GOAMLP: Network Intrusion Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm

In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 215202 - 215213
Main Authors Moghanian, Shadi, Saravi, Farshid Bagheri, Javidi, Giti, Sheybani, Ehsan O.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3040740

Cover

Abstract In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the swarm-based approach is used to reduce intrusion detection errors. In the proposed method, the Grasshopper Optimization Algorithm (GOA) is used for better and more accurate learning of ANNs to reduce intrusion detection error rate. The role of the GOAMLP algorithm is to minimize the intrusion detection error in the neural network by selecting useful parameters such as weight and bias. Our implementation in MATLAB software and using the KDD and UNSW datasets show that the proposed method detects abnormal, malicious traffic and attacks with high accuracy. The GOAMLP method outperforms and is more accurate than the existing state-of-the-art techniques such as RF, XGBoost, and embedded learning of ANN with BOA, HHO, and BWO algorithms in network intrusion detection.
AbstractList In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the swarm-based approach is used to reduce intrusion detection errors. In the proposed method, the Grasshopper Optimization Algorithm (GOA) is used for better and more accurate learning of ANNs to reduce intrusion detection error rate. The role of the GOAMLP algorithm is to minimize the intrusion detection error in the neural network by selecting useful parameters such as weight and bias. Our implementation in MATLAB software and using the KDD and UNSW datasets show that the proposed method detects abnormal, malicious traffic and attacks with high accuracy. The GOAMLP method outperforms and is more accurate than the existing state-of-the-art techniques such as RF, XGBoost, and embedded learning of ANN with BOA, HHO, and BWO algorithms in network intrusion detection.
Author Javidi, Giti
Moghanian, Shadi
Sheybani, Ehsan O.
Saravi, Farshid Bagheri
Author_xml – sequence: 1
  givenname: Shadi
  surname: Moghanian
  fullname: Moghanian, Shadi
  organization: Computer Science Department, Universidad Politécnica de Cataluña, Barcelona, Spain
– sequence: 2
  givenname: Farshid Bagheri
  orcidid: 0000-0003-4213-5053
  surname: Saravi
  fullname: Saravi, Farshid Bagheri
  organization: CS-IT Hub, Bradenton, FL, USA
– sequence: 3
  givenname: Giti
  orcidid: 0000-0002-2139-7807
  surname: Javidi
  fullname: Javidi, Giti
  organization: Muma College of Business, University of South Florida, Tampa, FL, USA
– sequence: 4
  givenname: Ehsan O.
  orcidid: 0000-0002-7809-1294
  surname: Sheybani
  fullname: Sheybani, Ehsan O.
  email: sheybani@usf.edu
  organization: Muma College of Business, University of South Florida, Tampa, FL, USA
BookMark eNqFkU1vEzEQhleoSJTSX9DLSpwT_LVrm1sUSoiUkkoFcbQm3tnWYbNebEdV-PU42apC5YAvM5qZ57Xn9dvirPc9FsUVJVNKif4wm8-v7-6mjDAy5UQQKcir4pzRWk94xeuzv_I3xWWMW5KPyqVKnhe4WM9uVrcfy6-YHn34WS77FPbR-b78hAltOmY_XHoob_Zdch0cMJS3GCwOKeQW9E25CBDjgx-G3FoPye3cbzhxs-7eh8zu3hWvW-giXj7Fi-L75-tv8y-T1XqxnM9WEyuIShNd66ZRQlAFSjOZn8kBqRIKKlk3wm4qbptGN5zyttZEU4FU8goqvmHcauAXxXLUbTxszRDcDsLBeHDmVPDh3kBIznZoaKP0RtRtLYEIucENI1IrKi0j0GKLWUuMWvt-gMMjdN2zICXm6LwBazFGc3TePDmfsfcjNgT_a48xma3fhz5vbZiolawpYSxP8XHKBh9jwPYf7fFXX2rrF5R16WR1CuC6_7BXI-sQ8fm27DLjUvE_8SGv9w
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_024_20194_y
crossref_primary_10_32604_cmc_2024_055007
crossref_primary_10_3390_app13137891
crossref_primary_10_1016_j_eswa_2024_124701
crossref_primary_10_1109_ACCESS_2023_3236254
crossref_primary_10_1016_j_compeleceng_2024_109838
crossref_primary_10_1016_j_eswa_2022_117053
crossref_primary_10_1016_j_eswa_2022_119098
crossref_primary_10_1016_j_eswa_2023_119633
crossref_primary_10_1007_s12530_023_09526_9
crossref_primary_10_1016_j_eswa_2022_117033
crossref_primary_10_1016_j_rser_2023_113653
crossref_primary_10_1371_journal_pone_0289173
crossref_primary_10_1016_j_iot_2024_101421
crossref_primary_10_1016_j_eswa_2022_116624
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_1016_j_jfranklin_2024_107440
crossref_primary_10_3390_math12111720
crossref_primary_10_1016_j_jenvman_2023_119724
crossref_primary_10_1016_j_eswa_2022_117483
crossref_primary_10_1007_s11042_024_19962_7
crossref_primary_10_1007_s10586_024_04510_7
crossref_primary_10_1007_s11277_023_10687_8
crossref_primary_10_1016_j_eswa_2022_119105
crossref_primary_10_1007_s12652_023_04571_3
crossref_primary_10_1016_j_asoc_2024_112327
crossref_primary_10_1016_j_eswa_2022_118916
crossref_primary_10_1016_j_eswa_2023_120596
crossref_primary_10_1109_ACCESS_2023_3341507
Cites_doi 10.1016/j.future.2019.02.028
10.1109/ICC.2019.8761575
10.1007/s13198-017-0683-8
10.1109/IACS.2019.8809179
10.1109/TITS.2019.2908074
10.1109/ITNEC.2019.8729425
10.1109/JIOT.2019.2912022
10.1016/j.advengsoft.2017.01.004
10.1109/ICACTM.2019.8776744
10.1007/s00500-018-3424-2
10.1109/ACCESS.2018.2810198
10.5121/ijnsa.2019.11302
10.1016/j.procs.2020.03.259
10.1109/ACCESS.2019.2908998
10.1016/j.future.2017.01.029
10.1016/j.future.2017.10.016
10.1016/j.ins.2018.06.072
10.1016/j.compeleceng.2017.10.011
10.1007/s12065-019-00291-w
10.1080/1206212X.2019.1612993
10.1007/s10799-018-0291-6
10.1016/j.jmat.2020.02.011
10.1109/TII.2019.2946791
10.1186/s42400-019-0038-7
10.1109/TII.2019.2916335
10.1109/ACCESS.2018.2878552
10.1016/j.eswa.2018.09.015
10.1007/s11063-015-9457-y
10.1186/s40537-019-0248-6
10.1109/JIOT.2019.2926365
10.1109/JIOT.2020.2970501
10.1007/s11227-019-02945-z
10.1016/j.eij.2013.10.003
10.1109/MC.2018.2888764
10.1007/s10586-019-02998-y
10.3390/a10020039
10.1109/TII.2019.2920831
10.1016/j.cose.2017.10.011
10.1155/2019/7130868
10.1186/s40537-018-0145-4
10.1007/s12652-019-01387-y
10.1109/JIOT.2019.2926610
10.1007/s11042-019-7495-6
10.1007/s00500-017-2856-4
10.1109/LSENS.2019.2909323
10.1109/TII.2019.2956474
10.1109/ICECA.2019.8822081
10.1007/s12065-019-00199-5
10.1109/ACCESS.2019.2963679
10.1016/j.cosrev.2017.07.001
10.1007/s12083-017-0630-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3040740
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 215213
ExternalDocumentID oai_doaj_org_article_1d89b46f67a047beb2079817c20afefe
oai:commons.case.edu:studentworks-1023
10_1109_ACCESS_2020_3040740
9272378
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-969dd84418a89270003ae1848a576d4cb53cdd9d313f690914e1735a53b23c9a3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:21 EDT 2025
Sun Sep 07 11:01:19 EDT 2025
Sun Jun 29 16:36:37 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Oct 01 03:37:49 EDT 2025
Wed Aug 27 02:33:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-969dd84418a89270003ae1848a576d4cb53cdd9d313f690914e1735a53b23c9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2139-7807
0000-0003-4213-5053
0000-0002-7809-1294
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9272378
PQID 2468761022
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_3040740
unpaywall_primary_10_1109_access_2020_3040740
proquest_journals_2468761022
crossref_primary_10_1109_ACCESS_2020_3040740
ieee_primary_9272378
doaj_primary_oai_doaj_org_article_1d89b46f67a047beb2079817c20afefe
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
najeeb (ref54) 2018; 13
ref18
saremi (ref21) 2020; 811
chen (ref24) 2020; 10
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
niksefat (ref40) 2017; 25
References_xml – ident: ref20
  doi: 10.1016/j.future.2019.02.028
– ident: ref51
  doi: 10.1109/ICC.2019.8761575
– ident: ref11
  doi: 10.1007/s13198-017-0683-8
– ident: ref10
  doi: 10.1109/IACS.2019.8809179
– ident: ref12
  doi: 10.1109/TITS.2019.2908074
– ident: ref7
  doi: 10.1109/ITNEC.2019.8729425
– ident: ref3
  doi: 10.1109/JIOT.2019.2912022
– ident: ref22
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: ref8
  doi: 10.1109/ICACTM.2019.8776744
– ident: ref46
  doi: 10.1007/s00500-018-3424-2
– ident: ref16
  doi: 10.1109/ACCESS.2018.2810198
– ident: ref49
  doi: 10.5121/ijnsa.2019.11302
– ident: ref9
  doi: 10.1016/j.procs.2020.03.259
– ident: ref6
  doi: 10.1109/ACCESS.2019.2908998
– ident: ref30
  doi: 10.1016/j.future.2017.01.029
– ident: ref31
  doi: 10.1016/j.future.2017.10.016
– volume: 811
  start-page: 107
  year: 2020
  ident: ref21
  article-title: Grasshopper optimization algorithm: Theory, literature review, and application in hand posture estimation
  publication-title: Studies in Computational Intelligence
– ident: ref18
  doi: 10.1016/j.ins.2018.06.072
– ident: ref13
  doi: 10.1016/j.compeleceng.2017.10.011
– ident: ref33
  doi: 10.1007/s12065-019-00291-w
– ident: ref15
  doi: 10.1080/1206212X.2019.1612993
– ident: ref26
  doi: 10.1007/s10799-018-0291-6
– ident: ref19
  doi: 10.1016/j.jmat.2020.02.011
– ident: ref45
  doi: 10.1109/TII.2019.2946791
– ident: ref27
  doi: 10.1186/s42400-019-0038-7
– ident: ref25
  doi: 10.1109/TII.2019.2916335
– ident: ref2
  doi: 10.1109/ACCESS.2018.2878552
– volume: 13
  start-page: 2347
  year: 2018
  ident: ref54
  article-title: A feature selection approach using binary Firefly Algorithm for network intrusion detection system
  publication-title: ARPN J Eng Appl Sci
– ident: ref47
  doi: 10.1016/j.eswa.2018.09.015
– ident: ref41
  doi: 10.1007/s11063-015-9457-y
– ident: ref38
  doi: 10.1186/s40537-019-0248-6
– ident: ref42
  doi: 10.1109/JIOT.2019.2926365
– ident: ref5
  doi: 10.1109/JIOT.2020.2970501
– ident: ref35
  doi: 10.1007/s11227-019-02945-z
– ident: ref52
  doi: 10.1016/j.eij.2013.10.003
– ident: ref48
  doi: 10.1109/MC.2018.2888764
– ident: ref39
  doi: 10.1007/s10586-019-02998-y
– volume: 10
  year: 2020
  ident: ref24
  article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe river basin, northwestern China
  publication-title: Sci Rep
– ident: ref53
  doi: 10.3390/a10020039
– ident: ref43
  doi: 10.1109/TII.2019.2920831
– ident: ref32
  doi: 10.1016/j.cose.2017.10.011
– ident: ref14
  doi: 10.1155/2019/7130868
– ident: ref50
  doi: 10.1186/s40537-018-0145-4
– ident: ref36
  doi: 10.1007/s12652-019-01387-y
– ident: ref4
  doi: 10.1109/JIOT.2019.2926610
– ident: ref34
  doi: 10.1007/s11042-019-7495-6
– ident: ref28
  doi: 10.1007/s00500-017-2856-4
– ident: ref1
  doi: 10.1109/LSENS.2019.2909323
– ident: ref44
  doi: 10.1109/TII.2019.2956474
– ident: ref17
  doi: 10.1109/ICECA.2019.8822081
– ident: ref29
  doi: 10.1007/s12065-019-00199-5
– ident: ref23
  doi: 10.1109/ACCESS.2019.2963679
– volume: 25
  start-page: 69
  year: 2017
  ident: ref40
  article-title: Privacy issues in intrusion detection systems: A taxonomy, survey and future directions
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2017.07.001
– ident: ref37
  doi: 10.1007/s12083-017-0630-0
SSID ssj0000816957
Score 2.3942535
Snippet In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215202
SubjectTerms Algorithms
artificial neural network
Artificial neural networks
Classification algorithms
Computer hacking
Data mining
Error detection
Genetic algorithms
Heuristic methods
Intrusion detection systems
Learning theory
Machine learning
Machine learning algorithms
Mathematical model
multilayer perceptron
Multilayer perceptrons
Network intrusion detection
Neural networks
Optimization
Optimization algorithms
Service introduction
swarm-based algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQURKJUPHIlqx44f3JalDxB9HKjozZrYDq2UZlfLoqr_nnHirlIhwYVr_NBk_Nmezx7PEPJOVCFC3arSSiZLiVQH55y2pal0bFXdtDamo4HjE3V0Lr9c1BeTVF_JJ2wMDzwqbo8HYxupWqWBSd0gEWTaGq59xaCNbUyrLzN2QqaGNdhwZWudwwxxZvdm8zn-ERLCCnkqIlen447JVjRE7M8pVu5Zmw9_9Uu4vYGum2w8B0_Jk2wx0tko6TPyIPbPyeNJHMFtEg9PZ8dfzz7Qk9Gpm37u01sKVDn9FNeDs1VPv1-tL-nw3rYDtLPp2ejSssIi6AM9XKEZfblYLrHoFNeR6_xAk866H4sVtr1-Qc4P9r_Nj8qcP6H0kpl1aZUNwaC9Y8DYdMHMBERkdAaQZATpm1r4EGwQXLRIki2XkWtRQy2aSngL4iXZ6hd9fEUoYG0vrWdegQxcGAnQNBY896oOAQpS3anS-RxcPOW46NxAMph1o_5d0r_L-i_I-02j5Rhb4-_VP6Yx2lRNgbGHDwgXl-Hi_gWXgmynEd50gnqphDYF2bkbcZcn8U9XSYV7RaLEBSk3KPhDVBgyW94T9fX_EPUNeZT6HM97dsgWAie-RQto3ewOYP8N0Zb_lg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA4AKUgAqXygSNpk9hxbG5h6QNEt3tgRTlF40daRJpd7aZC8OsZJ-5qSyUE19iOEs839ow98w0hr1lmHeS1iBVPeMzR1UGdK1Qss8LVIte1cv5o4HQiTmb843l-Hs47Vn0it59-nG5cwwcyoYHi0UcprQ58xviWyNHqHpGt2WRafvW141KhYtbfQr4MFJoH0FcbRPcvQ68UcVr4w42Njafn5w8FVW7Zlvev2wX8_AFNs7HNHD0aOI9WPTuhjy75vn_d6X3z6w_uxn_5g8fkYbA1aTmAY5vcc-0T8mCDgXCHuOOz8vTT9C2dDOHg9EPrszBQWPS96_owrZZ--dZd0j5TtwG00Ol0CIZZYhO0lh4v0QC_nC8W2HSGK9BVSO2kZXMxX-LYq6dkdnT4eXwSh8oLseGJ7GIllLUSLSUJUvmr6YSBQ19QAronlhudM2OtsixlNbrXKuUuLVgOOdMZMwrYMzJq5617Tihgb8OVSYwAblMmOYDWCkxqRG4tRCS7EUtlAi25r47RVL17kqiqHI8Ri5WXZRVkGZE360GLgZXj793feXmvu3pK7f7BfHlRBQ2tUiuV5qIWBSS80E5nSaFkWpgsgdrVLiI7Hi3rl-C8ZKyQEdm9QU8V1H9VZVzgLuOd6YjEa0Td-dQBpbc-9cV_9t8lI4SFe4WWUaf3glL8BirEDuA
  priority: 102
  providerName: Unpaywall
Title GOAMLP: Network Intrusion Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9272378
https://www.proquest.com/docview/2468761022
https://commons.case.edu/studentworks/21
https://doaj.org/article/1d89b46f67a047beb2079817c20afefe
UnpaywallVersion submittedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_axgF24GtMBEaVA8elS2wntrmFwjYQ7XqgYpwif4UhurTqUiH463lO0qgDhLhF8XNi6_dsv_f8PgBeUmKdSssskixmEUNVB9ccl5Eg3JVZqkvpvGlgPMnOZ-z9ZXq5A8d9LIxzrnE-c0P_2Nzl24VZe1PZiSScUC52YZeLrI3V6u0pvoCETHmXWCiJ5Uk-GuEcUAUkqJkir3Jv4Ng6fJoc_V1RlVvy5d11tVQ_vqv5fOuoOX0A480gWw-Tb8N1rYfm52_5G_93Fg_hfidzhnnLJI9gx1WPYX8rE-EBuLOLfPxh-iqctG7h4bvKR2MgaOEbVzfuWlX46Wt9FTYRu3OFkno4bZ1iVtikKhuerVAQv1osl9h0gTvRdRfiGebzL4sV9r1-ArPTtx9H51FXgSEyLBZ1JDNprUCJSSgh_RV1TJVDnVAoVFMsMzqlxlppaUJLVLNlwlzCaapSqgk1UtFD2KsWlXsKoUJqw6SJTaaYTahgSmktlUlMllqrAiAbaArTpSf3VTLmRaOmxLJo8Sw8nkWHZwDHfadlm53j3-SvPeY9qU-t3bxAfIpupRaJFVKzrMy4ihnXTpOYS5FwQ2JVutIFcOAx7T_SwRnA0YaDim4buCkIy_C08Up1AFHPVX8MVTW1MW8N9dnf__Ic7nmq1gZ0BHvICu4FSkW1HjTWhEGzKAZwZzaZ5p9_AdqIC04
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4zB24GsgAgNy4Lh0ie3EMbdS2Dpoux02sZvlrzC0LK1KKgR_Pc9JGnWAELcothNHv2f7_V7eB8AbSqxTaZFFgsUsYkh1cM1xEeWEuyJLdSGcNw1MZ9n4gn28TC-34KCPhXHONc5nbuAvm3_5dm5W3lR2KAgnlOd34G7KGEvbaK3eouJLSIiUd6mFklgcDkcj_AokgQS5KUor9yaOjeOnydLflVW5pWHurKqF-vFdleXGYXP0AKbrabY-JteDVa0H5udvGRz_9zsewv1O6wyHrZg8gi1XPYbdjVyEe-COT4fTydnbcNY6hocnlY_HQNjC965uHLaq8PPX-ipsYnZLhbp6eNa6xSyxSVU2PF6iKn41Xyyw6RT3opsuyDMcll_mSxx78wQujj6cj8ZRV4MhMizO60hkwtocdaZc5cL_pI6pcsgKc4VExTKjU2qsFZYmtECiLRLmEk5TlVJNqBGKPoXtal65ZxAq7G2YMLHJFLMJzZlSWgtlEpOl1qoAyBoaaboE5b5ORikbohIL2eIpPZ6ywzOAg37Qos3P8e_u7zzmfVefXLu5gfjIbq3KxOZCs6zIuIoZ106TmIs84YbEqnCFC2DPY9o_pIMzgP21BMluI_gmCcvwvPG0OoCol6o_pqqa6pi3pvr87295DTvj8-lETk5mn17APT-itQjtwzaKhXuJOlKtXzVL4xdJxQv2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA4AKUgAqXygSNpk9hxbG5h6QNEt3tgRTlF40daRJpd7aZC8OsZJ-5qSyUE19iOEs839ow98w0hr1lmHeS1iBVPeMzR1UGdK1Qss8LVIte1cv5o4HQiTmb843l-Hs47Vn0it59-nG5cwwcyoYHi0UcprQ58xviWyNHqHpGt2WRafvW141KhYtbfQr4MFJoH0FcbRPcvQ68UcVr4w42Njafn5w8FVW7Zlvev2wX8_AFNs7HNHD0aOI9WPTuhjy75vn_d6X3z6w_uxn_5g8fkYbA1aTmAY5vcc-0T8mCDgXCHuOOz8vTT9C2dDOHg9EPrszBQWPS96_owrZZ--dZd0j5TtwG00Ol0CIZZYhO0lh4v0QC_nC8W2HSGK9BVSO2kZXMxX-LYq6dkdnT4eXwSh8oLseGJ7GIllLUSLSUJUvmr6YSBQ19QAronlhudM2OtsixlNbrXKuUuLVgOOdMZMwrYMzJq5617Tihgb8OVSYwAblMmOYDWCkxqRG4tRCS7EUtlAi25r47RVL17kqiqHI8Ri5WXZRVkGZE360GLgZXj793feXmvu3pK7f7BfHlRBQ2tUiuV5qIWBSS80E5nSaFkWpgsgdrVLiI7Hi3rl-C8ZKyQEdm9QU8V1H9VZVzgLuOd6YjEa0Td-dQBpbc-9cV_9t8lI4SFe4WWUaf3glL8BirEDuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GOAMLP%3A+Network+Intrusion+Detection+With+Multilayer+Perceptron+and+Grasshopper+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Moghanian%2C+Shadi&rft.au=Saravi%2C+Farshid+Bagheri&rft.au=Javidi%2C+Giti&rft.au=Sheybani%2C+Ehsan+O.&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=215202&rft.epage=215213&rft_id=info:doi/10.1109%2FACCESS.2020.3040740&rft.externalDocID=9272378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon