Single Channel EEG Classification: A Case Study on Prediction of Major Depressive Disorder Treatment Outcome
In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently,...
Saved in:
Published in | IEEE access Vol. 9; pp. 3417 - 3427 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2020.3046993 |
Cover
Abstract | In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently, the concept of single-channel EEG (SCEEG) is presented. The spatial resolution of SCEEG is lower than the multichannel one, but it is easy to use, cost-effective, ubiquitous, and wearable. In this paper, for the first time, we have developed the concept of SCEEG for the classification of responders and nonresponders to repetitive transcranial magnetic stimulation (rTMS) treatment in major depressive disorder (MDD). We also compared the performance of SCEEG and multichannel EEG with the different number of channels in the prediction of responding to rTMS treatment. 19-electrode EEG is recorded from 46 MDD patients before rTMS treatment. Among participants, 23 individuals responded to treatment. The dataset is partitioned into the training (36 subjects) and testing (10 subjects) datasets. Linear and nonlinear features were extracted from every channel of EEG. In training, to select informative features, the minimal-redundancy-maximal-relevance (mRMR) algorithm was applied. The selected features were classified by k-nearest neighbors (KNN) classifier, which is evaluated by leave-one-out cross-validation. Then the obtained classifier is applied to the testing dataset. The results demonstrated that the F8 channel classifies responders and nonresponders with an accuracy of 80%. Moreover, our results revealed that SCEEG could perform as multichannel EEG in the prediction of rTMS treatment outcome in MDD patients. The obtained accuracy indicates that our proposed method based on SCEEG has a high potential for predicting rTMS treatment outcome in MDD patients. |
---|---|
AbstractList | In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently, the concept of single-channel EEG (SCEEG) is presented. The spatial resolution of SCEEG is lower than the multichannel one, but it is easy to use, cost-effective, ubiquitous, and wearable. In this paper, for the first time, we have developed the concept of SCEEG for the classification of responders and nonresponders to repetitive transcranial magnetic stimulation (rTMS) treatment in major depressive disorder (MDD). We also compared the performance of SCEEG and multichannel EEG with the different number of channels in the prediction of responding to rTMS treatment. 19-electrode EEG is recorded from 46 MDD patients before rTMS treatment. Among participants, 23 individuals responded to treatment. The dataset is partitioned into the training (36 subjects) and testing (10 subjects) datasets. Linear and nonlinear features were extracted from every channel of EEG. In training, to select informative features, the minimal-redundancy-maximal-relevance (mRMR) algorithm was applied. The selected features were classified by k-nearest neighbors (KNN) classifier, which is evaluated by leave-one-out cross-validation. Then the obtained classifier is applied to the testing dataset. The results demonstrated that the F8 channel classifies responders and nonresponders with an accuracy of 80%. Moreover, our results revealed that SCEEG could perform as multichannel EEG in the prediction of rTMS treatment outcome in MDD patients. The obtained accuracy indicates that our proposed method based on SCEEG has a high potential for predicting rTMS treatment outcome in MDD patients. |
Author | Rostami, Reza Hasanzadeh, Fatemeh Mohebbi, Maryam |
Author_xml | – sequence: 1 givenname: Fatemeh orcidid: 0000-0002-8064-7220 surname: Hasanzadeh fullname: Hasanzadeh, Fatemeh organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Maryam orcidid: 0000-0003-2326-6074 surname: Mohebbi fullname: Mohebbi, Maryam email: m.mohebbi@kntu.ac.ir organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Reza surname: Rostami fullname: Rostami, Reza organization: Department of Psychology, University of Tehran, Tehran, Iran |
BookMark | eNptkU9rGzEQxZeSQtM0nyAXQc92tZKsP72ZjZsGUlJwehZj7Wwqs5ZcSdvib991NphiqovE0_zeaPTeVxchBqyqm5rO65qaT8umWa3Xc0YZnXMqpDH8TXXJamlmfMHlxT_nd9V1zls6Lj1KC3VZ9WsfnnskzU8IAXuyWt2RpoecfecdFB_DZ7IkDWQk6zK0BxID-Z6w9e54R2JHvsE2JnKL-4Qj9RvJrc8xtZjIU0IoOwyFPA7FxR1-qN520Ge8ft2vqh9fVk_N19nD4919s3yYOUF1mRneodatAMMU2-i207pu603L3IY6pRRIQanSCrpRoBrQGEElFfUoy05oflXdT75thK3dJ7-DdLARvH0RYnq2kIp3PVrKjFtIKTVDLagBQ4WAWjEQSqKQfPQSk9cQ9nD4A31_MqypPQZgwblxdHsMwL4GMGIfJ2yf4q8Bc7HbOKQwTm2ZUAuzMIYeq8xU5VLMOWFnnS8vv14S-P7UYYr4vAM_Y8_f9X_qZqI8Ip4Iw6lUUvK_zcWwgg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1155_2022_5435207 crossref_primary_10_2174_1872212117666220801105612 crossref_primary_10_1038_s41598_023_35545_2 crossref_primary_10_1016_j_jad_2022_10_042 crossref_primary_10_1007_s11042_023_15827_7 crossref_primary_10_1016_j_bspc_2024_107271 crossref_primary_10_1016_j_bspc_2024_106613 crossref_primary_10_1007_s13246_022_01198_0 |
Cites_doi | 10.1088/1741-2552/ab7613 10.3389/fphys.2018.00325 10.1007/s10877-011-9312-2 10.2196/14474 10.1109/JBHI.2014.2303991 10.1186/1744-9081-7-30 10.1016/j.clinph.2013.04.010 10.1016/j.brs.2011.12.003 10.1371/journal.pone.0171409 10.1007/s40846-015-0044-5 10.1109/TBME.2014.2331189 10.1016/j.dcn.2019.100635 10.1016/j.jad.2018.08.058 10.1159/000438457 10.1016/j.jad.2016.10.021 10.1142/S0219622019500342 10.1016/j.euroneuro.2009.06.001 10.1002/mpr.1816 10.1177/1550059411435857 10.1007/s00357-019-09327-3 10.1016/j.jneumeth.2003.10.009 10.1016/j.cmpb.2012.10.008 10.1016/j.bja.2018.08.021 10.1055/s-2000-8356 10.1016/j.biopsych.2007.10.009 10.1016/j.compbiomed.2013.10.002 10.3233/THC-174679 10.1109/ICBME.2017.8430273 10.1016/0167-2789(88)90081-4 10.1016/j.cmpb.2017.11.023 10.1016/j.compbiomed.2012.09.012 10.1016/j.brs.2017.10.015 10.3389/fnhum.2019.00250 10.1016/j.bspc.2016.09.010 10.3109/09540261.2013.816269 10.1016/j.clinph.2007.06.061 10.1016/j.ijpsycho.2012.05.001 10.1016/j.jad.2019.05.070 10.1142/S0219519414500353 10.1016/j.biopsycho.2014.03.003 10.1016/j.jad.2015.04.029 10.1142/S0219720005001004 10.1103/PhysRevA.36.4456 10.1016/0165-0327(96)00003-1 10.1016/j.cmpb.2010.07.011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
DOI | 10.1109/ACCESS.2020.3046993 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 3427 |
ExternalDocumentID | oai_doaj_org_article_029c566682e8409a9044a172a476e463 10.1109/access.2020.3046993 10_1109_ACCESS_2020_3046993 9306766 |
Genre | orig-research |
GrantInformation_xml | – fundername: Iran National Science Foundation (INSF) funderid: 10.13039/501100003968 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
ID | FETCH-LOGICAL-c408t-93fe88d4a9272b8df881d1bd2cb0c777a6400787afcb008ae994060414006f483 |
IEDL.DBID | UNPAY |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:19:52 EDT 2025 Wed Oct 01 15:45:29 EDT 2025 Mon Jun 30 05:41:07 EDT 2025 Wed Oct 01 04:43:45 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Wed Aug 27 06:01:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-93fe88d4a9272b8df881d1bd2cb0c777a6400787afcb008ae994060414006f483 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0003-2326-6074 0000-0002-8064-7220 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306766.pdf |
PQID | 2475959903 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1109_access_2020_3046993 proquest_journals_2475959903 crossref_primary_10_1109_ACCESS_2020_3046993 ieee_primary_9306766 doaj_primary_oai_doaj_org_article_029c566682e8409a9044a172a476e463 crossref_citationtrail_10_1109_ACCESS_2020_3046993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 mcintyre (ref18) 2004; 49 ref54 ref10 ref19 ref51 i? (ref6) 2013; 43 (ref16) 2019 mclachlan (ref45) 2004 ref46 ko (ref13) 2015 ref48 marzbani (ref50) 2016; 7 ref42 ref41 uki? (ref47) 2020; 29 hasanzadeh (ref28) 0 ref49 ref8 ref7 ref9 ref4 ref3 (ref26) 2000 ref5 ref40 hjorth (ref35) 1975 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 wasserman (ref17) 2011 faradji (ref44) 2019 ref24 ref23 ref25 ref20 ref22 ref21 ref27 ref29 rényi (ref34) 1961; 1 peng (ref43) 2007 |
References_xml | – ident: ref20 doi: 10.1088/1741-2552/ab7613 – ident: ref2 doi: 10.3389/fphys.2018.00325 – ident: ref10 doi: 10.1007/s10877-011-9312-2 – ident: ref5 doi: 10.2196/14474 – ident: ref8 doi: 10.1109/JBHI.2014.2303991 – ident: ref29 doi: 10.1186/1744-9081-7-30 – ident: ref55 doi: 10.1016/j.clinph.2013.04.010 – ident: ref40 doi: 10.1016/j.brs.2011.12.003 – year: 2019 ident: ref44 article-title: A self-paced two-state mental task-based brain-computer interface with few EEG channels publication-title: New Frontiers in Brain-Computer Interfaces – ident: ref57 doi: 10.1371/journal.pone.0171409 – ident: ref12 doi: 10.1007/s40846-015-0044-5 – ident: ref14 doi: 10.1109/TBME.2014.2331189 – ident: ref4 doi: 10.1016/j.dcn.2019.100635 – start-page: 112 year: 2011 ident: ref17 publication-title: Depression – ident: ref53 doi: 10.1016/j.jad.2018.08.058 – ident: ref52 doi: 10.1159/000438457 – ident: ref56 doi: 10.1016/j.jad.2016.10.021 – year: 2004 ident: ref45 publication-title: Discriminant Analysis and Statistical Pattern Recognition – year: 2019 ident: ref16 publication-title: Depression – ident: ref23 doi: 10.1142/S0219622019500342 – start-page: 1 year: 2015 ident: ref13 article-title: Single channel wireless EEG device for real-time fatigue level detection publication-title: Proc Int Joint Conf Neural Netw (IJCNN) – ident: ref48 doi: 10.1016/j.euroneuro.2009.06.001 – volume: 29 start-page: 1816e year: 2020 ident: ref47 article-title: Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.1816 – ident: ref3 doi: 10.1177/1550059411435857 – ident: ref46 doi: 10.1007/s00357-019-09327-3 – ident: ref27 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref32 doi: 10.1016/j.cmpb.2012.10.008 – volume: 7 start-page: 143 year: 2016 ident: ref50 article-title: Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications publication-title: Basic Clinical Neurosci – ident: ref15 doi: 10.1016/j.bja.2018.08.021 – ident: ref38 doi: 10.1055/s-2000-8356 – ident: ref41 doi: 10.1016/j.biopsych.2007.10.009 – volume: 43 start-page: 2110 year: 2013 ident: ref6 article-title: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.10.002 – volume: 1 start-page: 1 year: 1961 ident: ref34 article-title: On measures of entropy and information publication-title: Proc 4th Berkeley Symp Math Statist Probab – ident: ref9 doi: 10.3233/THC-174679 – year: 0 ident: ref28 article-title: An ICA algorithm based on a fuzzy non-Gaussianity measure – volume: 49 start-page: 10 year: 2004 ident: ref18 article-title: The human cost of not achieving full remission in depression publication-title: Can J Psychiatry – ident: ref19 doi: 10.1109/ICBME.2017.8430273 – ident: ref31 doi: 10.1016/0167-2789(88)90081-4 – ident: ref24 doi: 10.1016/j.cmpb.2017.11.023 – ident: ref7 doi: 10.1016/j.compbiomed.2012.09.012 – ident: ref54 doi: 10.1016/j.brs.2017.10.015 – year: 2007 ident: ref43 publication-title: mRMR (minimum Redundancy Maximum Relevance Feature Selection) – ident: ref1 doi: 10.3389/fnhum.2019.00250 – ident: ref22 doi: 10.1016/j.bspc.2016.09.010 – ident: ref21 doi: 10.3109/09540261.2013.816269 – ident: ref11 doi: 10.1016/j.clinph.2007.06.061 – ident: ref30 doi: 10.1016/j.ijpsycho.2012.05.001 – ident: ref25 doi: 10.1016/j.jad.2019.05.070 – ident: ref51 doi: 10.1142/S0219519414500353 – ident: ref49 doi: 10.1016/j.biopsycho.2014.03.003 – ident: ref39 doi: 10.1016/j.jad.2015.04.029 – ident: ref42 doi: 10.1142/S0219720005001004 – start-page: 3 year: 1975 ident: ref35 article-title: Time domain descriptors and their relation to a particular model for generation of EEG activity publication-title: CEAN Computerized EEG Analysis – year: 2000 ident: ref26 publication-title: Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR – ident: ref33 doi: 10.1103/PhysRevA.36.4456 – ident: ref37 doi: 10.1016/0165-0327(96)00003-1 – ident: ref36 doi: 10.1016/j.cmpb.2010.07.011 |
SSID | ssj0000816957 |
Score | 2.2843878 |
Snippet | In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of... |
SourceID | doaj unpaywall proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3417 |
SubjectTerms | Algorithms Case studies Classification Classifiers Clinical outcomes Datasets Depression Electrodes Electroencephalography Feature extraction K-nearest neighbors algorithm major depressive disorder Mental depression prediction treatment response Redundancy single channel EEG Spatial resolution Testing Time series analysis Training Transcranial magnetic stimulation Wearable technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGXrYehj42NOsDOvRYo7Iiy9JuWZY2KJC2wFqgN0G26cNgOEWarOi_LykrQYIC66UnA7Jk0CRt8rOpj4yd2lpBBtInyiuRKJPpxBQEVhSkICpt04I2Ck-u9fheXT1kD2utvqgmrKMH7hR3LqQtMeXQRgJhEW-FUh6jrle5BqUDzyeGsTUwFd7BJtU2yyPNUCrs-WA4xDtCQCgRpxIotP2NUBQY-2OLlY1s8_OiffQvz75p1gLPxQ77GjNGPugk3WWfoN1j22s8gvus-YOHBjhtFWih4aPRJQ_dLqkOKKj-Jx_wIQYsTnWDL3za8tsZ_aKhc3xa84n_O53x37Es9h_wJSsnv1tWovObxRzdE76x-4vR3XCcxDYKSamEmSe2X4MxlfJW5rIwVW0wR02LSpaFKPM895p6o5vc1zggjAdrFVHqIPQSulam_51ttdMWDhjHZKQEDxVkJUb-VBtMnwAQxikvjM3KHpNLjboycoxTq4vGBawhrOvM4MgMLpqhx85Wix47io3_T_9FplpNJX7sMIBe46LXuPe8psf2ydCri1hCTlr32NHS8C4-y09OEiVihlEbVyUrZ3gjqg8NLjdE_fERoh6yL5LqaMJnnyO2NZ8t4BgToXlxEnz-FabX_Io priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaXoADXwWxUJAPHJutk3Ucm9uybKmQFpBopd4ix5kcSpRUSwIqv54Zx4m6gBCnRInt2Hp2_MYev2HstakkpJDYSFopIqlTFemCjBUJMYhSmbigg8Kbj-rsQn64TC_32PF0FgYAvPMZzOnW7-WXretpqezEEL9Vap_tZ5kZzmpN6ykUQMKkWRAWioU5Wa5W2AY0ARO0TMkMNIudycdr9IegKjv88k7fXNubH7aub001pw_YZqzk4GHydd53xdz9_E2_8X9b8ZDdD5yTL4dO8ojtQfOY3bulRHjI6i94qYHTYYMGar5ev-c-XiZ5Ennw3vAlX-GUx8nz8Ia3Df-8pU0eesfbim_sVbvl74Jj7Xfgo64nPx992fmnvsMODk_Yxen6fHUWhUAMkZNCd5FZVKB1Ka1JsqTQZaWR5cZFmbhCuCzLrKLo6jqzFT4Q2oIxkkR50HgTqpJ68ZQdNG0DzxhHOuPAQgmpQ-4QK40EDAANQWmFNqmbsWREKHdBpZyCZdS5t1aEyQdYc4I1D7DO2PGU6XoQ6fh38rcE_ZSUFLb9A4QpDwM2F4lxSHWVToBsYGuElBbZnpWZAqmwkEOCdiokoDpjR2NHysPf4FuekKhiivM-5oqmzvVHVa0PkblT1ed__8oLdjch3xq_FHTEDrptDy-RHHXFKz8qfgFOTwg_ priority: 102 providerName: IEEE |
Title | Single Channel EEG Classification: A Case Study on Prediction of Major Depressive Disorder Treatment Outcome |
URI | https://ieeexplore.ieee.org/document/9306766 https://www.proquest.com/docview/2475959903 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306766.pdf https://doaj.org/article/029c566682e8409a9044a172a476e463 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwqh84EjaxHEcm1spHRPSxiRWaZwsJ3mRBlFalRQYfz3vuU61goQEp0SJHTl6z_b32c_fY-ylqSVkIFwknYwjqTMV6YLIioQE4kqZpKCDwqdn6mQh319ml2HBzZ-FAQAffAZjuvV7-VfQ_MgnSpB4mpmYNBE4LU6QiuNIq9R4VdW32YGiDaYBO1icnU8_UUa5RJko9XuTz4Ow5sT5HIRICgVyVSKGJt2bjrxqf0izsoc472zalbv-7prmxuRzfJ_ZvtnbmJMv401XjMufvyk6_v9_PWD3Ai7l060jPWS3oH3E7t5QKzxkzUe8NMDpQEILDZ_P33GfU5OijbyBX_Mpn-G0yCk68ZovW36-po0geseXNT91n5dr_jYE334D3mt_8os-3p1_2HTYCeAxWxzPL2YnUUjWEJUy1l1k0hq0rqQzIheFrmqNSDgpKlEWcZnnuVOUgV3nrsYHsXZgjCThHiR4saqlTp-wQbts4SnjCHlKcFBBViK-SJRGkAaAZFG6WJusHDLR28yWQcmcEmo01jOa2NjpbIbua8nQNhh6yF7tKq22Qh5_L_6GnGFXlFS4_QM0nA2d2sbClAiHlRZAPNmZWEqHiNDJXIFU-JFDMvbuI8GyQ3bUu5YNI8ZXK0h4MUNsgLWinbv90dStC-819dk_lj9ig269gRcIprpi5BchRv7c4yj0nl-xoRg8 |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOIwd-DUQhQE-cFw6J3Ucm1spHQXWgUQn7RY5zssBomTqGtD463kvcaIVEOKUKHESR58df5_z_D3GXplCQgyRDaSVIpA6VoHOSKxICEHkyoQZLRRenqnFufxwEV_ssKNhLQwAtMFnMKbd9l9-XruGpsqODfFbpW6x2zGqiqRbrTXMqFAKCRMn3looFOZ4OpvhW6AIjFCbkhA0k63hp3Xp92lVthjmXlNd2usftixvDDYn99iyr2YXY_Jt3Gyysfv5m4Pj_77HfXbXs04-7ZrJA7YD1UO2f8OL8ICVX3BTAqflBhWUfD5_x9uMmRRL1ML3mk_5DAc9TrGH17yu-Oc1_eahc7wu-NJ-rdf8rQ-t_Q68d_bkqz6anX9qNtjE4RE7P5mvZovAp2IInBR6E5hJAVrn0pooiTKdFxp5bpjlkcuES5LEKsqvrhNb4AGhLRgjyZYH5ZtQhdSTx2y3qit4wjgSGgcWcogdsodQaaRgACgFpRXaxG7Eoh6h1HmfckqXUaatXhEm7WBNCdbUwzpiR8NFl51Nx7-LvyHoh6Lksd0eQJhS32VTERmHZFfpCEgFWyOktMj3rEwUSIU3OSBoh5t4VEfssG9Iqf8eXKUR2SrGOPLjVcHQuP6oqm2TZG5V9enfn_KS7S1Wy9P09P3Zx2fsTkSRNu3E0CHb3awbeI5UaZO9aHvIL1E9C5A |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJG0juM4NrdSuqyQdlmJrbScLCeZSECUVqUFll_PjOtUW5CQ4JQosS1HM7bfi8dvGHthGwU5SJ8or0SiTK4TUxJZUZCCqLVNSzoofHqmT-bq3WV-GX-4hbMwABCCz2BEt2Ev_xO0P4qxliSeZsc2SyUui2Ok4jjTaj1a1s1NdqBpg2nADuZn55OPlFEu1TbJwt7k0yisOfYhByGSQolclYihzfaWo6DaH9Os7CHOW5tu6a---7a9tvgc32Wu7_Y25uTLaLMuR9XP3xQd__-77rE7EZfyydaR7rMb0D1gt6-pFR6y9gNeWuB0IKGDls9mb3nIqUnRRsHAr_iET3FZ5BSdeMUXHT9f0UYQveOLhp_6z4sVfxODb78B77U_-UUf787fb9Y4COAhmx_PLqYnSUzWkFRKmHViswaMqZW3spClqRuDSDgta1mVoiqKwmvKwG4K3-ADYTxYq0i4Bwme0I0y2SM26BYdPGYcIU8FHmrIK8QXqTYI0gCQLCovjM2rIZO9zVwVlcwpoUbrAqMR1k2mU3RfR4Z20dBD9nJXabkV8vh78dfkDLuipMIdHqDhXBzUTkhbIRzWRgLxZG-FUh4RoVeFBqWxkUMy9q6RaNkhO-pdy8UZ46uTJLyYIzbAWsnO3f7o6taF97r65B_LH7HBerWBZwim1uXzOGJ-AaAkFkY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Channel+EEG+Classification%3A+A+Case+Study+on+Prediction+of+Major+Depressive+Disorder+Treatment+Outcome&rft.jtitle=IEEE+access&rft.au=Hasanzadeh%2C+Fatemeh&rft.au=Mohebbi%2C+Maryam&rft.au=Rostami%2C+Reza&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=3417&rft.epage=3427&rft_id=info:doi/10.1109%2FACCESS.2020.3046993&rft.externalDocID=9306766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |