GOAMLP: Network Intrusion Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm
In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the...
Saved in:
| Published in | IEEE access Vol. 8; pp. 215202 - 215213 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3040740 |
Cover
| Abstract | In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the swarm-based approach is used to reduce intrusion detection errors. In the proposed method, the Grasshopper Optimization Algorithm (GOA) is used for better and more accurate learning of ANNs to reduce intrusion detection error rate. The role of the GOAMLP algorithm is to minimize the intrusion detection error in the neural network by selecting useful parameters such as weight and bias. Our implementation in MATLAB software and using the KDD and UNSW datasets show that the proposed method detects abnormal, malicious traffic and attacks with high accuracy. The GOAMLP method outperforms and is more accurate than the existing state-of-the-art techniques such as RF, XGBoost, and embedded learning of ANN with BOA, HHO, and BWO algorithms in network intrusion detection. |
|---|---|
| AbstractList | In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the swarm-based approach is used to reduce intrusion detection errors. In the proposed method, the Grasshopper Optimization Algorithm (GOA) is used for better and more accurate learning of ANNs to reduce intrusion detection error rate. The role of the GOAMLP algorithm is to minimize the intrusion detection error in the neural network by selecting useful parameters such as weight and bias. Our implementation in MATLAB software and using the KDD and UNSW datasets show that the proposed method detects abnormal, malicious traffic and attacks with high accuracy. The GOAMLP method outperforms and is more accurate than the existing state-of-the-art techniques such as RF, XGBoost, and embedded learning of ANN with BOA, HHO, and BWO algorithms in network intrusion detection. |
| Author | Javidi, Giti Moghanian, Shadi Sheybani, Ehsan O. Saravi, Farshid Bagheri |
| Author_xml | – sequence: 1 givenname: Shadi surname: Moghanian fullname: Moghanian, Shadi organization: Computer Science Department, Universidad Politécnica de Cataluña, Barcelona, Spain – sequence: 2 givenname: Farshid Bagheri orcidid: 0000-0003-4213-5053 surname: Saravi fullname: Saravi, Farshid Bagheri organization: CS-IT Hub, Bradenton, FL, USA – sequence: 3 givenname: Giti orcidid: 0000-0002-2139-7807 surname: Javidi fullname: Javidi, Giti organization: Muma College of Business, University of South Florida, Tampa, FL, USA – sequence: 4 givenname: Ehsan O. orcidid: 0000-0002-7809-1294 surname: Sheybani fullname: Sheybani, Ehsan O. email: sheybani@usf.edu organization: Muma College of Business, University of South Florida, Tampa, FL, USA |
| BookMark | eNqFkU1vEzEQhleoSJTSX9DLSpwT_LVrm1sUSoiUkkoFcbQm3tnWYbNebEdV-PU42apC5YAvM5qZ57Xn9dvirPc9FsUVJVNKif4wm8-v7-6mjDAy5UQQKcir4pzRWk94xeuzv_I3xWWMW5KPyqVKnhe4WM9uVrcfy6-YHn34WS77FPbR-b78hAltOmY_XHoob_Zdch0cMJS3GCwOKeQW9E25CBDjgx-G3FoPye3cbzhxs-7eh8zu3hWvW-giXj7Fi-L75-tv8y-T1XqxnM9WEyuIShNd66ZRQlAFSjOZn8kBqRIKKlk3wm4qbptGN5zyttZEU4FU8goqvmHcauAXxXLUbTxszRDcDsLBeHDmVPDh3kBIznZoaKP0RtRtLYEIucENI1IrKi0j0GKLWUuMWvt-gMMjdN2zICXm6LwBazFGc3TePDmfsfcjNgT_a48xma3fhz5vbZiolawpYSxP8XHKBh9jwPYf7fFXX2rrF5R16WR1CuC6_7BXI-sQ8fm27DLjUvE_8SGv9w |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11042_024_20194_y crossref_primary_10_32604_cmc_2024_055007 crossref_primary_10_3390_app13137891 crossref_primary_10_1016_j_eswa_2024_124701 crossref_primary_10_1109_ACCESS_2023_3236254 crossref_primary_10_1016_j_compeleceng_2024_109838 crossref_primary_10_1016_j_eswa_2022_117053 crossref_primary_10_1016_j_eswa_2022_119098 crossref_primary_10_1016_j_eswa_2023_119633 crossref_primary_10_1007_s12530_023_09526_9 crossref_primary_10_1016_j_eswa_2022_117033 crossref_primary_10_1016_j_rser_2023_113653 crossref_primary_10_1371_journal_pone_0289173 crossref_primary_10_1016_j_iot_2024_101421 crossref_primary_10_1016_j_eswa_2022_116624 crossref_primary_10_1109_ACCESS_2021_3067597 crossref_primary_10_1016_j_jfranklin_2024_107440 crossref_primary_10_3390_math12111720 crossref_primary_10_1016_j_jenvman_2023_119724 crossref_primary_10_1016_j_eswa_2022_117483 crossref_primary_10_1007_s11042_024_19962_7 crossref_primary_10_1007_s10586_024_04510_7 crossref_primary_10_1007_s11277_023_10687_8 crossref_primary_10_1016_j_eswa_2022_119105 crossref_primary_10_1007_s12652_023_04571_3 crossref_primary_10_1016_j_asoc_2024_112327 crossref_primary_10_1016_j_eswa_2022_118916 crossref_primary_10_1016_j_eswa_2023_120596 crossref_primary_10_1109_ACCESS_2023_3341507 |
| Cites_doi | 10.1016/j.future.2019.02.028 10.1109/ICC.2019.8761575 10.1007/s13198-017-0683-8 10.1109/IACS.2019.8809179 10.1109/TITS.2019.2908074 10.1109/ITNEC.2019.8729425 10.1109/JIOT.2019.2912022 10.1016/j.advengsoft.2017.01.004 10.1109/ICACTM.2019.8776744 10.1007/s00500-018-3424-2 10.1109/ACCESS.2018.2810198 10.5121/ijnsa.2019.11302 10.1016/j.procs.2020.03.259 10.1109/ACCESS.2019.2908998 10.1016/j.future.2017.01.029 10.1016/j.future.2017.10.016 10.1016/j.ins.2018.06.072 10.1016/j.compeleceng.2017.10.011 10.1007/s12065-019-00291-w 10.1080/1206212X.2019.1612993 10.1007/s10799-018-0291-6 10.1016/j.jmat.2020.02.011 10.1109/TII.2019.2946791 10.1186/s42400-019-0038-7 10.1109/TII.2019.2916335 10.1109/ACCESS.2018.2878552 10.1016/j.eswa.2018.09.015 10.1007/s11063-015-9457-y 10.1186/s40537-019-0248-6 10.1109/JIOT.2019.2926365 10.1109/JIOT.2020.2970501 10.1007/s11227-019-02945-z 10.1016/j.eij.2013.10.003 10.1109/MC.2018.2888764 10.1007/s10586-019-02998-y 10.3390/a10020039 10.1109/TII.2019.2920831 10.1016/j.cose.2017.10.011 10.1155/2019/7130868 10.1186/s40537-018-0145-4 10.1007/s12652-019-01387-y 10.1109/JIOT.2019.2926610 10.1007/s11042-019-7495-6 10.1007/s00500-017-2856-4 10.1109/LSENS.2019.2909323 10.1109/TII.2019.2956474 10.1109/ICECA.2019.8822081 10.1007/s12065-019-00199-5 10.1109/ACCESS.2019.2963679 10.1016/j.cosrev.2017.07.001 10.1007/s12083-017-0630-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3040740 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 215213 |
| ExternalDocumentID | oai_doaj_org_article_1d89b46f67a047beb2079817c20afefe oai:commons.case.edu:studentworks-1023 10_1109_ACCESS_2020_3040740 9272378 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-969dd84418a89270003ae1848a576d4cb53cdd9d313f690914e1735a53b23c9a3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:21 EDT 2025 Sun Sep 07 11:01:19 EDT 2025 Sun Jun 29 16:36:37 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Oct 01 03:37:49 EDT 2025 Wed Aug 27 02:33:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-969dd84418a89270003ae1848a576d4cb53cdd9d313f690914e1735a53b23c9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2139-7807 0000-0003-4213-5053 0000-0002-7809-1294 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9272378 |
| PQID | 2468761022 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_3040740 unpaywall_primary_10_1109_access_2020_3040740 proquest_journals_2468761022 crossref_primary_10_1109_ACCESS_2020_3040740 ieee_primary_9272378 doaj_primary_oai_doaj_org_article_1d89b46f67a047beb2079817c20afefe |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 najeeb (ref54) 2018; 13 ref18 saremi (ref21) 2020; 811 chen (ref24) 2020; 10 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 niksefat (ref40) 2017; 25 |
| References_xml | – ident: ref20 doi: 10.1016/j.future.2019.02.028 – ident: ref51 doi: 10.1109/ICC.2019.8761575 – ident: ref11 doi: 10.1007/s13198-017-0683-8 – ident: ref10 doi: 10.1109/IACS.2019.8809179 – ident: ref12 doi: 10.1109/TITS.2019.2908074 – ident: ref7 doi: 10.1109/ITNEC.2019.8729425 – ident: ref3 doi: 10.1109/JIOT.2019.2912022 – ident: ref22 doi: 10.1016/j.advengsoft.2017.01.004 – ident: ref8 doi: 10.1109/ICACTM.2019.8776744 – ident: ref46 doi: 10.1007/s00500-018-3424-2 – ident: ref16 doi: 10.1109/ACCESS.2018.2810198 – ident: ref49 doi: 10.5121/ijnsa.2019.11302 – ident: ref9 doi: 10.1016/j.procs.2020.03.259 – ident: ref6 doi: 10.1109/ACCESS.2019.2908998 – ident: ref30 doi: 10.1016/j.future.2017.01.029 – ident: ref31 doi: 10.1016/j.future.2017.10.016 – volume: 811 start-page: 107 year: 2020 ident: ref21 article-title: Grasshopper optimization algorithm: Theory, literature review, and application in hand posture estimation publication-title: Studies in Computational Intelligence – ident: ref18 doi: 10.1016/j.ins.2018.06.072 – ident: ref13 doi: 10.1016/j.compeleceng.2017.10.011 – ident: ref33 doi: 10.1007/s12065-019-00291-w – ident: ref15 doi: 10.1080/1206212X.2019.1612993 – ident: ref26 doi: 10.1007/s10799-018-0291-6 – ident: ref19 doi: 10.1016/j.jmat.2020.02.011 – ident: ref45 doi: 10.1109/TII.2019.2946791 – ident: ref27 doi: 10.1186/s42400-019-0038-7 – ident: ref25 doi: 10.1109/TII.2019.2916335 – ident: ref2 doi: 10.1109/ACCESS.2018.2878552 – volume: 13 start-page: 2347 year: 2018 ident: ref54 article-title: A feature selection approach using binary Firefly Algorithm for network intrusion detection system publication-title: ARPN J Eng Appl Sci – ident: ref47 doi: 10.1016/j.eswa.2018.09.015 – ident: ref41 doi: 10.1007/s11063-015-9457-y – ident: ref38 doi: 10.1186/s40537-019-0248-6 – ident: ref42 doi: 10.1109/JIOT.2019.2926365 – ident: ref5 doi: 10.1109/JIOT.2020.2970501 – ident: ref35 doi: 10.1007/s11227-019-02945-z – ident: ref52 doi: 10.1016/j.eij.2013.10.003 – ident: ref48 doi: 10.1109/MC.2018.2888764 – ident: ref39 doi: 10.1007/s10586-019-02998-y – volume: 10 year: 2020 ident: ref24 article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe river basin, northwestern China publication-title: Sci Rep – ident: ref53 doi: 10.3390/a10020039 – ident: ref43 doi: 10.1109/TII.2019.2920831 – ident: ref32 doi: 10.1016/j.cose.2017.10.011 – ident: ref14 doi: 10.1155/2019/7130868 – ident: ref50 doi: 10.1186/s40537-018-0145-4 – ident: ref36 doi: 10.1007/s12652-019-01387-y – ident: ref4 doi: 10.1109/JIOT.2019.2926610 – ident: ref34 doi: 10.1007/s11042-019-7495-6 – ident: ref28 doi: 10.1007/s00500-017-2856-4 – ident: ref1 doi: 10.1109/LSENS.2019.2909323 – ident: ref44 doi: 10.1109/TII.2019.2956474 – ident: ref17 doi: 10.1109/ICECA.2019.8822081 – ident: ref29 doi: 10.1007/s12065-019-00199-5 – ident: ref23 doi: 10.1109/ACCESS.2019.2963679 – volume: 25 start-page: 69 year: 2017 ident: ref40 article-title: Privacy issues in intrusion detection systems: A taxonomy, survey and future directions publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2017.07.001 – ident: ref37 doi: 10.1007/s12083-017-0630-0 |
| SSID | ssj0000816957 |
| Score | 2.3942535 |
| Snippet | In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 215202 |
| SubjectTerms | Algorithms artificial neural network Artificial neural networks Classification algorithms Computer hacking Data mining Error detection Genetic algorithms Heuristic methods Intrusion detection systems Learning theory Machine learning Machine learning algorithms Mathematical model multilayer perceptron Multilayer perceptrons Network intrusion detection Neural networks Optimization Optimization algorithms Service introduction swarm-based algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQURKJUPHIlqx44f3JalDxB9HKjozZrYDq2UZlfLoqr_nnHirlIhwYVr_NBk_Nmezx7PEPJOVCFC3arSSiZLiVQH55y2pal0bFXdtDamo4HjE3V0Lr9c1BeTVF_JJ2wMDzwqbo8HYxupWqWBSd0gEWTaGq59xaCNbUyrLzN2QqaGNdhwZWudwwxxZvdm8zn-ERLCCnkqIlen447JVjRE7M8pVu5Zmw9_9Uu4vYGum2w8B0_Jk2wx0tko6TPyIPbPyeNJHMFtEg9PZ8dfzz7Qk9Gpm37u01sKVDn9FNeDs1VPv1-tL-nw3rYDtLPp2ejSssIi6AM9XKEZfblYLrHoFNeR6_xAk866H4sVtr1-Qc4P9r_Nj8qcP6H0kpl1aZUNwaC9Y8DYdMHMBERkdAaQZATpm1r4EGwQXLRIki2XkWtRQy2aSngL4iXZ6hd9fEUoYG0vrWdegQxcGAnQNBY896oOAQpS3anS-RxcPOW46NxAMph1o_5d0r_L-i_I-02j5Rhb4-_VP6Yx2lRNgbGHDwgXl-Hi_gWXgmynEd50gnqphDYF2bkbcZcn8U9XSYV7RaLEBSk3KPhDVBgyW94T9fX_EPUNeZT6HM97dsgWAie-RQto3ewOYP8N0Zb_lg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA4AKUgAqXygSNpk9hxbG5h6QNEt3tgRTlF40daRJpd7aZC8OsZJ-5qSyUE19iOEs839ow98w0hr1lmHeS1iBVPeMzR1UGdK1Qss8LVIte1cv5o4HQiTmb843l-Hs47Vn0it59-nG5cwwcyoYHi0UcprQ58xviWyNHqHpGt2WRafvW141KhYtbfQr4MFJoH0FcbRPcvQ68UcVr4w42Njafn5w8FVW7Zlvev2wX8_AFNs7HNHD0aOI9WPTuhjy75vn_d6X3z6w_uxn_5g8fkYbA1aTmAY5vcc-0T8mCDgXCHuOOz8vTT9C2dDOHg9EPrszBQWPS96_owrZZ--dZd0j5TtwG00Ol0CIZZYhO0lh4v0QC_nC8W2HSGK9BVSO2kZXMxX-LYq6dkdnT4eXwSh8oLseGJ7GIllLUSLSUJUvmr6YSBQ19QAronlhudM2OtsixlNbrXKuUuLVgOOdMZMwrYMzJq5617Tihgb8OVSYwAblMmOYDWCkxqRG4tRCS7EUtlAi25r47RVL17kqiqHI8Ri5WXZRVkGZE360GLgZXj793feXmvu3pK7f7BfHlRBQ2tUiuV5qIWBSS80E5nSaFkWpgsgdrVLiI7Hi3rl-C8ZKyQEdm9QU8V1H9VZVzgLuOd6YjEa0Td-dQBpbc-9cV_9t8lI4SFe4WWUaf3glL8BirEDuA priority: 102 providerName: Unpaywall |
| Title | GOAMLP: Network Intrusion Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9272378 https://www.proquest.com/docview/2468761022 https://commons.case.edu/studentworks/21 https://doaj.org/article/1d89b46f67a047beb2079817c20afefe |
| UnpaywallVersion | submittedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_axgF24GtMBEaVA8elS2wntrmFwjYQ7XqgYpwif4UhurTqUiH463lO0qgDhLhF8XNi6_dsv_f8PgBeUmKdSssskixmEUNVB9ccl5Eg3JVZqkvpvGlgPMnOZ-z9ZXq5A8d9LIxzrnE-c0P_2Nzl24VZe1PZiSScUC52YZeLrI3V6u0pvoCETHmXWCiJ5Uk-GuEcUAUkqJkir3Jv4Ng6fJoc_V1RlVvy5d11tVQ_vqv5fOuoOX0A480gWw-Tb8N1rYfm52_5G_93Fg_hfidzhnnLJI9gx1WPYX8rE-EBuLOLfPxh-iqctG7h4bvKR2MgaOEbVzfuWlX46Wt9FTYRu3OFkno4bZ1iVtikKhuerVAQv1osl9h0gTvRdRfiGebzL4sV9r1-ArPTtx9H51FXgSEyLBZ1JDNprUCJSSgh_RV1TJVDnVAoVFMsMzqlxlppaUJLVLNlwlzCaapSqgk1UtFD2KsWlXsKoUJqw6SJTaaYTahgSmktlUlMllqrAiAbaArTpSf3VTLmRaOmxLJo8Sw8nkWHZwDHfadlm53j3-SvPeY9qU-t3bxAfIpupRaJFVKzrMy4ihnXTpOYS5FwQ2JVutIFcOAx7T_SwRnA0YaDim4buCkIy_C08Up1AFHPVX8MVTW1MW8N9dnf__Ic7nmq1gZ0BHvICu4FSkW1HjTWhEGzKAZwZzaZ5p9_AdqIC04 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4zB24GsgAgNy4Lh0ie3EMbdS2Dpoux02sZvlrzC0LK1KKgR_Pc9JGnWAELcothNHv2f7_V7eB8AbSqxTaZFFgsUsYkh1cM1xEeWEuyJLdSGcNw1MZ9n4gn28TC-34KCPhXHONc5nbuAvm3_5dm5W3lR2KAgnlOd34G7KGEvbaK3eouJLSIiUd6mFklgcDkcj_AokgQS5KUor9yaOjeOnydLflVW5pWHurKqF-vFdleXGYXP0AKbrabY-JteDVa0H5udvGRz_9zsewv1O6wyHrZg8gi1XPYbdjVyEe-COT4fTydnbcNY6hocnlY_HQNjC965uHLaq8PPX-ipsYnZLhbp6eNa6xSyxSVU2PF6iKn41Xyyw6RT3opsuyDMcll_mSxx78wQujj6cj8ZRV4MhMizO60hkwtocdaZc5cL_pI6pcsgKc4VExTKjU2qsFZYmtECiLRLmEk5TlVJNqBGKPoXtal65ZxAq7G2YMLHJFLMJzZlSWgtlEpOl1qoAyBoaaboE5b5ORikbohIL2eIpPZ6ywzOAg37Qos3P8e_u7zzmfVefXLu5gfjIbq3KxOZCs6zIuIoZ106TmIs84YbEqnCFC2DPY9o_pIMzgP21BMluI_gmCcvwvPG0OoCol6o_pqqa6pi3pvr87295DTvj8-lETk5mn17APT-itQjtwzaKhXuJOlKtXzVL4xdJxQv2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA4AKUgAqXygSNpk9hxbG5h6QNEt3tgRTlF40daRJpd7aZC8OsZJ-5qSyUE19iOEs839ow98w0hr1lmHeS1iBVPeMzR1UGdK1Qss8LVIte1cv5o4HQiTmb843l-Hs47Vn0it59-nG5cwwcyoYHi0UcprQ58xviWyNHqHpGt2WRafvW141KhYtbfQr4MFJoH0FcbRPcvQ68UcVr4w42Njafn5w8FVW7Zlvev2wX8_AFNs7HNHD0aOI9WPTuhjy75vn_d6X3z6w_uxn_5g8fkYbA1aTmAY5vcc-0T8mCDgXCHuOOz8vTT9C2dDOHg9EPrszBQWPS96_owrZZ--dZd0j5TtwG00Ol0CIZZYhO0lh4v0QC_nC8W2HSGK9BVSO2kZXMxX-LYq6dkdnT4eXwSh8oLseGJ7GIllLUSLSUJUvmr6YSBQ19QAronlhudM2OtsixlNbrXKuUuLVgOOdMZMwrYMzJq5617Tihgb8OVSYwAblMmOYDWCkxqRG4tRCS7EUtlAi25r47RVL17kqiqHI8Ri5WXZRVkGZE360GLgZXj793feXmvu3pK7f7BfHlRBQ2tUiuV5qIWBSS80E5nSaFkWpgsgdrVLiI7Hi3rl-C8ZKyQEdm9QU8V1H9VZVzgLuOd6YjEa0Td-dQBpbc-9cV_9t8lI4SFe4WWUaf3glL8BirEDuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GOAMLP%3A+Network+Intrusion+Detection+With+Multilayer+Perceptron+and+Grasshopper+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Moghanian%2C+Shadi&rft.au=Saravi%2C+Farshid+Bagheri&rft.au=Javidi%2C+Giti&rft.au=Sheybani%2C+Ehsan+O.&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=215202&rft.epage=215213&rft_id=info:doi/10.1109%2FACCESS.2020.3040740&rft.externalDocID=9272378 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |