Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review
Epilepsy is the only neurological condition for which electroencephalography (EEG) is the primary diagnostic and important prognostic clinical tool. However, the manual inspection of EEG signals is a time-consuming procedure for neurologists. Thus, intense research has been made on creating machine...
Saved in:
| Published in | IEEE access Vol. 11; pp. 564 - 594 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3232563 |
Cover
| Abstract | Epilepsy is the only neurological condition for which electroencephalography (EEG) is the primary diagnostic and important prognostic clinical tool. However, the manual inspection of EEG signals is a time-consuming procedure for neurologists. Thus, intense research has been made on creating machine learning methodologies for automated epilepsy detection. Also, many research or medical facilities have published databases of epileptic EEG signals to accommodate this research effort. The vast number of studies concerning epilepsy detection with EEG makes this systematic review necessary. It presents a detailed evaluation of the signal processing and classification methodologies employed on the different databases and provides valuable insights for future work. 190 studies were included in this systematic review according to the PRISMA guidelines, acquired from a systematic literature search in PubMed, Scopus, ScienceDirect and IEEE Xplore on 1st May 2021. Studies were examined based on the Signal Transformation technique, classification methodology and database for evaluation. Along with other findings, the increasing tendency to employ Convolutional Neural Networks that use a combination of Time-Frequency decomposition methodology images is noticed. |
|---|---|
| AbstractList | Epilepsy is the only neurological condition for which electroencephalography (EEG) is the primary diagnostic and important prognostic clinical tool. However, the manual inspection of EEG signals is a time-consuming procedure for neurologists. Thus, intense research has been made on creating machine learning methodologies for automated epilepsy detection. Also, many research or medical facilities have published databases of epileptic EEG signals to accommodate this research effort. The vast number of studies concerning epilepsy detection with EEG makes this systematic review necessary. It presents a detailed evaluation of the signal processing and classification methodologies employed on the different databases and provides valuable insights for future work. 190 studies were included in this systematic review according to the PRISMA guidelines, acquired from a systematic literature search in PubMed, Scopus, ScienceDirect and IEEE Xplore on 1st May 2021. Studies were examined based on the Signal Transformation technique, classification methodology and database for evaluation. Along with other findings, the increasing tendency to employ Convolutional Neural Networks that use a combination of Time-Frequency decomposition methodology images is noticed. |
| Author | Tsipouras, Markos G. Glavas, Euripidis Miltiadous, Andreas Tzallas, Alexandros T. Tzimourta, Katerina D. Kalafatakis, Konstantinos Giannakeas, Nikolaos |
| Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0003-0675-9088 surname: Miltiadous fullname: Miltiadous, Andreas organization: Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, Arta, Greece – sequence: 2 givenname: Katerina D. surname: Tzimourta fullname: Tzimourta, Katerina D. organization: Department of Electrical and Computer Engineering, School of Engineering, University of Western Macedonia, Kozani, Greece – sequence: 3 givenname: Nikolaos surname: Giannakeas fullname: Giannakeas, Nikolaos organization: Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, Arta, Greece – sequence: 4 givenname: Markos G. surname: Tsipouras fullname: Tsipouras, Markos G. organization: Department of Electrical and Computer Engineering, School of Engineering, University of Western Macedonia, Kozani, Greece – sequence: 5 givenname: Euripidis surname: Glavas fullname: Glavas, Euripidis organization: Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, Arta, Greece – sequence: 6 givenname: Konstantinos orcidid: 0000-0002-7711-5194 surname: Kalafatakis fullname: Kalafatakis, Konstantinos organization: Institute of Health Sciences Education, Barts and The London School of Medicine and Dentistry (Malta Campus), Queen Mary University of London, VCT, Victoria, Malta – sequence: 7 givenname: Alexandros T. orcidid: 0000-0001-9043-1290 surname: Tzallas fullname: Tzallas, Alexandros T. email: tzallas@uoi.gr organization: Department of Informatics and Telecommunications, University of Ioannina, Kostakioi, Arta, Greece |
| BookMark | eNqFkU1vEzEQhleoSJTSX9CLJc4J_lp7zS2kS6kUBCJwtma9duJosw62Q5V_j8NWFSoH5uLxeN7H9juvq4sxjLaqbgieE4LVu8Vy2a7Xc4opnTPKaC3Yi-qSEqFmrGbi4q_8VXWd0g6XaEqplpfV9jOYrR8tWlmIox83aDFsQvR5u0_IhYjagx_sIZ3Qrc3WZB9G9AGS7VFJvh67wadt2bTtHbqFDF05Su_RAq1PKds9ZG_QN_vL24c31UsHQ7LXj-tV9eNj-335abb6cne_XKxmhuMmz1QnFOkw5kQB7qUVfecwhob3BKjjqgPjFOVN1wgQpiZWiY4718veYUckZ1fV_cTtA-z0Ifo9xJMO4PWfQogbDbE8a7C6NoSLXmInu54rYoDXhrGa19BII7ksLD6xjuMBTg8wDE9AgvXZfA3G2JT02Xz9aH6RvZ1khxh-Hm3KeheOcSy_1lQKLGpCJS1dbOoyMaQUrfuHPQ32OVs9Uxmf4TyWHMEP_9HeTFpvrX26TZXgnLPfqL2wwQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_jpm15010027 crossref_primary_10_1109_ACCESS_2023_3294618 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1140_epjs_s11734_024_01292_2 crossref_primary_10_1007_s40846_024_00874_8 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_3390_s23239572 crossref_primary_10_1109_LSENS_2025_3543141 crossref_primary_10_1016_j_neunet_2024_106119 crossref_primary_10_1109_ACCESS_2024_3453039 crossref_primary_10_3390_data8060095 crossref_primary_10_1016_j_artmed_2025_103095 crossref_primary_10_1007_s10055_024_01044_6 |
| Cites_doi | 10.3390/app10124089 10.1007/s11517-020-02208-7 10.1007/s12553-018-0265-z 10.1016/j.cmpb.2010.08.011 10.1109/jsen.2021.3077578 10.1016/j.bspc.2019.101707 10.1016/j.eswa.2019.112895 10.1016/j.clinph.2018.10.010 10.3389/fnins.2020.00870 10.1109/tcds.2019.2936441 10.3390/s21155145 10.1016/j.artmed.2021.102117 10.1016/j.seizure.2019.02.001 10.1109/tnsre.2020.2973434 10.2478/msr-2021-0016 10.1109/lsp.2021.3069344 10.1155/2020/5128729 10.1186/s40708-018-0088-8 10.1186/s12918-018-0626-2 10.1016/j.bbe.2016.12.005 10.1109/cbms.2017.97 10.1016/j.artmed.2019.101711 10.1109/access.2020.2996946 10.1109/access.2019.2915610 10.1371/journal.pone.0193691 10.1159/000512985 10.3389/fninf.2018.00083 10.1109/lsp.2021.3060967 10.1007/s11277-020-07742-z 10.3390/s18051372 10.1007/s13246-020-00901-3 10.3233/jifs-191015 10.1016/j.bspc.2021.103031 10.3233/bme-171663 10.1109/tbcas.2021.3090995 10.1155/2020/9689821 10.1109/rbme.2021.3055956 10.1109/tpwrs.2018.2832615 10.1186/s13634-019-0606-8 10.1109/jsen.2020.3026032 10.1007/s11760-018-1304-y 10.1016/j.bspc.2019.101569 10.18280/ts.380107 10.1109/siu.2016.7496054 10.1007/s00500-018-3487-0 10.1109/51.932724 10.1109/access.2018.2838559 10.15676/ijeei.2017.9.4.13 10.1080/21681163.2022.2058616 10.1515/bmt-2018-0012 10.1038/s41598-020-78784-3 10.1186/s12911-021-01438-5 10.1002/ima.22565 10.1007/s12008-020-00715-3 10.1109/jsen.2020.2976519 10.1155/2020/7902072 10.3390/s20164639 10.1109/tbme.2018.2810942 10.1016/j.neucom.2017.09.007 10.1016/j.compbiomed.2021.104708 10.1016/j.procs.2019.05.020 10.1016/j.chaos.2021.111032 10.3389/fninf.2018.00095 10.1016/j.eswa.2016.09.037 10.1016/j.knosys.2019.105333 10.1016/j.bspc.2019.101833 10.1109/jbhi.2020.2984128 10.1103/physreve.64.061907 10.1109/access.2020.2976751 10.1109/tsp.2013.2265222 10.1016/j.bspc.2019.101787 10.1515/bmt-2019-0001 10.1142/s0219519417400036 10.1080/03772063.2021.1913074 10.1016/j.compbiomed.2019.103549 10.1002/ima.22441 10.1371/journal.pone.0173138 10.1016/j.compbiomed.2017.01.011 10.3390/a12090176 10.1016/j.bspc.2021.102699 10.1016/j.bspc.2021.103138 10.1016/j.bspc.2020.102086 10.1142/s0129065720500197 10.1007/s12652-020-02837-8 10.1109/tnsre.2019.2904708 10.1016/j.jneumeth.2020.108953 10.3233/thc-171343 10.1016/j.bspc.2020.101878 10.1016/j.measurement.2021.109954 10.1007/s00521-020-05384-7 10.1016/b978-012466606-1/50004-0 10.1007/s12652-020-02185-7 10.1007/s10916-019-1504-1 10.1080/03772063.2021.1912650 10.1007/s10462-019-09755-y 10.3389/fnins.2016.00196 10.1007/s11760-020-01672-w 10.1016/j.bbe.2019.11.002 10.3390/e22020140 10.1007/s11517-018-1881-5 10.3390/sym12081239 10.1103/physreve.86.046206 10.1142/s0129065720500173 10.1007/s11042-020-09135-7 10.1080/01616412.2018.1508544 10.1007/s13246-017-0610-y 10.1109/lsp.2019.2953870 10.1016/j.patrec.2020.03.009 10.1155/2022/6486570 10.1007/s10586-018-1995-4 10.3390/diagnostics11081437 10.1109/tcds.2020.3009020 10.1155/2020/3083910 10.3390/s19020219 10.1016/j.seizure.2017.07.001 10.1016/j.compbiomed.2019.05.016 10.1016/j.compbiomed.2019.103571 10.1109/jsen.2019.2939908 10.1016/j.bspc.2021.102492 10.1016/j.dcn.2022.101067 10.1142/s0129065719500217 10.1109/access.2019.2919158 10.1109/jsyst.2019.2923670 10.1371/joumal.pmed1000097 10.1080/03091902.2017.1394388 10.1109/access.2019.2960848 10.1109/access.2019.2929266 10.1016/j.bspc.2021.102827 10.1155/2021/2107113 10.1109/ACCESS.2017.2736014 10.1142/s0129065718500053 10.1016/j.irbm.2020.06.008 10.47852/bonviewaia2202297 10.1007/s13755-019-0069-1 10.2991/ijcis.11.1.51 10.1016/j.bbe.2019.10.006 10.1016/j.apacoust.2021.108098 10.1016/j.bspc.2021.102916 10.1016/j.compbiomed.2021.104338 10.1007/s13042-019-00921-w 10.1007/s11042-019-08359-6 10.1109/jsen.2021.3090062 10.1016/j.compbiomed.2020.103757 10.1007/s11042-021-10597-6 10.1007/s11517-019-01951-w 10.4218/etrij.2018-0118 10.1016/j.compbiomed.2020.103919 10.1080/03091902.2018.1464075 10.1007/s00521-020-05330-7 10.1109/access.2018.2853125 10.1016/j.eswa.2020.113676 10.7555/jbr.33.20190012 10.1007/s00521-020-05666-0 10.1016/j.neucom.2021.02.052 10.1007/s11517-021-02385-z 10.1109/lsens.2018.2882622 10.1016/j.jksuci.2018.04.014 10.1109/titb.2009.2017939 10.1016/j.compbiomed.2021.104250 10.1007/s11277-020-07542-5 10.1016/j.micpro.2020.103075 10.1016/j.clinph.2020.03.033 10.1016/j.bspc.2021.102854 10.3390/app9235215 10.7555/jbr.34.20190026 10.1016/j.bbe.2020.02.001 10.1007/s12652-021-03189-7 10.1108/wje-06-2021-0348 10.1109/lsens.2021.3086755 10.1155/2007/80510 10.3389/fnins.2020.00606 10.1109/access.2021.3081767 10.1109/access.2019.2915609 10.1155/2017/6849360 10.1080/03091902.2017.1394389 10.1016/j.bspc.2020.102255 10.1049/iet-spr.2018.5258 10.1109/access.2019.2944691 10.1007/s11045-018-0628-7 10.1109/jbhi.2017.2654479 10.1016/j.bbe.2021.08.009 10.1007/s12530-019-09319-z 10.3233/thc-174679 10.1109/TPAMI.2012.230 10.1109/TSP.2011.2143711 10.1155/2021/5871684 10.1088/1361-6579/ab3e2e 10.1007/s10470-021-01805-2 10.18280/ts.380210 10.1109/tcsii.2020.3031399 10.1016/j.compbiomed.2017.09.017 10.1016/j.jneumeth.2018.11.014 10.1080/03772063.2020.1749143 10.1109/tcds.2021.3064228 10.1161/01.CTR.101.23.e215 10.1016/j.eswa.2021.115175 10.3389/fphys.2018.00325 10.1109/tnsre.2019.2940485 10.1109/rbme.2020.3008792 10.1504/ijbet.2020.105649 10.1109/access.2019.2904949 10.1504/ijbet.2022.10047885 10.1109/tim.2018.2855518 10.1049/iet-smt.2016.0443 10.1109/access.2020.2970012 10.1049/el.2020.2701 10.1007/s40998-021-00437-6 10.1109/tcbb.2020.3006699 10.1016/j.cmpb.2021.106277 10.1016/j.bspc.2021.102720 10.1016/j.engappai.2020.103975 10.1155/2018/5812872 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2022.3232563 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 594 |
| ExternalDocumentID | oai_doaj_org_article_5c146d70f7bd491ca45c33545a87c747 10.1109/access.2022.3232563 10_1109_ACCESS_2022_3232563 9999444 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: “Immersive Virtual, Augmented and Mixed Reality Center of Epirus,” which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” – fundername: Operational Program “Competitiveness, Entrepreneurship and Innovation” and Co-Financed by Greece and the European Union (European Regional Development Fund) grantid: MIS 5047221; NSRF 2014-2020 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-9b691b00419a0d7e6dbf00a84d1a2f49bacf9248b86a6c51e96b4ffd7df0f1743 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:34 EDT 2025 Tue Aug 19 16:09:01 EDT 2025 Mon Jun 30 07:00:13 EDT 2025 Wed Oct 01 03:26:29 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 Wed Aug 27 02:21:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-9b691b00419a0d7e6dbf00a84d1a2f49bacf9248b86a6c51e96b4ffd7df0f1743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0675-9088 0000-0002-7711-5194 0000-0001-9043-1290 |
| OpenAccessLink | https://doaj.org/article/5c146d70f7bd491ca45c33545a87c747 |
| PQID | 2760651272 |
| PQPubID | 4845423 |
| PageCount | 31 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2022_3232563 unpaywall_primary_10_1109_access_2022_3232563 doaj_primary_oai_doaj_org_article_5c146d70f7bd491ca45c33545a87c747 proquest_journals_2760651272 crossref_citationtrail_10_1109_ACCESS_2022_3232563 ieee_primary_9999444 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 ref50 ref46 ref45 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 ref8 Rizal (ref87) 2019; 12 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 Gabr (ref111) 2020; 67 ref136 ref82 ref144 ref81 ref145 ref142 ref83 ref143 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 Tsipouras (ref84) 2015 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 Oinam (ref37) 2020; 9 Musaed (ref140) 2019; 81 |
| References_xml | – ident: ref181 doi: 10.3390/app10124089 – ident: ref139 doi: 10.1007/s11517-020-02208-7 – ident: ref2 doi: 10.1007/s12553-018-0265-z – ident: ref10 doi: 10.1016/j.cmpb.2010.08.011 – ident: ref46 doi: 10.1109/jsen.2021.3077578 – ident: ref48 doi: 10.1016/j.bspc.2019.101707 – ident: ref119 doi: 10.1016/j.eswa.2019.112895 – ident: ref100 doi: 10.1016/j.clinph.2018.10.010 – ident: ref97 doi: 10.3389/fnins.2020.00870 – ident: ref110 doi: 10.1109/tcds.2019.2936441 – ident: ref197 doi: 10.3390/s21155145 – ident: ref200 doi: 10.1016/j.artmed.2021.102117 – ident: ref125 doi: 10.1016/j.seizure.2019.02.001 – ident: ref185 doi: 10.1109/tnsre.2020.2973434 – ident: ref196 doi: 10.2478/msr-2021-0016 – ident: ref215 doi: 10.1109/lsp.2021.3069344 – ident: ref123 doi: 10.1155/2020/5128729 – ident: ref165 doi: 10.1186/s40708-018-0088-8 – ident: ref145 doi: 10.1186/s12918-018-0626-2 – ident: ref72 doi: 10.1016/j.bbe.2016.12.005 – ident: ref5 doi: 10.1109/cbms.2017.97 – ident: ref89 doi: 10.1016/j.artmed.2019.101711 – ident: ref21 doi: 10.1109/access.2020.2996946 – ident: ref41 doi: 10.1109/access.2019.2915610 – ident: ref82 doi: 10.1371/journal.pone.0193691 – ident: ref30 doi: 10.1159/000512985 – ident: ref133 doi: 10.3389/fninf.2018.00083 – ident: ref112 doi: 10.1109/lsp.2021.3060967 – ident: ref76 doi: 10.1007/s11277-020-07742-z – ident: ref134 doi: 10.3390/s18051372 – ident: ref179 doi: 10.1007/s13246-020-00901-3 – ident: ref66 doi: 10.3233/jifs-191015 – ident: ref12 doi: 10.1016/j.bspc.2021.103031 – ident: ref91 doi: 10.3233/bme-171663 – ident: ref212 doi: 10.1109/tbcas.2021.3090995 – ident: ref98 doi: 10.1155/2020/9689821 – ident: ref157 doi: 10.1109/rbme.2021.3055956 – ident: ref24 doi: 10.1109/tpwrs.2018.2832615 – ident: ref67 doi: 10.1186/s13634-019-0606-8 – ident: ref51 doi: 10.1109/jsen.2020.3026032 – ident: ref75 doi: 10.1007/s11760-018-1304-y – ident: ref17 doi: 10.1016/j.bspc.2019.101569 – ident: ref167 doi: 10.18280/ts.380107 – ident: ref6 doi: 10.1109/siu.2016.7496054 – ident: ref171 doi: 10.1007/s00500-018-3487-0 – ident: ref141 doi: 10.1109/51.932724 – ident: ref45 doi: 10.1109/access.2018.2838559 – ident: ref116 doi: 10.15676/ijeei.2017.9.4.13 – ident: ref163 doi: 10.1080/21681163.2022.2058616 – ident: ref147 doi: 10.1515/bmt-2018-0012 – ident: ref175 doi: 10.1038/s41598-020-78784-3 – ident: ref95 doi: 10.1186/s12911-021-01438-5 – volume: 67 start-page: 925 issue: 4 year: 2020 ident: ref111 article-title: A deep learning identification system for different epileptic seizure disease stages publication-title: J. Eng. Appl. Sci. – ident: ref52 doi: 10.1002/ima.22565 – ident: ref103 doi: 10.1007/s12008-020-00715-3 – ident: ref25 doi: 10.1109/jsen.2020.2976519 – ident: ref113 doi: 10.1155/2020/7902072 – ident: ref50 doi: 10.3390/s20164639 – ident: ref169 doi: 10.1109/tbme.2018.2810942 – ident: ref164 doi: 10.1016/j.neucom.2017.09.007 – ident: ref194 doi: 10.1016/j.compbiomed.2021.104708 – ident: ref68 doi: 10.1016/j.procs.2019.05.020 – ident: ref131 doi: 10.1016/j.chaos.2021.111032 – ident: ref150 doi: 10.3389/fninf.2018.00095 – ident: ref57 doi: 10.1016/j.eswa.2016.09.037 – ident: ref77 doi: 10.1016/j.knosys.2019.105333 – ident: ref79 doi: 10.1016/j.bspc.2019.101833 – ident: ref192 doi: 10.1109/jbhi.2020.2984128 – ident: ref8 doi: 10.1103/physreve.64.061907 – ident: ref94 doi: 10.1109/access.2020.2976751 – ident: ref70 doi: 10.1109/tsp.2013.2265222 – ident: ref186 doi: 10.1016/j.bspc.2019.101787 – ident: ref73 doi: 10.1515/bmt-2019-0001 – ident: ref64 doi: 10.1142/s0219519417400036 – ident: ref32 doi: 10.1080/03772063.2021.1913074 – ident: ref191 doi: 10.1016/j.compbiomed.2019.103549 – ident: ref47 doi: 10.1002/ima.22441 – ident: ref142 doi: 10.1371/journal.pone.0173138 – ident: ref105 doi: 10.1016/j.compbiomed.2017.01.011 – ident: ref106 doi: 10.3390/a12090176 – ident: ref202 doi: 10.1016/j.bspc.2021.102699 – volume: 81 start-page: 5587 issue: 11 year: 2019 ident: ref140 article-title: EEG pathology detection based on deep learning publication-title: Test Eng. Manage. – ident: ref71 doi: 10.1016/j.bspc.2021.103138 – ident: ref178 doi: 10.1016/j.bspc.2020.102086 – ident: ref184 doi: 10.1142/s0129065720500197 – ident: ref69 doi: 10.1007/s12652-020-02837-8 – ident: ref137 doi: 10.1109/tnsre.2019.2904708 – ident: ref16 doi: 10.1016/j.jneumeth.2020.108953 – ident: ref58 doi: 10.3233/thc-171343 – ident: ref108 doi: 10.1016/j.bspc.2020.101878 – ident: ref193 doi: 10.1016/j.measurement.2021.109954 – ident: ref203 doi: 10.1007/s00521-020-05384-7 – ident: ref33 doi: 10.1016/b978-012466606-1/50004-0 – ident: ref206 doi: 10.1007/s12652-020-02185-7 – ident: ref217 doi: 10.1007/s10916-019-1504-1 – ident: ref19 doi: 10.1080/03772063.2021.1912650 – ident: ref53 doi: 10.1007/s10462-019-09755-y – ident: ref132 doi: 10.3389/fnins.2016.00196 – ident: ref90 doi: 10.1007/s11760-020-01672-w – ident: ref62 doi: 10.1016/j.bbe.2019.11.002 – ident: ref187 doi: 10.3390/e22020140 – ident: ref216 doi: 10.1007/s11517-018-1881-5 – ident: ref49 doi: 10.3390/sym12081239 – ident: ref126 doi: 10.1103/physreve.86.046206 – ident: ref177 doi: 10.1142/s0129065720500173 – ident: ref201 doi: 10.1007/s11042-020-09135-7 – ident: ref11 doi: 10.1080/01616412.2018.1508544 – ident: ref92 doi: 10.1007/s13246-017-0610-y – ident: ref149 doi: 10.1109/lsp.2019.2953870 – ident: ref136 doi: 10.1016/j.patrec.2020.03.009 – ident: ref155 doi: 10.1155/2022/6486570 – volume-title: Medical Informatics year: 2015 ident: ref84 – ident: ref130 doi: 10.1007/s10586-018-1995-4 – ident: ref153 doi: 10.3390/diagnostics11081437 – ident: ref205 doi: 10.1109/tcds.2020.3009020 – ident: ref135 doi: 10.1155/2020/3083910 – ident: ref43 doi: 10.3390/s19020219 – ident: ref83 doi: 10.1016/j.seizure.2017.07.001 – ident: ref170 doi: 10.1016/j.compbiomed.2019.05.016 – volume: 12 start-page: 508 issue: 4 year: 2019 ident: ref87 article-title: Epileptic EEG signal classification using multiresolution Higuchi fractal dimension publication-title: Int. J. Eng. Res. Technol. – ident: ref190 doi: 10.1016/j.compbiomed.2019.103571 – ident: ref128 doi: 10.1109/jsen.2019.2939908 – ident: ref210 doi: 10.1016/j.bspc.2021.102492 – volume: 9 start-page: 3589 issue: 1 year: 2020 ident: ref37 article-title: EEG signal classification using ANN trained with hybrid PSO and GSA publication-title: Int. J. Sci. Technol. Res. – ident: ref27 doi: 10.1016/j.dcn.2022.101067 – ident: ref152 doi: 10.1142/s0129065719500217 – ident: ref56 doi: 10.1109/access.2019.2919158 – ident: ref173 doi: 10.1109/jsyst.2019.2923670 – ident: ref7 doi: 10.1371/joumal.pmed1000097 – ident: ref159 doi: 10.1080/03091902.2017.1394388 – ident: ref28 doi: 10.1109/access.2019.2960848 – ident: ref40 doi: 10.1109/access.2019.2929266 – ident: ref161 doi: 10.1016/j.bspc.2021.102827 – ident: ref88 doi: 10.1155/2021/2107113 – ident: ref114 doi: 10.1109/ACCESS.2017.2736014 – ident: ref122 doi: 10.1142/s0129065718500053 – ident: ref20 doi: 10.1016/j.irbm.2020.06.008 – ident: ref154 doi: 10.47852/bonviewaia2202297 – ident: ref44 doi: 10.1007/s13755-019-0069-1 – ident: ref15 doi: 10.2991/ijcis.11.1.51 – ident: ref189 doi: 10.1016/j.bbe.2019.10.006 – ident: ref195 doi: 10.1016/j.apacoust.2021.108098 – ident: ref120 doi: 10.1016/j.bspc.2021.102916 – ident: ref207 doi: 10.1016/j.compbiomed.2021.104338 – ident: ref148 doi: 10.1007/s13042-019-00921-w – ident: ref39 doi: 10.1007/s11042-019-08359-6 – ident: ref166 doi: 10.1109/jsen.2021.3090062 – ident: ref182 doi: 10.1016/j.compbiomed.2020.103757 – ident: ref208 doi: 10.1007/s11042-021-10597-6 – ident: ref78 doi: 10.1007/s11517-019-01951-w – ident: ref36 doi: 10.4218/etrij.2018-0118 – ident: ref101 doi: 10.1016/j.compbiomed.2020.103919 – ident: ref13 doi: 10.1080/03091902.2018.1464075 – ident: ref204 doi: 10.1007/s00521-020-05330-7 – ident: ref168 doi: 10.1109/access.2018.2853125 – ident: ref14 doi: 10.1016/j.eswa.2020.113676 – ident: ref102 doi: 10.7555/jbr.33.20190012 – ident: ref35 doi: 10.1007/s00521-020-05666-0 – ident: ref96 doi: 10.1016/j.neucom.2021.02.052 – ident: ref199 doi: 10.1007/s11517-021-02385-z – ident: ref74 doi: 10.1109/lsens.2018.2882622 – ident: ref118 doi: 10.1016/j.jksuci.2018.04.014 – ident: ref4 doi: 10.1109/titb.2009.2017939 – ident: ref211 doi: 10.1016/j.compbiomed.2021.104250 – ident: ref176 doi: 10.1007/s11277-020-07542-5 – ident: ref117 doi: 10.1016/j.micpro.2020.103075 – ident: ref180 doi: 10.1016/j.clinph.2020.03.033 – ident: ref198 doi: 10.1016/j.bspc.2021.102854 – ident: ref143 doi: 10.3390/app9235215 – ident: ref121 doi: 10.7555/jbr.34.20190026 – ident: ref183 doi: 10.1016/j.bbe.2020.02.001 – ident: ref61 doi: 10.1007/s12652-021-03189-7 – ident: ref99 doi: 10.1108/wje-06-2021-0348 – ident: ref26 doi: 10.1109/lsens.2021.3086755 – ident: ref3 doi: 10.1155/2007/80510 – ident: ref42 doi: 10.3389/fnins.2020.00606 – ident: ref18 doi: 10.1109/access.2021.3081767 – ident: ref172 doi: 10.1109/access.2019.2915609 – ident: ref144 doi: 10.1155/2017/6849360 – ident: ref34 doi: 10.1080/03091902.2017.1394389 – ident: ref81 doi: 10.1016/j.bspc.2020.102255 – ident: ref85 doi: 10.1049/iet-spr.2018.5258 – ident: ref151 doi: 10.1109/access.2019.2944691 – ident: ref23 doi: 10.1007/s11045-018-0628-7 – ident: ref22 doi: 10.1109/jbhi.2017.2654479 – ident: ref124 doi: 10.1016/j.bbe.2021.08.009 – ident: ref158 doi: 10.1007/s12530-019-09319-z – ident: ref146 doi: 10.3233/thc-174679 – ident: ref115 doi: 10.1109/TPAMI.2012.230 – ident: ref63 doi: 10.1109/TSP.2011.2143711 – ident: ref60 doi: 10.1155/2021/5871684 – ident: ref80 doi: 10.1088/1361-6579/ab3e2e – ident: ref31 doi: 10.1007/s10470-021-01805-2 – ident: ref55 doi: 10.18280/ts.380210 – ident: ref209 doi: 10.1109/tcsii.2020.3031399 – ident: ref93 doi: 10.1016/j.compbiomed.2017.09.017 – ident: ref129 doi: 10.1016/j.jneumeth.2018.11.014 – ident: ref156 doi: 10.1080/03772063.2020.1749143 – ident: ref214 doi: 10.1109/tcds.2021.3064228 – ident: ref9 doi: 10.1161/01.CTR.101.23.e215 – ident: ref138 doi: 10.1016/j.eswa.2021.115175 – ident: ref127 doi: 10.3389/fphys.2018.00325 – ident: ref109 doi: 10.1109/tnsre.2019.2940485 – ident: ref1 doi: 10.1109/rbme.2020.3008792 – ident: ref188 doi: 10.1504/ijbet.2020.105649 – ident: ref174 doi: 10.1109/access.2019.2904949 – ident: ref162 doi: 10.1504/ijbet.2022.10047885 – ident: ref86 doi: 10.1109/tim.2018.2855518 – ident: ref54 doi: 10.1049/iet-smt.2016.0443 – ident: ref38 doi: 10.1109/access.2020.2970012 – ident: ref59 doi: 10.1049/el.2020.2701 – ident: ref213 doi: 10.1007/s40998-021-00437-6 – ident: ref160 doi: 10.1109/tcbb.2020.3006699 – ident: ref104 doi: 10.1016/j.cmpb.2021.106277 – ident: ref29 doi: 10.1016/j.bspc.2021.102720 – ident: ref107 doi: 10.1016/j.engappai.2020.103975 – ident: ref65 doi: 10.1155/2018/5812872 |
| SSID | ssj0000816957 |
| Score | 2.3973541 |
| Snippet | Epilepsy is the only neurological condition for which electroencephalography (EEG) is the primary diagnostic and important prognostic clinical tool. However,... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 564 |
| SubjectTerms | Algorithms Artificial neural networks detection EEG Electroencephalography Epilepsy Evaluation Inspection Machine learning Medical research Recording Signal classification Signal processing signal transformation Systematic review Systematics Transforms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vRQOQCmIQKl84Nhs8-HYMbftdkuFVC5QqbfIn23Fkl11s0Ll1zN2vFEXUMUtiuzE1rM9b-zxG4APTlKhXW5TmRme-rvWqcSCKRVUlbJUTNgQ5fuFnV_Sz1fV1RYcDXdhrLUh-MyO_GM4yzdzvfJbZcdIZgSldBu2ec36u1rDfopPICEqHoWF8kwcjycT7AO6gEUxKpE4VKzcMD5Boz8mVdngl7urdiHvf8rZ7IGpOXsOF-tG9hEm30erTo30rz_0G_-3Fy_gWeScZNwPkj3Ysu1LePpAiXAfbi5CUKUlUW_1moxn1_O72-7mx5IgryXTBS4fi-U9ObVdiN5qyQkaQEPwYR1ab8h0-omcyk5627j8SMbk6yAUTfpTiFdweTb9NjlPYxKGVNOs7lKBcOV-bufCw2mZUS7LZE1NLgtHhZLaoQ9Xq5pJpqvcCqaoc4Yblznv7ryGnXbe2jdAauUME4JLihULXfn0V8pIV3IlqzozCRRrdBodFcp9ooxZEzyVTDQ9pI2HtImQJnA0VFr0Ah2PFz_xsA9Fvbp2eIEQNXGyNpVG-2F45rgyVORa0kqXJXJNWXON_lcC-x7W4SMR0QQO1oOoiSvBsik4uojIqniRQDoMrL-aKkN6zI2mvv33X97BE5_yvt8GOoCd7m5l3yMx6tRhmBG_AQLcCb8 priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge0AceBVESkE-cCS7eTh2zC3dbqmQqJBgpXIKfrYVIY26WZXy6xk73qgLEhLiFkXjyNE39nwjj79B6LUVhCubmlgkmsXurnUswDAmnMhc5JJy46t8T-jxkrw_LU5Dn1N_F8YY44vPzNQ9-rP8C9P8YDOaOfE0PkuH2o1y5rgNJ4RMO23voh1aABmfoJ3lycfqi2spl1Ie5_5w8kVQ1pwJ34QQssIsm-bAJQqab8UjL9sf-qxsUc5767YTN9eiaW5Fn6OH6Otm3kPRybfpupdT9fM3Scf_-LFH6EFgprgaXOkxumPaJ-j-Lb3CXXT-wZdeGhxUWc9w1ZxdXl30599XGNgvXnSwyXSrG3xoel_j1eIDCJMaw8OmAF_jxeIdPhS9cBF09RZX-NMoJ42Hs4qnaHm0-Dw_jkOrhliRpOxjDqCmbgdIuQPdUC1tkoiS6FRklnAplIVMr5QlFVQVqeFUEms10zaxLil6hibtZWueI1xKqynnTBAYmKnCNcmSWticSVGUiY5QtgGsVkHH3LXTaGqfzyS8ruZzcN7aoVwHlCP0ZhzUDTIefzc_cJ4wmjoNbv8CUKvDkq4LBVFGs8QyqQlPlSCFynNgpKJkCrK0CO06pMePBFQjtL_xqzrsF6s6Y5BIAvdiWYTi0df-mOrgv1tT3ftH-3006a_W5iVQqV6-CsvlF_U9GBM priority: 102 providerName: Unpaywall |
| Title | Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases: A Systematic Review |
| URI | https://ieeexplore.ieee.org/document/9999444 https://www.proquest.com/docview/2760651272 https://ieeexplore.ieee.org/ielx7/6287639/10005208/09999444.pdf https://doaj.org/article/5c146d70f7bd491ca45c33545a87c747 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBBREoKx84Eiokzh-cEu3WyokKiRYqZwsP9vDkq7YVKj_nrHjjXaFBBduUWRHE8-M55tk_A1Cb4Om0obKl5o4Xsaz1qWGgSWV1DS6MUz6VOV7wc6X9NNle7nT6ivWhI30wOPCHbcWfNlxErhxVFZW09Y2DcR9LbgFLBx3XyLkTjKV9mBRMdnyTDNUEXnczefwRpAQ1vX7BmBEy5q9UJQY-3OLlT20-eC2X-u7X3q12gk8Z0_Q44wYcTdK-hTd8_0z9GiHR_AQXX9OJZEeZ7bUK9ytrm4g7b_-scGASvFiDc6_3tzhUz-k2qsen0D4chgutoXxDi8WH_GpHnSMbJsPuMNfJ5pnPP5DeI6WZ4tv8_Myt1AoLSViKCUsdhU9s5JRGZ45EwjRgrpK14FKo22ADEwYwTSzbeUlMzQEx10gISYrL9BBf9P7lwgLExyTkmsKE2vbxuZVxunQcKNbQVyB6u1qKpv5xWObi5VKeQaRalSBiipQWQUFejdNWo_0Gn8ffhLVNA2N3NjpBliMyhaj_mUxBTqMSp4eAhBZUkoLdLRVusp-vFE1hwQPMBGvC1ROhvCHqDo1t9wT9dX_EPU1ehjb24-ffI7QwfDz1r8BEDSYWbL3WTqvOEP3lxdfuu-_AS8KAi4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOAwOfI2JwAAfOC5dPuw45tZ1HQXWXdik3Sx_boiSVmsqNP56nh03WgEhTrEiO3H0s_1-z3n-PYTeOUm4drlNZWZY6s9apxIqpoQTVcpSVdyGKN-zanJBPl3Syy100J-FsdaG4DM78MXwL9_M9cpvlR0CmeGEkHvoPoUL7U5r9TsqPoUEpyxKC-UZPxyORvAV4AQWxaAE6kCrcsP8BJX-mFZlg2HurJqFvP0hZ7M7xubkMZquu9nFmHwbrFo10D9_U3D83-94gh5F1omH3TB5irZs8ww9vKNFuIuupyGs0uKouHqFh7Or-c3X9vr7EgOzxeMFLCCL5S0-tm2I32rwEZhAg6GwDq43eDz-gI9lK711XL7HQ_yll4rG3X-I5-jiZHw-mqQxDUOqSVa3KQfAcj-7c-4BtZVRLstkTUwuC0e4ktqBF1erupKVprnllSLOGWZc5rzDs4e2m3ljXyBcK2cqzpkk0LDQ1CfAUka6kilJ68wkqFijI3TUKPepMmYi-CoZFx2kwkMqIqQJOugbLTqJjn9XP_Kw91W9vna4ARCJOF0F1WBBDMscU4bwXEtCdVkC25Q10-CBJWjXw9o_JCKaoP31IBJxLViKgoGTCLyKFQlK-4H1R1dlSJC50dWXf3_LW7QzOZ-eitOPZ59foQfQouw2hfbRdnuzsq-BJrXqTZgdvwAK9Q0M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZge0AceBVESkE-cCS7eTh2zC3dbqmQqJBgpXIKfrYVIY26WZXy6xk73qgLEhLiFkXjyNE39nwjj79B6LUVhCubmlgkmsXurnUswDAmnMhc5JJy46t8T-jxkrw_LU5Dn1N_F8YY44vPzNQ9-rP8C9P8YDOaOfE0PkuH2o1y5rgNJ4RMO23voh1aABmfoJ3lycfqi2spl1Ie5_5w8kVQ1pwJ34QQssIsm-bAJQqab8UjL9sf-qxsUc5767YTN9eiaW5Fn6OH6Otm3kPRybfpupdT9fM3Scf_-LFH6EFgprgaXOkxumPaJ-j-Lb3CXXT-wZdeGhxUWc9w1ZxdXl30599XGNgvXnSwyXSrG3xoel_j1eIDCJMaw8OmAF_jxeIdPhS9cBF09RZX-NMoJ42Hs4qnaHm0-Dw_jkOrhliRpOxjDqCmbgdIuQPdUC1tkoiS6FRklnAplIVMr5QlFVQVqeFUEms10zaxLil6hibtZWueI1xKqynnTBAYmKnCNcmSWticSVGUiY5QtgGsVkHH3LXTaGqfzyS8ruZzcN7aoVwHlCP0ZhzUDTIefzc_cJ4wmjoNbv8CUKvDkq4LBVFGs8QyqQlPlSCFynNgpKJkCrK0CO06pMePBFQjtL_xqzrsF6s6Y5BIAvdiWYTi0df-mOrgv1tT3ftH-3006a_W5iVQqV6-CsvlF_U9GBM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+for+Epilepsy+Detection+Based+on+Published+EEG+Databases%3A+A+Systematic+Review&rft.jtitle=IEEE+access&rft.au=Miltiadous%2C+Andreas&rft.au=Tzimourta%2C+Katerina+D.&rft.au=Giannakeas%2C+Nikolaos&rft.au=Tsipouras%2C+Markos+G.&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=564&rft.epage=594&rft_id=info:doi/10.1109%2FACCESS.2022.3232563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3232563 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |