A deep learning model for plant lncRNA-protein interaction prediction with graph attention

Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LP...

Full description

Saved in:
Bibliographic Details
Published inMolecular genetics and genomics : MGG Vol. 295; no. 5; pp. 1091 - 1102
Main Authors Wekesa, Jael Sanyanda, Meng, Jun, Luan, Yushi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-4615
1617-4623
1617-4623
DOI10.1007/s00438-020-01682-w

Cover

Abstract Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l 2 -norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
AbstractList Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l2-norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l2-norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l2-norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l₂-norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l 2 -norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have been experimentally characterized. We propose GPLPI, a graph representation learning method, to predict plant lncRNA-protein interaction (LPI) from sequence and structural information. GPLPI employs a generative model using long short-term memory (LSTM) with graph attention. Evolutionary features are extracted using frequency chaos game representation (FCGR). Manifold regularization and l -norm are adopted to obtain discriminant feature representations and mitigate overfitting. The model captures locality preserving and reconstruction constraints that lead to better generalization ability. Finally, potential interactions between lncRNAs and proteins are predicted by integrating catboost and regularized Logistic regression based on L-BFGS optimization algorithm. The method is trained and tested on Arabidopsis thaliana and Zea mays datasets. GPLPI achieves accuracies of 85.76% and 91.97% respectively. The results show that our method consistently outperforms other state-of-the-art methods.
Author Wekesa, Jael Sanyanda
Luan, Yushi
Meng, Jun
Author_xml – sequence: 1
  givenname: Jael Sanyanda
  surname: Wekesa
  fullname: Wekesa, Jael Sanyanda
  organization: School of Computer Science and Technology, Dalian University of Technology, School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-7357-8562
  surname: Meng
  fullname: Meng, Jun
  email: mengjun@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology
– sequence: 3
  givenname: Yushi
  surname: Luan
  fullname: Luan, Yushi
  organization: School of Bioengineering, Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32409904$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaD7aP9BDEfTSyzajr13t0YQ0CZgEQnrpRcjasaOw1m4lGdN_XzmbpOBDgg4axPOO5p33hByEISAhXxj8YADNWQKQQlfAoQJWa15tP5BjVrOmkjUXB681U0fkJKVHANbUvPlIjgSX0LYgj8nvGe0QR9qjjcGHFV0PHfZ0OUQ69jZk2gd3dzOrxjhk9IH6kDFal_0Q6Bix81O59fmBrqIdH6jNGcPu8RM5XNo-4efn-5T8-nlxf35VzW8vr89n88pJ0LlqFTC50Bx045hWHfJiSLWWg-gcU62zTDnOlWsU6lbZBrUVtV24Jbiua5U4Jd-nvmXGPxtM2ax9ctiX8XHYJMMVl6K0L8t6F5VQjuB1U9Bve-jjsImhGCkU11zXSraF-vpMbRZr7MwY_drGv-ZlwQXgE-DikFLE5SvCwOxSNFOKppg2TymabRHpPZHz2e52mqP1_dtSMUlT-SesMP4f-w3VP4VFr9o
CitedBy_id crossref_primary_10_3390_molecules28052284
crossref_primary_10_1016_j_csbj_2022_06_004
crossref_primary_10_1109_TCBB_2023_3268661
crossref_primary_10_1186_s12864_024_11168_3
crossref_primary_10_1016_j_knosys_2025_112957
crossref_primary_10_1093_bib_bbab051
crossref_primary_10_1093_bib_bbac339
crossref_primary_10_1016_j_ymeth_2022_09_001
crossref_primary_10_3390_biology12071033
crossref_primary_10_1016_j_neucom_2022_06_107
crossref_primary_10_1016_j_jbiotec_2022_09_014
crossref_primary_10_1007_s12539_025_00689_4
crossref_primary_10_1016_j_csbj_2023_03_027
crossref_primary_10_3390_ncrna6040049
crossref_primary_10_3390_ncrna7020033
crossref_primary_10_1016_j_semcancer_2022_05_013
crossref_primary_10_1093_nar_gkad929
crossref_primary_10_2174_1574893618666230727103257
crossref_primary_10_3389_fpls_2022_890663
crossref_primary_10_1016_j_compbiolchem_2023_108000
crossref_primary_10_3934_mbe_2022222
crossref_primary_10_1016_j_psj_2021_101394
crossref_primary_10_1016_j_compbiomed_2023_106783
crossref_primary_10_1007_s12539_021_00483_y
crossref_primary_10_1186_s12859_021_04171_y
crossref_primary_10_3389_fgene_2023_1199087
Cites_doi 10.1093/bib/bbz041
10.3390/ijms20174260
10.1186/1748-7188-6-26
10.1007/978-3-319-46493-0_32
10.1093/nar/gkx866
10.1093/bioinformatics/btw730
10.1007/s00438-017-1374-5
10.1038/nmeth.4100
10.1016/j.ymeth.2019.04.008
10.1101/345140
10.1109/ACCESS.2019.2961260
10.1093/bioinformatics/btx794
10.1371/journal.pone.0217312
10.1016/j.neucom.2016.12.075
10.1038/nrg.2015.10
10.1038/s41467-019-12920-0
10.1109/BIBM.2018.8621081
10.1093/bioinformatics/btu352
10.1016/j.envexpbot.2019.05.002
10.1016/j.omtn.2019.07.019
10.1016/j.compbiolchem.2019.107171
10.18632/oncotarget.19588
10.1093/bioinformatics/btw639
10.1038/s41467-018-07500-7
10.1016/j.cels.2016.10.017
10.1093/bib/bby034
10.1038/s41467-019-13235-w
10.1186/s12864-016-2931-8
10.1016/j.gpb.2016.01.004
10.1093/bioinformatics/btm344
10.1186/s12859-020-3406-0
10.1101/276915
10.18632/oncotarget.21934
10.1093/bioinformatics/btz718
10.3390/ijms19092483
10.1186/1471-2105-12-489
10.1016/j.micpath.2018.05.050
10.1007/s00438-019-01590-8
10.1093/bioinformatics/bty600
10.1016/j.neucom.2017.12.004
10.3389/fgene.2019.01346
10.1109/ICTAI50040.2020.00154
10.1016/j.biosystems.2015.10.004
10.1038/s41586-020-1957-x
10.1371/journal.pcbi.1006616
10.1093/bioinformatics/btz322
10.1093/nar/18.8.2163
10.1186/s12859-019-3330-3
10.1371/journal.pcbi.1007283
10.1007/s41109-019-0174-8
10.1038/nbt.3300
10.3389/fgene.2018.00716
10.1109/ACCESS.2016.2616584
10.1038/s41598-018-27814-2
10.1007/978-3-030-18576-3_19
10.1146/annurev-cellbio-100818-125218
10.1093/nargab/lqz024
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
NPM
3V.
7SS
7TK
7TM
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOI 10.1007/s00438-020-01682-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1617-4623
EndPage 1102
ExternalDocumentID 32409904
10_1007_s00438_020_01682_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872055; 31872116
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61872055
– fundername: National Natural Science Foundation of China
  grantid: 31872116
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.55
.86
.GJ
06C
06D
0R~
0VY
199
1N0
2.D
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5RE
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L7B
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOR
QOS
R89
R9I
RHV
RIG
RNS
ROL
RPX
RRX
RSV
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
X7M
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z87
Z8O
Z8P
Z8Q
Z8S
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7SS
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-95014b82087c185de202059a203dc159ca15c225c75e895a7e8a36abcf0cdd953
IEDL.DBID BENPR
ISSN 1617-4615
1617-4623
IngestDate Fri Sep 05 10:23:25 EDT 2025
Thu Oct 02 10:45:20 EDT 2025
Tue Oct 07 05:58:57 EDT 2025
Mon Jul 21 05:23:35 EDT 2025
Wed Oct 01 05:11:42 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
lncRNA
Graph attention
Interaction
Protein
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-95014b82087c185de202059a203dc159ca15c225c75e895a7e8a36abcf0cdd953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7357-8562
PMID 32409904
PQID 2428286549
PQPubID 55367
PageCount 12
ParticipantIDs proquest_miscellaneous_2524320804
proquest_miscellaneous_2404043267
proquest_journals_2428286549
pubmed_primary_32409904
crossref_primary_10_1007_s00438_020_01682_w
crossref_citationtrail_10_1007_s00438_020_01682_w
springer_journals_10_1007_s00438_020_01682_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Molecular genetics and genomics : MGG
PublicationTitleAbbrev Mol Genet Genomics
PublicationTitleAlternate Mol Genet Genomics
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Graindorge, Pinheiro, Nawrocka, Mallory, Tsvetkov, Gil, Carolis, Buchholz, Ulitsky, Heard, Taipale, Shkumatava (CR10) 2019; 10
Yu, Wang, Li, Yang, Yao (CR51) 2016; 5
Cho, Berger, Peng (CR5) 2016; 3
Zheng, Hao, Lu, Bao, Xu, Hao, Xu (CR60) 2017; 257
Magnan, Baldi (CR26) 2014; 30
CR38
Yi, You, Wang, Guo, Wang, Zhou (CR50) 2020; 21
CR35
Zaynab, Fatima, Abbas, Umair, Sharif, Raza (CR56) 2018; 121
Ge, Li, Wang (CR9) 2016; 14
Tuvshinjargal, Lee, Park, Han (CR44) 2016; 139
Li, Ge, Zhang, Peng, Wang (CR16) 2015; 2015
Wang, Wu, Wang, Wei, Gui (CR46) 2019; 14
Li, Huang, Ding, Li, Pan, Gao (CR20) 2019; 166
Liu, Ren, Hu, Zhang, Ai, Zhang, Zhao (CR23) 2017; 8
Yue, Wang, Huang, Parthasarathy, Moosavinasab, Huang, Lin, Zhang, Zhang, Sun (CR55) 2019; 36
Ru, Cao, Li, Zou (CR36) 2019; 18
Negri, Alves, Bugatti, Saito, Domingues, Paschoal (CR29) 2018; 20
CR3
Lichtblau (CR22) 2019; 20
Yu, Zhang, Chen, Chen (CR54) 2019; 35
Wang, Yu, Domeniconi, Wang, Zhang, Guo (CR47) 2019
CR8
Lan, Li, Zhao, Liu, Wu, Pan, Wang (CR15) 2016; 33
Li, Song, Liu (CR17) 2018; 281
Li, Wu, Ngom (CR19) 2018; 19
Li, Zhu, Xu, Yao (CR21) 2019; 8
Zhao, Li, Lian, Gu, Li, Qi (CR59) 2018; 9
Peng, Liu, Yang, Liu, Meng, Deng, Peng, Tian, Zhou (CR32) 2020; 10
CR45
Camargo, Sourkov, Pereira Gonçalo, Carazzolle Marcelo (CR4) 2020; 2
Su, Luo, Zhao, Liu, Peng (CR42) 2019; 15
Pan, Fan, Yan, Shen (CR30) 2016; 17
Park, Han (CR31) 2020; 84
Cirillo, Blanco, Armaos, Buness, Avner, Guttman, Cerase, Tartaglia (CR6) 2017; 14
Shrikumar, Prakash, Kundaje (CR61) 2019; 35
Alipanahi, Delong, Weirauch, Frey (CR1) 2015; 33
Taheri, Gimpel, Berger-Wolf (CR43) 2019; 4
CR13
Shen, Ding, Tang, Guo (CR40) 2018; 9
Xie, Huang, Luo, Ma, Lin, Sun (CR48) 2019; 294
Xuan, Sheng, Zhang, Liu, Guo (CR49) 2019; 20
Lam, Li, Zhu, Umarov, Jiang, Héliou, Sheong, Liu, Long, Li, Fang, Altman, Chen, Huang, Gao (CR14) 2019; 10
Lorenz, Bernhart, Zu Siederdissen, Tafer, Flamm, Stadler (CR25) 2011; 6
Zhang, Liu (CR57) 2016; 33
Li, Chen, Wang, Zhang, Kong, Huang, Cai (CR18) 2018; 293
Yu, Wang, Wang, Fu, Guo, Domeniconi (CR53) 2018
Fu, Wang, Domeniconi, Yu (CR7) 2017; 34
Quinn, Chang (CR34) 2016; 17
Yu, Fu, Lu, Ren, Wang (CR52) 2017; 8
Jain, Gupte, Aduri (CR11) 2018; 8
Ben-Bassat, Chor, Orenstein (CR2) 2018; 34
Qiu, Zhao, Chen, Wu (CR33) 2019; 164
Jeffrey (CR12) 1990; 18
Saeys, Inza, Larrañaga (CR37) 2007; 23
CR28
Schulz, Roux, Paez-Espino, Jungbluth, Walsh, Denef, McMahon, Konstantinidis, Eloe-Fadrosh, Kyrpides, Woyke (CR39) 2020; 578
Muppirala, Honavar, Dobbs (CR27) 2011; 12
Singh, Khemka, Rajkumar, Garg, Jain (CR41) 2017; 45
Zhang, Yue, Tang, Wu, Huang, Zhang (CR58) 2018; 14
Liu, Wang, Liu (CR24) 2018; 19
Chen, Zhao, Li, Marquez-Lago, Leier, Revote, Zhu, Powell, Akutsu, Webb, Chou, Smith, Daly, Li, Song (CR62) 2019
U Singh (1682_CR41) 2017; 45
X Yue (1682_CR55) 2019; 36
AP Camargo (1682_CR4) 2020; 2
JH Lam (1682_CR14) 2019; 10
N Tuvshinjargal (1682_CR44) 2016; 139
1682_CR13
G Yu (1682_CR52) 2017; 8
Y Saeys (1682_CR37) 2007; 23
Z Li (1682_CR21) 2019; 8
TdC Negri (1682_CR29) 2018; 20
JJ Quinn (1682_CR34) 2016; 17
C-W Qiu (1682_CR33) 2019; 164
H Liu (1682_CR23) 2017; 8
H-C Yi (1682_CR50) 2020; 21
M Ge (1682_CR9) 2016; 14
A Li (1682_CR16) 2015; 2015
DS Jain (1682_CR11) 2018; 8
H Cho (1682_CR5) 2016; 3
HJ Jeffrey (1682_CR12) 1990; 18
W Zhang (1682_CR58) 2018; 14
1682_CR45
CN Magnan (1682_CR26) 2014; 30
I Ben-Bassat (1682_CR2) 2018; 34
F Schulz (1682_CR39) 2020; 578
D Cirillo (1682_CR6) 2017; 14
X Pan (1682_CR30) 2016; 17
S Zheng (1682_CR60) 2017; 257
Y Su (1682_CR42) 2019; 15
Y Li (1682_CR20) 2019; 166
G Yu (1682_CR53) 2018
M Zaynab (1682_CR56) 2018; 121
Z Chen (1682_CR62) 2019
G Fu (1682_CR7) 2017; 34
G Xie (1682_CR48) 2019; 294
X Wang (1682_CR46) 2019; 14
R Lorenz (1682_CR25) 2011; 6
Y Yu (1682_CR54) 2019; 35
A Graindorge (1682_CR10) 2019; 10
1682_CR35
B Alipanahi (1682_CR1) 2015; 33
J Li (1682_CR18) 2018; 293
1682_CR38
X Zhao (1682_CR59) 2018; 9
Q Yu (1682_CR51) 2016; 5
B Park (1682_CR31) 2020; 84
A Shrikumar (1682_CR61) 2019; 35
Y Wang (1682_CR47) 2019
1682_CR3
W Lan (1682_CR15) 2016; 33
A Taheri (1682_CR43) 2019; 4
UK Muppirala (1682_CR27) 2011; 12
X Ru (1682_CR36) 2019; 18
HG Li (1682_CR17) 2018; 281
1682_CR8
X Zhang (1682_CR57) 2016; 33
Y Liu (1682_CR24) 2018; 19
P Xuan (1682_CR49) 2019; 20
Y Li (1682_CR19) 2018; 19
1682_CR28
D Lichtblau (1682_CR22) 2019; 20
L Peng (1682_CR32) 2020; 10
C Shen (1682_CR40) 2018; 9
References_xml – ident: CR45
– volume: 9
  start-page: 5056
  year: 2018
  ident: CR59
  article-title: Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA
  publication-title: Nat Commun
– volume: 6
  start-page: 26
  year: 2011
  ident: CR25
  article-title: ViennaRNA Package 2.0
  publication-title: Algorithm Mol Biol
– volume: 20
  start-page: 682
  year: 2018
  end-page: 689
  ident: CR29
  article-title: Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants
  publication-title: Brief Bioinform
– volume: 281
  start-page: 152
  year: 2018
  end-page: 159
  ident: CR17
  article-title: Low-dimensional feature fusion strategy for overlapping neuron spike sorting
  publication-title: Neurocomputing
– volume: 17
  start-page: 582
  year: 2016
  ident: CR30
  article-title: IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
  publication-title: BMC Genom
– volume: 35
  start-page: i173
  year: 2019
  end-page: i182
  ident: CR61
  article-title: GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
  publication-title: Bioinformatics
– ident: CR35
– volume: 257
  start-page: 59
  year: 2017
  end-page: 66
  ident: CR60
  article-title: Joint entity and relation extraction based on a hybrid neural network
  publication-title: Neurocomputing
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: CR37
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– ident: CR8
– volume: 8
  start-page: 9552
  year: 2018
  ident: CR11
  article-title: A data driven model for predicting RNA-protein interactions based on gradient boosting machine
  publication-title: Sci Rep
– volume: 30
  start-page: 2592
  year: 2014
  end-page: 2597
  ident: CR26
  article-title: SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
  publication-title: Bioinformatics
– volume: 8
  start-page: 14588
  year: 2019
  end-page: 14605
  ident: CR21
  article-title: RDense: a protein-RNA binding prediction model based on bidirectional recurrent neural network and densely connected convolutional networks
  publication-title: IEEE Access
– volume: 8
  start-page: 103975
  year: 2017
  ident: CR23
  article-title: LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization
  publication-title: Oncotarget
– year: 2019
  ident: CR62
  publication-title: iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA
  doi: 10.1093/bib/bbz041
– volume: 33
  start-page: 854
  year: 2016
  end-page: 862
  ident: CR57
  article-title: RBPPred: predicting RNA-binding proteins from sequence using SVM
  publication-title: Bioinformatics
– volume: 34
  start-page: 1529
  year: 2017
  end-page: 1537
  ident: CR7
  article-title: Matrix factorization-based data fusion for the prediction of lncRNA–disease associations
  publication-title: Bioinformatics
– volume: 45
  start-page: e183
  year: 2017
  ident: CR41
  article-title: PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 4260
  year: 2019
  ident: CR49
  article-title: CNNDLP: a method based on convolutional autoencoder and convolutional neural network with adjacent edge attention for predicting lncRNA–disease associations
  publication-title: Int J Mol Sci
– volume: 2015
  start-page: 671950
  year: 2015
  ident: CR16
  article-title: Predicting long noncoding RNA and protein interactions using heterogeneous network model
  publication-title: BioMed Res Int
– volume: 36
  start-page: 1241
  year: 2019
  end-page: 1251
  ident: CR55
  article-title: Graph embedding on biomedical networks: methods, applications and evaluations
  publication-title: Bioinformatics
– volume: 139
  start-page: 17
  year: 2016
  end-page: 22
  ident: CR44
  article-title: PRIdictor: protein–RNA interaction predictor
  publication-title: Biosystems
– volume: 35
  start-page: 407
  year: 2019
  end-page: 431
  ident: CR54
  article-title: Plant noncoding RNAs: hidden players in development and stress responses
  publication-title: Annu Rev Cell Dev Bi
– volume: 10
  start-page: 5317
  year: 2019
  ident: CR10
  article-title: In-cell identification and measurement of RNA-protein interactions
  publication-title: Nat Commun
– volume: 4
  start-page: 68
  year: 2019
  ident: CR43
  article-title: Sequence-to-sequence modeling for graph representation learning
  publication-title: Appl Netw Sci
– volume: 18
  start-page: 16
  year: 2019
  end-page: 23
  ident: CR36
  article-title: Selecting essential microRNAs using a novel voting method
  publication-title: Mol Ther Nucl Acids
– volume: 294
  start-page: 1477
  year: 2019
  end-page: 1486
  ident: CR48
  article-title: LLCLPLDA: a novel model for predicting lncRNA–disease associations
  publication-title: Mol Genet Genom
– volume: 8
  start-page: 60429
  year: 2017
  end-page: 60446
  ident: CR52
  article-title: BRWLDA: bi-random walks for predicting lncRNA-disease associations
  publication-title: Oncotarget
– volume: 20
  start-page: 742
  year: 2019
  ident: CR22
  article-title: Alignment-free genomic sequence comparison using FCGR and signal processing
  publication-title: BMC Bioinform
– volume: 293
  start-page: 293
  year: 2018
  end-page: 301
  ident: CR18
  article-title: A computational method using the random walk with restart algorithm for identifying novel epigenetic factors
  publication-title: Mol Genet Genom
– volume: 3
  start-page: 540
  year: 2016
  end-page: 548.e545
  ident: CR5
  article-title: Compact integration of multi-network topology for functional analysis of genes
  publication-title: Cell Syst
– start-page: 572
  year: 2018
  end-page: 577
  ident: CR53
  article-title: Weighted matrix factorization based data fusion for predicting lncRNA-disease associations
  publication-title: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM)
– volume: 33
  start-page: 458
  year: 2016
  end-page: 460
  ident: CR15
  article-title: LDAP: a web server for lncRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 121
  start-page: 277
  year: 2018
  end-page: 282
  ident: CR56
  article-title: Long non-coding RNAs as molecular players in plant defense against pathogens
  publication-title: Microb Pathogenes
– volume: 14
  start-page: 5
  year: 2017
  end-page: 6
  ident: CR6
  article-title: Quantitative predictions of protein interactions with long noncoding RNAs
  publication-title: Nat Methods
– volume: 14
  start-page: e1006616
  year: 2018
  ident: CR58
  article-title: SFPEL-LPI: sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions
  publication-title: PLoS Comput Biol
– volume: 10
  start-page: 1346
  year: 2020
  ident: CR32
  article-title: Probing lncRNA–protein interactions: data repositories, models, and algorithms
  publication-title: Front Genet
– volume: 34
  start-page: i638
  year: 2018
  end-page: i646
  ident: CR2
  article-title: A deep neural network approach for learning intrinsic protein-RNA binding preferences
  publication-title: Bioinformatics
– volume: 14
  start-page: e0217312
  year: 2019
  ident: CR46
  article-title: A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences
  publication-title: PLoS ONE
– volume: 21
  start-page: 60
  year: 2020
  ident: CR50
  article-title: RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information
  publication-title: BMC Bioinform
– volume: 5
  start-page: 2676
  year: 2016
  end-page: 2684
  ident: CR51
  article-title: Robust locality preserving projections with cosine-based dissimilarity for linear dimensionality reduction
  publication-title: IEEE Access
– volume: 18
  start-page: 2163
  year: 1990
  end-page: 2170
  ident: CR12
  article-title: Chaos game representation of gene structure
  publication-title: Nucleic Acids Res
– volume: 578
  start-page: 432
  year: 2020
  end-page: 436
  ident: CR39
  article-title: Giant virus diversity and host interactions through global metagenomics
  publication-title: Nature
– volume: 166
  start-page: 4
  year: 2019
  end-page: 21
  ident: CR20
  article-title: Deep learning in bioinformatics: introduction, application, and perspective in the big data era
  publication-title: Methods
– volume: 10
  start-page: 4941
  year: 2019
  ident: CR14
  article-title: A deep learning framework to predict binding preference of RNA constituents on protein surface
  publication-title: Nat Commun
– start-page: 313
  year: 2019
  end-page: 329
  ident: CR47
  article-title: Selective matrix factorization for multi-relational data fusion
  publication-title: International conference on database systems for advanced applications
– ident: CR3
– volume: 2
  start-page: Iqz024
  year: 2020
  ident: CR4
  article-title: RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences
  publication-title: NAR Genom Bioinform
– ident: CR38
– volume: 33
  start-page: 831
  year: 2015
  end-page: 838
  ident: CR1
  article-title: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
  publication-title: Nat Biotechnol
– volume: 164
  start-page: 124
  year: 2019
  end-page: 134
  ident: CR33
  article-title: Genome-wide characterization of drought stress responsive long non-coding RNAs in Tibetan wild barley
  publication-title: Environ Exp Bot
– ident: CR13
– volume: 19
  start-page: 2483
  year: 2018
  ident: CR24
  article-title: IDP-CRF: intrinsically disordered protein/region identification based on conditional random fields
  publication-title: Int J Mol Sci
– volume: 15
  start-page: e1007283
  year: 2019
  ident: CR42
  article-title: Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction
  publication-title: PLoS Comput Biol
– volume: 9
  start-page: 716
  year: 2018
  ident: CR40
  article-title: Multivariate information fusion with fast kernel learning to kernel ridge regression in predicting LncRNA-protein interactions
  publication-title: Front Genet
– volume: 19
  start-page: 325
  year: 2018
  end-page: 340
  ident: CR19
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief Bioinform
– volume: 84
  start-page: 107171
  year: 2020
  ident: CR31
  article-title: Discovering protein-binding RNA motifs with a generative model of RNA sequences
  publication-title: Comput Biol Chem
– ident: CR28
– volume: 17
  start-page: 47
  year: 2016
  end-page: 62
  ident: CR34
  article-title: Unique features of long non-coding RNA biogenesis and function
  publication-title: Nat Rev Genet
– volume: 14
  start-page: 62
  year: 2016
  end-page: 71
  ident: CR9
  article-title: A bipartite network-based method for prediction of long non-coding RNA–protein interactions
  publication-title: Genom Proteom Bioinform
– volume: 12
  start-page: 489
  year: 2011
  ident: CR27
  article-title: Predicting RNA-protein interactions using only sequence information
  publication-title: BMC Bioinform
– ident: 1682_CR45
– volume: 20
  start-page: 4260
  year: 2019
  ident: 1682_CR49
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20174260
– volume: 6
  start-page: 26
  year: 2011
  ident: 1682_CR25
  publication-title: Algorithm Mol Biol
  doi: 10.1186/1748-7188-6-26
– ident: 1682_CR35
  doi: 10.1007/978-3-319-46493-0_32
– volume: 45
  start-page: e183
  year: 2017
  ident: 1682_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx866
– volume: 2015
  start-page: 671950
  year: 2015
  ident: 1682_CR16
  publication-title: BioMed Res Int
– volume: 33
  start-page: 854
  year: 2016
  ident: 1682_CR57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw730
– volume: 293
  start-page: 293
  year: 2018
  ident: 1682_CR18
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-017-1374-5
– volume: 14
  start-page: 5
  year: 2017
  ident: 1682_CR6
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4100
– volume: 166
  start-page: 4
  year: 2019
  ident: 1682_CR20
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.008
– ident: 1682_CR8
  doi: 10.1101/345140
– volume: 8
  start-page: 14588
  year: 2019
  ident: 1682_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961260
– volume: 34
  start-page: 1529
  year: 2017
  ident: 1682_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx794
– volume: 14
  start-page: e0217312
  year: 2019
  ident: 1682_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0217312
– volume: 257
  start-page: 59
  year: 2017
  ident: 1682_CR60
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.075
– ident: 1682_CR13
– volume: 17
  start-page: 47
  year: 2016
  ident: 1682_CR34
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2015.10
– volume: 10
  start-page: 4941
  year: 2019
  ident: 1682_CR14
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12920-0
– start-page: 572
  volume-title: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM)
  year: 2018
  ident: 1682_CR53
  doi: 10.1109/BIBM.2018.8621081
– volume: 30
  start-page: 2592
  year: 2014
  ident: 1682_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu352
– volume: 164
  start-page: 124
  year: 2019
  ident: 1682_CR33
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2019.05.002
– volume: 18
  start-page: 16
  year: 2019
  ident: 1682_CR36
  publication-title: Mol Ther Nucl Acids
  doi: 10.1016/j.omtn.2019.07.019
– volume: 19
  start-page: 325
  year: 2018
  ident: 1682_CR19
  publication-title: Brief Bioinform
– volume: 84
  start-page: 107171
  year: 2020
  ident: 1682_CR31
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2019.107171
– volume: 8
  start-page: 60429
  year: 2017
  ident: 1682_CR52
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19588
– volume: 33
  start-page: 458
  year: 2016
  ident: 1682_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw639
– volume: 9
  start-page: 5056
  year: 2018
  ident: 1682_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07500-7
– volume: 3
  start-page: 540
  year: 2016
  ident: 1682_CR5
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.10.017
– volume: 20
  start-page: 682
  year: 2018
  ident: 1682_CR29
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby034
– volume: 10
  start-page: 5317
  year: 2019
  ident: 1682_CR10
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13235-w
– volume: 17
  start-page: 582
  year: 2016
  ident: 1682_CR30
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2931-8
– volume: 14
  start-page: 62
  year: 2016
  ident: 1682_CR9
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2016.01.004
– ident: 1682_CR28
– volume: 23
  start-page: 2507
  year: 2007
  ident: 1682_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 21
  start-page: 60
  year: 2020
  ident: 1682_CR50
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-3406-0
– ident: 1682_CR3
  doi: 10.1101/276915
– volume: 8
  start-page: 103975
  year: 2017
  ident: 1682_CR23
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21934
– volume: 36
  start-page: 1241
  year: 2019
  ident: 1682_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz718
– volume-title: iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA
  year: 2019
  ident: 1682_CR62
  doi: 10.1093/bib/bbz041
– volume: 19
  start-page: 2483
  year: 2018
  ident: 1682_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19092483
– volume: 12
  start-page: 489
  year: 2011
  ident: 1682_CR27
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-489
– volume: 121
  start-page: 277
  year: 2018
  ident: 1682_CR56
  publication-title: Microb Pathogenes
  doi: 10.1016/j.micpath.2018.05.050
– volume: 294
  start-page: 1477
  year: 2019
  ident: 1682_CR48
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-019-01590-8
– volume: 34
  start-page: i638
  year: 2018
  ident: 1682_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty600
– volume: 281
  start-page: 152
  year: 2018
  ident: 1682_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.004
– volume: 10
  start-page: 1346
  year: 2020
  ident: 1682_CR32
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01346
– ident: 1682_CR38
  doi: 10.1109/ICTAI50040.2020.00154
– volume: 139
  start-page: 17
  year: 2016
  ident: 1682_CR44
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2015.10.004
– volume: 578
  start-page: 432
  year: 2020
  ident: 1682_CR39
  publication-title: Nature
  doi: 10.1038/s41586-020-1957-x
– volume: 14
  start-page: e1006616
  year: 2018
  ident: 1682_CR58
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006616
– volume: 35
  start-page: i173
  year: 2019
  ident: 1682_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz322
– volume: 18
  start-page: 2163
  year: 1990
  ident: 1682_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.8.2163
– volume: 20
  start-page: 742
  year: 2019
  ident: 1682_CR22
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3330-3
– volume: 15
  start-page: e1007283
  year: 2019
  ident: 1682_CR42
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007283
– volume: 4
  start-page: 68
  year: 2019
  ident: 1682_CR43
  publication-title: Appl Netw Sci
  doi: 10.1007/s41109-019-0174-8
– volume: 33
  start-page: 831
  year: 2015
  ident: 1682_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 9
  start-page: 716
  year: 2018
  ident: 1682_CR40
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00716
– volume: 5
  start-page: 2676
  year: 2016
  ident: 1682_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2616584
– volume: 8
  start-page: 9552
  year: 2018
  ident: 1682_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27814-2
– start-page: 313
  volume-title: International conference on database systems for advanced applications
  year: 2019
  ident: 1682_CR47
  doi: 10.1007/978-3-030-18576-3_19
– volume: 35
  start-page: 407
  year: 2019
  ident: 1682_CR54
  publication-title: Annu Rev Cell Dev Bi
  doi: 10.1146/annurev-cellbio-100818-125218
– volume: 2
  start-page: Iqz024
  year: 2020
  ident: 1682_CR4
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqz024
SSID ssj0017627
Score 2.4227543
Snippet Long non-coding RNAs (lncRNAs) play a broad spectrum of distinctive regulatory roles through interactions with proteins. However, only a few plant lncRNAs have...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1091
SubjectTerms algorithms
Amino acid sequence
Animal Genetics and Genomics
Arabidopsis thaliana
Biochemistry
Biomedical and Life Sciences
data collection
Deep learning
Fc receptors
genomics
Graph representations
Human Genetics
Life Sciences
Long short-term memory
Microbial Genetics and Genomics
neural networks
Non-coding RNA
Original Article
Plant Genetics and Genomics
prediction
regression analysis
Zea mays
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EXwRv61OieCbBtp8rM1jEccQ3IM4GL6UNMlEGN3YB8P_3kv6ITId-FbItVwvud4vvdzvELqNRyGTJmKERyYnnHPwOcs04W4HxAwEYO4KnJ_7nd6APw3FsCoKm9en3euUpP9SN8VuPmlF3HYHYArgwtU22hGOzgtW8YCmTe4A3Nu3VIHYTDgE7KpU5vdn_AxHaxhzLT_qw073AO1XeBGn5QQfoi1bHKHdsoPk5zF6S7Gxdoqr5g_v2He2wYBE8XQMRsPjQr_0U-LpGD4K7NghZmUtA57OXJLGX7q_sdhzV2PHt-lPQJ6gQffx9aFHqnYJRPMwWRDpUoQ5RPQk1hCFjaXwnkIqGjKjAbVoFQkN7qtjYRMpVGwTxToq16NQGyMFO0WtYlLYc4TzRCXSKC6YirnMRxJcWwluGTXUsMQEKKqtlumKS9y1tBhnDQuyt3QGGmTe0tkqQHfNPdOSSWOjdLuejKzyqnkGcMJVvcOWNkA3zTD4g0tyqMJOlk4mdIRBtBNvkBEUJAAr8wCdlRPdqOQICiFCw8h9PfPfCvyt78X_xC_RHvWr0B1Wa6PWYra0V4BuFvm1X8xfN7TuJg
  priority: 102
  providerName: Springer Nature
Title A deep learning model for plant lncRNA-protein interaction prediction with graph attention
URI https://link.springer.com/article/10.1007/s00438-020-01682-w
https://www.ncbi.nlm.nih.gov/pubmed/32409904
https://www.proquest.com/docview/2428286549
https://www.proquest.com/docview/2404043267
https://www.proquest.com/docview/2524320804
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: A8Z
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1617-4623
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: U2A
  dateStart: 20010326
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahMFeytbuI1sXNNhbJ-boI7YfRnFLutKxUEoDWV-MLCmjEBwvSyn773cnf5RSlhdjbBnOks6_k0_3-wF8iheRTN1IcjVyBVdKoc95abmiFZB0CMCKCpx_TMfnM3Ux1_MdmLa1MLStsv0mhg-1W1n6R_4FoYQqnnE5c1z95qQaRdnVVkLDNNIK7mugGNuFviBmrB70TybTy6sur4CuH-RWELe5QjBvymhCMV1IinFaTmEYhHHn_WOoehJ_PsmdBkg6ewF7TSzJsnrwX8KOL_fhWa0u-fcAbjLmvK9YIwzxiwXVG4ZRKquW2KFsWdqracYDVcNtyYg5Yl3XObBqTQmccEp_alngtWbExRl2R76C2dnk-vScN1IK3Koo2fCU0ocFon0SW0Ro5wW-p06NiKSzGNFYM9IWXdvG2iepNrFPjBybwi4i61yq5WvolavSvwVWJCZJnVFamlilxSJFtzdaeSmccDJxAxi1vZbbhmec5C6WeceQHHo6Rwvy0NP5_QCOumeqmmVja-vDdjDyxuP-5A_zYwAfu9voK5QAMaVf3VGbiMiExDje0kYLbIFxtBrAm3qgO5OIvBDRG-98bkf-wYD_2_tuu73v4bkIs442rh1Cb7O-8x8w0tkUQ9iN5zEes-RmCP3s28_vk2EzpfHqTGT_AKzc-7I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swED5Ky9heyn4vW9dpsD1tYo4kx9ZDGenWkq5tGKWFshdPlpQyCI6XpoT-c_vbdifLLqMsb30zWIZDOum-8-m-D-BdNkmkdn3JVd-VXCmFe85LyxVlQNJhAFbU4Hw8HozO1Lfz9HwN_rS9MHStsj0Tw0HtZpb-kX_CUEIdz5jOfK5_c1KNoupqK6FhorSC2wkUY7Gx49BfLzGFu9w5-Irr_V6I_b3TLyMeVQa4VUm-4JoqayUGwjyzGLycF4igUm1EIp3FYG9NP7Xo9TZLfa5Tk_ncyIEp7SSxzmlSjcAQsKGk0pj8bezujb-fdHUMPGqCvAviBK4QPMS2ndC8F4pwnNI3hF2Ic5f_hsZbePdWrTaEwP2HsBmxKxs2zvYI1nz1GO41apbXT-DHkDnvaxaFKC5YUNlhiIpZPcUFZNPKnoyHPFBD_KoYMVXMm74KVs-pYBQe6c8wCzzajLg_w23Mp3B2J5P6DNarWeVfACtzk2tnVCpNpnQ50XjMmFR5KZxwMnc96LezVtjIa07yGtOiY2QOM12gBUWY6WLZgw_dN3XD6rFy9Fa7GEXc4ZfFjT_24G33GvcmFVxM5WdXNCYh8iIxyFaMSQWOQNyuevC8WejOJCJLRLSAbz62K39jwP_tfbna3jdwf3R6fFQcHYwPX8EDETyQLs1twfpifuVfI8palNvRlRn8vOvd8xfM1TNR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CSkovoU1f2yaNCs2pFbEleW0dSliaLHk0SykNLL24sqQtgcXrbjYs-Wv9dZ2RH6GE7C03g2UYNK9vPC-AD-kkktrFkqvYFVwphTrnpeWKIiDp0AEranA-H_WPL9TpOBmvwd-2F4bKKlubGAy1m1n6R76ProQ6njGc2Z80ZRHfDocH1R9OG6Qo09qu06hF5MzfLDF8u_p8coi83hNiePTjyzFvNgxwq6JswTVl1Qp0gllq0XE5LxA9JdqISDqLjt6aOLEo8TZNfKYTk_rMyL4p7CSyzmnaGIHm_1EqpaZywnTcBXsxGpmw2AURAlcIG5qGndC2F9JvnAI3BFyIcJf_O8U7SPdOljY4v-FT2GxQKxvUYvYM1ny5BRv1Hsub5_BzwJz3FWtWUPxmYb8OQzzMqimyjk1L-3004GEoxGXJaEbFvO6oYNWcUkXhkf4JszBBm9HUz1CH-QIuHuRKX8J6OSv9a2BFZjLtjEqkSZUuJhoNjEmUl8IJJzPXg7i9tdw2E81pscY072Yxh5vOkYI83HS-7MHH7puqnuex8vR2y4y80e2r_FYSe_C-e41aSakWU_rZNZ2JaGyR6KcrziQCTyBiVz14VTO6I4nGJCJOwDefWs7fEnA_vW9W07sLj1Fn8q8no7O38EQEAaRquW1YX8yv_Q7Cq0XxLsgxg18PrTj_AExWMOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+for+plant+lncRNA-protein+interaction+prediction+with+graph+attention&rft.jtitle=Molecular+genetics+and+genomics+%3A+MGG&rft.au=Wekesa%2C+Jael+Sanyanda&rft.au=Meng%2C+Jun&rft.au=Luan%2C+Yushi&rft.date=2020-09-01&rft.issn=1617-4623&rft.eissn=1617-4623&rft.volume=295&rft.issue=5&rft.spage=1091&rft_id=info:doi/10.1007%2Fs00438-020-01682-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4615&client=summon