237191
– ident: ref33
  doi: 10.1016/j.compstruc.2012.09.003
– ident: ref69
  doi: 10.1007/11539902_92
– ident: ref61
  doi: 10.1007/978-3-030-10674-4
– ident: ref87
  doi: 10.1109/MHS.1995.494215
– ident: ref66
  doi: 10.1109/ICPR.2006.632
– start-page: 1
  year: 2019
  ident: ref16
  article-title: Deluge based genetic algorithm for feature selection
  publication-title: Evol Intell
– ident: ref57
  doi: 10.1016/j.eswa.2019.06.044
– ident: ref62
  doi: 10.1007/s10489-018-1190-6
– ident: ref101
  doi: 10.1016/j.eswa.2018.09.015
– ident: ref55
  doi: 10.1016/j.jksuci.2018.06.003
– ident: ref86
  doi: 10.1890/0012-9658(2002)083[0612:PCICIM]2.0.CO;2
– ident: ref56
  doi: 10.1016/j.asoc.2019.106041
– ident: ref68
  doi: 10.1061/40685(2003)151
– ident: ref8
  doi: 10.1109/ICSMC.1997.637339
– ident: ref42
  doi: 10.1080/03052150500384759
– ident: ref10
  doi: 10.1016/j.artmed.2004.01.007
– ident: ref92
  doi: 10.1109/ICTCS.2017.43
– ident: ref50
  doi: 10.1007/s11047-009-9175-3
– ident: ref59
  doi: 10.1109/TCBB.2015.2476796
– volume: 16
  start-page: 535
  year: 2008
  ident: ref76
  article-title: New procedure for simulating arbitrary slip surface f soil slope in stability analysis
  publication-title: J Hydraulic Eng
– ident: ref104
  doi: 10.1504/IJAPR.2015.068929
– ident: ref96
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 145
  year: 2020
  ident: ref22
  article-title: A mayfly optimization algorithm
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106559
– ident: ref89
  doi: 10.1016/j.asoc.2019.105677
– ident: ref23
  doi: 10.1007/978-1-4419-1153-7_1167
– ident: ref7
  doi: 10.1016/B978-012213810-2/50004-9
– ident: ref102
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref78
  doi: 10.3844/ajassp.2005.1552.1557
– ident: ref99
  doi: 10.1109/ACCESS.2019.2906757
– volume: 1
  year: 1992
  ident: ref26
  publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection
– volume: 46
  start-page: 175
  year: 1992
  ident: ref91
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer Statistician
  doi: 10.1080/00031305.1992.10475879
– year: 1999
  ident: ref24
  publication-title: Swarm Intelligence From Natural to Artificial Systems
  doi: 10.1093/oso/9780195131581.001.0001
– ident: ref51
  doi: 10.1016/j.chemolab.2018.11.010
– ident: ref70
  doi: 10.1007/978-3-540-73007-1_39
– start-page: 471
  year: 2018
  ident: ref15
  article-title: Feature selection using histogram-based multi-objective Ga for handwritten Devanagari numeral recognition
  publication-title: Intelligent Engineering Informatics
  doi: 10.1007/978-981-10-7566-7_46
– ident: ref47
  doi: 10.1007/s00500-016-2093-2
– ident: ref9
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref94
  doi: 10.1109/MCSE.2007.55
– ident: ref13
  doi: 10.1109/ACCESS.2020.3007291
– start-page: 47
  year: 2012
  ident: ref82
  article-title: Edge preserving image enhancement via harmony search algorithm
  publication-title: Proc 4th Conf Data Mining Optim (DMO)
– volume: 57
  start-page: 159
  year: 2018
  ident: ref19
  article-title: Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-018-1874-4
– ident: ref6
  doi: 10.1109/TPAMI.2005.159
– ident: ref11
  doi: 10.1016/j.asoc.2018.02.051
– ident: ref43
  doi: 10.1142/9789814343138_0005
– ident: ref44
  doi: 10.1016/j.patrec.2007.05.011
– ident: ref1
  doi: 10.1007/s10898-013-0134-2
– start-page: 33
  year: 2016
  ident: ref41
  article-title: Red deer algorithm (RDA); a new optimization algorithm inspired by red deer's mating
  publication-title: Proc Int Conf Ind Eng
– ident: ref14
  doi: 10.1016/j.asoc.2011.11.030
– volume: 6625
  year: 2008
  ident: ref84
  article-title: Improved harmony search for detection with photon density wave
  publication-title: Proc SPIE
– ident: ref83
  doi: 10.1016/j.ijrobp.2009.07.1641
– ident: ref32
  doi: 10.1016/j.ins.2009.03.004
– ident: ref34
  doi: 10.2528/PIER07082403
– ident: ref64
  doi: 10.1109/ACCESS.2019.2912792
– ident: ref60
  doi: 10.1016/j.jocs.2017.07.018
– ident: ref54
  doi: 10.1016/j.ins.2017.08.047
– year: 2017
  ident: ref95
  publication-title: UCI Machine Learning Repository
– ident: ref74
  doi: 10.1109/ICDIM.2008.4746793
– ident: ref37
  doi: 10.1016/j.asoc.2014.02.006
– start-page: 171
  year: 1994
  ident: ref4
  article-title: Estimating attributes: Analysis and extensions of RELIEF
  publication-title: Machine Learning ECML-94
– ident: ref71
  doi: 10.1016/j.cma.2004.09.007
– ident: ref21
  doi: 10.1177/003754970107600201
– ident: ref35
  doi: 10.1109/CEC.2007.4425083
– start-page: 1
  year: 2006
  ident: ref80
  article-title: Application of harmony search to multi-objective optimization for satellite heat pipe design
  publication-title: Proc of
– ident: ref67
  doi: 10.3390/app10062122
– ident: ref88
  doi: 10.1023/A:1022602019183
– ident: ref98
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref46
  doi: 10.1007/s11721-007-0002-0
– ident: ref40
  doi: 10.1016/S0305-0548(97)00031-2
– year: 2011
  ident: ref93
  publication-title: Python Reference Manual
– ident: ref63
  doi: 10.1016/j.jocs.2015.10.011
– ident: ref17
  doi: 10.1109/ACCESS.2020.2988157
– ident: ref25
  doi: 10.1023/A:1015059928466
– ident: ref49
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref90
  doi: 10.1007/s10489-019-01513-5
– ident: ref18
  doi: 10.1016/j.eswa.2018.06.057
– ident: ref79
  doi: 10.1016/j.applthermaleng.2008.05.018
– ident: ref28
  doi: 10.1109/MCI.2006.329691
– start-page: 1200
  year: 2015
  ident: ref3
  article-title: A review of feature selection methods with applications
  publication-title: Proc 38th Int Conv Inf Commun Technol Electron Microelectron (MIPRO)
– ident: ref65
  doi: 10.1109/ACCESS.2018.2831633
– ident: ref30
  doi: 10.1504/IJBIC.2010.032124
– start-page: 1
  year: 2011
  ident: ref103
  article-title: Improving fuzzy-rough quick reduct for feature selection
  publication-title: Proc 19th Iranian Conf Electr Eng
– ident: ref2
  doi: 10.1038/srep10312
– ident: ref105
  doi: 10.1504/IJCSM.2016.080073
– volume: 27
  start-page: 1714
  year: 2006
  ident: ref77
  article-title: Location of non-circular slip surface using the modified harmony search method based on correcting strategy
  publication-title: Yantu Lixue (Rock Soil Mech )
– ident: ref5
  doi: 10.1016/B978-1-55860-247-2.50037-1
– start-page: 1
  year: 2020
  ident: ref52
  article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection
  publication-title: Artif Intell Rev
– volume: 49
  start-page: 2889
  year: 2019
  ident: ref58
  article-title: A filter-based bare-bone particle swarm optimization algorithm for unsupervised feature selection
  publication-title: Int J Speech Technol
– ident: ref75
  doi: 10.1016/j.amc.2007.09.004
– volume: 24
  start-page: 882
  year: 2020
  ident: ref12
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2020.2968743
– volume: 9
  start-page: 215
  year: 2008
  ident: ref73
  article-title: Effect of beam spacing in the harmony search based optimum design of grillages
  publication-title: Asian J Civil Eng
– ident: ref36
  doi: 10.1109/SoCPaR.2009.21
– ident: ref85
  doi: 10.1016/0003-3472(89)90084-5
– ident: ref27
  doi: 10.1109/ICNN.1995.488968
– ident: ref38
  doi: 10.5120/9391-3813
– ident: ref45
  doi: 10.1016/j.eswa.2017.04.017
– ident: ref72
  doi: 10.1016/j.compstruc.2004.01.002
– start-page: 65
  year: 2010
  ident: ref29
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2007)
  doi: 10.1007/978-3-642-12538-6_6
– ident: ref20
  doi: 10.1109/4235.585893
– ident: ref53
  doi: 10.1016/j.ins.2019.08.040
SSID ssj0000816957
Score 2.4712384
Snippet Feature selection is a process to reduce the dimension of a dataset by removing redundant features, and to use the optimal subset of features for machine...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 195929
SubjectTerms Algorithms
Combinatorial analysis
Data mining
Datasets
Feature extraction
Feature selection
harmony search
Heuristic algorithms
Heuristic methods
hybrid method
Knowledge management
MA-HS algorithm
Machine learning
Machine learning algorithms
mayfly optimization
meta-heuristic
Optimization
Search problems
Searching
Source code
Transfer functions
UCI datasets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLrQHBKUVKVD5wLEWie3ENrdlBYpW2l4oEjfL8UdBCgEtWVX594yT7CqoUrn0ajnWZObZnhfHbxA6U6GyLhSccODKhOc5JSbkiqShMBVsf5T3J6bLn0V5yxd3-d2k1Ff8J2yQBx4cd85MEN4Eyp0DvOWhcpxmjrogK-GH6-U0lWpCpvo1WGaFysUoM5Sl6nw2n8MbASGkwFMBySKW-ZhsRb1i_1hi5U22ubtunk33x9T1ZOO53kd7Y8aIZ4OlB-iDbz6jTxMdwUO0WJou1B1-aHBpVgCs7gLPMKxfuOzijSy89K0hpV8Pssw45n3rlcc3fREciAye1b-fVg_t_eMXdHt99WtekrFIArE8lS1RNsq7WOeK1EvPnJXSZtZ4zxQ4iFYM5qRweRaF3S0sb94Ch8mgJ4cWwTj7inaap8YfIcyMYCJzUhoWOE-d4lFfroJZmkGDqBJEN_7SdlQQj4Usat0ziVTpwck6OlmPTk7Qj-1Dz4OAxr-7X8ZAbLtG9eu-ATChR0zo9zCRoMMYxu0gKt4WFkWCTjZh1eNMfdGU5wI4FbDcBJFtqP8y1fTlK9-Y-u1_mHqMPsYxh486J2inXa39KaQ5bfW9R_QrPrz0MQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgURKMgHjvU2DyeOuS0rqqjScoFKvVmOH1CRZqslEQq_nnHijbaAELfImiR2vhl7xs58A_BWuFobVzDKMFamLM9TqlwuaOwKVePyl7LxxHT9sagu2cVVfnUAp3MujLV2_PnMLvzleJZvNrr3W2Vnwmd98uIQDnlZTLla836KLyAhch6IhZJYnC1XKxwDhoApRqaou9wX9thbfEaO_lBU5Y5_ea9vb9XwQzXN3lJz_gjWu05Of5h8W_RdvdA_f-Nv_N9RPIaHwecky0lJnsCBbZ_Cgz0mwmO4WKvBNQO5bkmltqiawzuyJDgDkmrwOV1kbTtFK9tPxM7Ee4791pJPYxkdxJYsmy-b7XX39eYZXJ5_-LyqaCizQDWLy44K7QlitDFFbEubGV2WOtHK2kzU3KZ1hlbNTZ54aniNE6TVGAUlKMmwhWcsew5H7aa1L4Bkimc8MWWpMsdYbATzDHU12nmCDbyOIN19f6kDB7kvhdHIMRaJhZxAkx40GUCL4HS-6Xai4Pi3-HsP7Czq-bPHBgRBBnOUmXLcKpcyY3AWy11tWJqY1LgSh4w-TQTHHrj5IQGzCE52aiKDrX-XKcs5RmUYJ0dAZ9X5o6tqLIB5p6sv__6WV3DfS00bPSdw1G17-xpdn65-M-r8LzM3_JE
  priority: 102
  providerName: IEEE
Title Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm
URI https://ieeexplore.ieee.org/document/9226476
https://www.proquest.com/docview/2457974094
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09226476.pdf
https://doaj.org/article/3af7eaf24dd0405fbd421d2df8b7e415
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9QwFA46exAP_lrF6jrk4NHMTNO0ab3VwaUszCLowHoKaX7oYO0OY4vWv96XNDPMKgh6KyEtKd_Ly_uSvO8h9LKwtdI2Y4QBVyYsTSmRNi3IwmayhuWPMn9iurrMqjW7uEqvwoabz4UxxvjLZ2bmHv1Z_sY0P_g8o048rZjnBQOPCly-cDmgPJtttb2NTrIUYvEJOllfvis_uopycVaQxJ9NPg_CmnPpaxACKaTAVcGauSv1cbQcedX-UGblRsR5p2-3cvgum-Zo8Tm_j8R-2OOdky-zvqtn6udvio7__18P0L0Ql-JyNKSH6JZpH6G7R2qFp-hiJQfbDHjT4kruwHyH17jE4CVxNbi8L7wynSSV6UfxZ-yiy35n8Htfagfwx2Xz6Xq36T5_fYzW528_LCsSSjEQxRZ5RwrlRGSU1tnC5CbRKs9VrKQxSVFzQ-sEZj7Xaezk4xU4UaOAKcXQk0ELT1jyBE3a69Y8RTiRPOGxznOZWMYWumBOxa4GXxBDA68jRPeICBV0yl25jEZ4vrIoRLlcgnEKB6MIMEbo1eGl7SjT8ffubxzUh65OY9s3ACwiTFmRSMuNtJRpDZ4utbVmNNZU2xx-GeKeCJ06KA8fCbhF6GxvOCL4g2-CspQDcwMuHSFyMKY_hjoa6I2hPvvH_mdo0u168wJCpa6e-i2Gqc9qnIa58Qv5nQzE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoAUfODbbPOw44basWoXS9EIr9WY5fpSKkK2WRCj99R0n2WgLCHGLLDux883YM7bnG4APmS2Vtgn1KfrKPmUs8qVlmR_YRJa4_EW0PzEtzpL8gp5cssstOJhiYYwx_eUzM3OP_Vm-XqrWbZUdZi7qkycP4CGjlLIhWmvaUXEpJDLGR2qhMMgO54sFjgKdwAh9U5Re7lJ7bCw_PUv_mFblnoW509Y3svslq2pjsTl-CsW6m8Mdk--ztiln6vY3Bsf_HcczeDJanWQ-iMlz2DL1C3i8wUW4CyeF7GzVkeua5HKFwtl9JHOCcyDJOxfVRQrTSD837UDtTJzt2K4M-don0kF0yby6Wq6um28_XsLF8dH5IvfHRAu-okHa-JlyFDFK6yQwqYm1SlMVKmlMnJXcRGWMes01Cx05vMIp0ij0g0KsSbGExzR-Bdv1sjavgcSSxzzUaSpjS2mgM-o46krU9BALeOlBtP7_Qo0s5C4ZRiV6byTIxACacKCJETQPDqZGNwMJx7-rf3LATlUdg3ZfgCCIUSFFLC030kZUa5zHmC01jUIdaZvikNGq8WDXATe9ZMTMg721mIhR23-KiDKOfhl6yh74k-j80VXZp8C819U3f__Ke9jJz4tTcfr57MtbeORaDNs-e7DdrFqzj4ZQU77r5f8OkI__3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9QwFA46exAP_lrFrqvk4NHMTNO0abzVwaUszCLowHoKaX7osLU7jC1r_et9aTPDrIKgtxJeS8L38vK-JvkeQq-Fq7RxGSMMuDJhaUqJcqkgc5epCpY_yoYd0-VFVq7Y-WV6GX64DXdhrLXD4TM79Y_DXv7a1j_4LKNePE3McsEgogKXF_4OKM-mG-PuoqMshVx8go5WFx-Kz76iXJwJkgx7ky-CsOZMDTUIgRRS4KrgzdyX-jhYjgbV_lBm5VbGea9rNqq_UXV9sPicPURy1-3xzMnVtGurqf75m6Lj_4_rEXoQ8lJcjI70GN2xzRN0_0Ct8BidL1Xv6h6vG1yqLbhv_xYXGKIkLnt_7wsvbatIabtR_Bn77LLbWvxxKLUD-OOi_nK9Xbdfvz1Fq7P3nxYlCaUYiGbzvCVCexEZbUw2t7lNjM5zHWtlbSIqbmmVwMznJo29fLyGIGo1MKUYLBm08IQlz9CkuW7sc4QTxRMemzxXiWNsbgTzKnYVxIIYGngVIbpDROqgU-7LZdRy4CtzIYvFApxTehhlgDFCb_YvbUaZjr-bv_NQ7029xvbQALDIMGVlohy3ylFmDES61FWG0dhQ43IYMuQ9ETr2UO4_EnCL0OnOcWSIB98lZSkH5gZcOkJk70x_dHV00FtdPflH-1M0abedfQmpUlu9CvPhF3HPCs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mayfly+in+Harmony%3A+A+New+Hybrid+Meta-Heuristic+Feature+Selection+Algorithm&rft.jtitle=IEEE+access&rft.au=Bhattacharyya%2C+Trinav&rft.au=Chatterjee%2C+Bitanu&rft.au=Singh%2C+Pawan+Kumar&rft.au=Yoon%2C+Jin+Hee&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=195929&rft.epage=195945&rft_id=info:doi/10.1109%2FACCESS.2020.3031718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3031718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon