Single Channel EEG Classification: A Case Study on Prediction of Major Depressive Disorder Treatment Outcome

In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 3417 - 3427
Main Authors Hasanzadeh, Fatemeh, Mohebbi, Maryam, Rostami, Reza
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3046993

Cover

Abstract In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently, the concept of single-channel EEG (SCEEG) is presented. The spatial resolution of SCEEG is lower than the multichannel one, but it is easy to use, cost-effective, ubiquitous, and wearable. In this paper, for the first time, we have developed the concept of SCEEG for the classification of responders and nonresponders to repetitive transcranial magnetic stimulation (rTMS) treatment in major depressive disorder (MDD). We also compared the performance of SCEEG and multichannel EEG with the different number of channels in the prediction of responding to rTMS treatment. 19-electrode EEG is recorded from 46 MDD patients before rTMS treatment. Among participants, 23 individuals responded to treatment. The dataset is partitioned into the training (36 subjects) and testing (10 subjects) datasets. Linear and nonlinear features were extracted from every channel of EEG. In training, to select informative features, the minimal-redundancy-maximal-relevance (mRMR) algorithm was applied. The selected features were classified by k-nearest neighbors (KNN) classifier, which is evaluated by leave-one-out cross-validation. Then the obtained classifier is applied to the testing dataset. The results demonstrated that the F8 channel classifies responders and nonresponders with an accuracy of 80%. Moreover, our results revealed that SCEEG could perform as multichannel EEG in the prediction of rTMS treatment outcome in MDD patients. The obtained accuracy indicates that our proposed method based on SCEEG has a high potential for predicting rTMS treatment outcome in MDD patients.
AbstractList In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of electrodes is the main reason of the infeasibility of developing EEG based wearable and point of care devices. To address this problem, recently, the concept of single-channel EEG (SCEEG) is presented. The spatial resolution of SCEEG is lower than the multichannel one, but it is easy to use, cost-effective, ubiquitous, and wearable. In this paper, for the first time, we have developed the concept of SCEEG for the classification of responders and nonresponders to repetitive transcranial magnetic stimulation (rTMS) treatment in major depressive disorder (MDD). We also compared the performance of SCEEG and multichannel EEG with the different number of channels in the prediction of responding to rTMS treatment. 19-electrode EEG is recorded from 46 MDD patients before rTMS treatment. Among participants, 23 individuals responded to treatment. The dataset is partitioned into the training (36 subjects) and testing (10 subjects) datasets. Linear and nonlinear features were extracted from every channel of EEG. In training, to select informative features, the minimal-redundancy-maximal-relevance (mRMR) algorithm was applied. The selected features were classified by k-nearest neighbors (KNN) classifier, which is evaluated by leave-one-out cross-validation. Then the obtained classifier is applied to the testing dataset. The results demonstrated that the F8 channel classifies responders and nonresponders with an accuracy of 80%. Moreover, our results revealed that SCEEG could perform as multichannel EEG in the prediction of rTMS treatment outcome in MDD patients. The obtained accuracy indicates that our proposed method based on SCEEG has a high potential for predicting rTMS treatment outcome in MDD patients.
Author Rostami, Reza
Hasanzadeh, Fatemeh
Mohebbi, Maryam
Author_xml – sequence: 1
  givenname: Fatemeh
  orcidid: 0000-0002-8064-7220
  surname: Hasanzadeh
  fullname: Hasanzadeh, Fatemeh
  organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Maryam
  orcidid: 0000-0003-2326-6074
  surname: Mohebbi
  fullname: Mohebbi, Maryam
  email: m.mohebbi@kntu.ac.ir
  organization: Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Reza
  surname: Rostami
  fullname: Rostami, Reza
  organization: Department of Psychology, University of Tehran, Tehran, Iran
BookMark eNptkU9rGzEQxZeSQtM0nyAXQc92tZKsP72ZjZsGUlJwehZj7Wwqs5ZcSdvib991NphiqovE0_zeaPTeVxchBqyqm5rO65qaT8umWa3Xc0YZnXMqpDH8TXXJamlmfMHlxT_nd9V1zls6Lj1KC3VZ9WsfnnskzU8IAXuyWt2RpoecfecdFB_DZ7IkDWQk6zK0BxID-Z6w9e54R2JHvsE2JnKL-4Qj9RvJrc8xtZjIU0IoOwyFPA7FxR1-qN520Ge8ft2vqh9fVk_N19nD4919s3yYOUF1mRneodatAMMU2-i207pu603L3IY6pRRIQanSCrpRoBrQGEElFfUoy05oflXdT75thK3dJ7-DdLARvH0RYnq2kIp3PVrKjFtIKTVDLagBQ4WAWjEQSqKQfPQSk9cQ9nD4A31_MqypPQZgwblxdHsMwL4GMGIfJ2yf4q8Bc7HbOKQwTm2ZUAuzMIYeq8xU5VLMOWFnnS8vv14S-P7UYYr4vAM_Y8_f9X_qZqI8Ip4Iw6lUUvK_zcWwgg
CODEN IAECCG
CitedBy_id crossref_primary_10_1155_2022_5435207
crossref_primary_10_2174_1872212117666220801105612
crossref_primary_10_1038_s41598_023_35545_2
crossref_primary_10_1016_j_jad_2022_10_042
crossref_primary_10_1007_s11042_023_15827_7
crossref_primary_10_1016_j_bspc_2024_107271
crossref_primary_10_1016_j_bspc_2024_106613
crossref_primary_10_1007_s13246_022_01198_0
Cites_doi 10.1088/1741-2552/ab7613
10.3389/fphys.2018.00325
10.1007/s10877-011-9312-2
10.2196/14474
10.1109/JBHI.2014.2303991
10.1186/1744-9081-7-30
10.1016/j.clinph.2013.04.010
10.1016/j.brs.2011.12.003
10.1371/journal.pone.0171409
10.1007/s40846-015-0044-5
10.1109/TBME.2014.2331189
10.1016/j.dcn.2019.100635
10.1016/j.jad.2018.08.058
10.1159/000438457
10.1016/j.jad.2016.10.021
10.1142/S0219622019500342
10.1016/j.euroneuro.2009.06.001
10.1002/mpr.1816
10.1177/1550059411435857
10.1007/s00357-019-09327-3
10.1016/j.jneumeth.2003.10.009
10.1016/j.cmpb.2012.10.008
10.1016/j.bja.2018.08.021
10.1055/s-2000-8356
10.1016/j.biopsych.2007.10.009
10.1016/j.compbiomed.2013.10.002
10.3233/THC-174679
10.1109/ICBME.2017.8430273
10.1016/0167-2789(88)90081-4
10.1016/j.cmpb.2017.11.023
10.1016/j.compbiomed.2012.09.012
10.1016/j.brs.2017.10.015
10.3389/fnhum.2019.00250
10.1016/j.bspc.2016.09.010
10.3109/09540261.2013.816269
10.1016/j.clinph.2007.06.061
10.1016/j.ijpsycho.2012.05.001
10.1016/j.jad.2019.05.070
10.1142/S0219519414500353
10.1016/j.biopsycho.2014.03.003
10.1016/j.jad.2015.04.029
10.1142/S0219720005001004
10.1103/PhysRevA.36.4456
10.1016/0165-0327(96)00003-1
10.1016/j.cmpb.2010.07.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3046993
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 3427
ExternalDocumentID oai_doaj_org_article_029c566682e8409a9044a172a476e463
10.1109/access.2020.3046993
10_1109_ACCESS_2020_3046993
9306766
Genre orig-research
GrantInformation_xml – fundername: Iran National Science Foundation (INSF)
  funderid: 10.13039/501100003968
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-93fe88d4a9272b8df881d1bd2cb0c777a6400787afcb008ae994060414006f483
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Wed Aug 27 01:19:52 EDT 2025
Wed Oct 01 15:45:29 EDT 2025
Mon Jun 30 05:41:07 EDT 2025
Wed Oct 01 04:43:45 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Wed Aug 27 06:01:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-93fe88d4a9272b8df881d1bd2cb0c777a6400787afcb008ae994060414006f483
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0003-2326-6074
0000-0002-8064-7220
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306766.pdf
PQID 2475959903
PQPubID 4845423
PageCount 11
ParticipantIDs unpaywall_primary_10_1109_access_2020_3046993
proquest_journals_2475959903
crossref_primary_10_1109_ACCESS_2020_3046993
ieee_primary_9306766
doaj_primary_oai_doaj_org_article_029c566682e8409a9044a172a476e463
crossref_citationtrail_10_1109_ACCESS_2020_3046993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
mcintyre (ref18) 2004; 49
ref54
ref10
ref19
ref51
i? (ref6) 2013; 43
(ref16) 2019
mclachlan (ref45) 2004
ref46
ko (ref13) 2015
ref48
marzbani (ref50) 2016; 7
ref42
ref41
uki? (ref47) 2020; 29
hasanzadeh (ref28) 0
ref49
ref8
ref7
ref9
ref4
ref3
(ref26) 2000
ref5
ref40
hjorth (ref35) 1975
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
wasserman (ref17) 2011
faradji (ref44) 2019
ref24
ref23
ref25
ref20
ref22
ref21
ref27
ref29
rényi (ref34) 1961; 1
peng (ref43) 2007
References_xml – ident: ref20
  doi: 10.1088/1741-2552/ab7613
– ident: ref2
  doi: 10.3389/fphys.2018.00325
– ident: ref10
  doi: 10.1007/s10877-011-9312-2
– ident: ref5
  doi: 10.2196/14474
– ident: ref8
  doi: 10.1109/JBHI.2014.2303991
– ident: ref29
  doi: 10.1186/1744-9081-7-30
– ident: ref55
  doi: 10.1016/j.clinph.2013.04.010
– ident: ref40
  doi: 10.1016/j.brs.2011.12.003
– year: 2019
  ident: ref44
  article-title: A self-paced two-state mental task-based brain-computer interface with few EEG channels
  publication-title: New Frontiers in Brain-Computer Interfaces
– ident: ref57
  doi: 10.1371/journal.pone.0171409
– ident: ref12
  doi: 10.1007/s40846-015-0044-5
– ident: ref14
  doi: 10.1109/TBME.2014.2331189
– ident: ref4
  doi: 10.1016/j.dcn.2019.100635
– start-page: 112
  year: 2011
  ident: ref17
  publication-title: Depression
– ident: ref53
  doi: 10.1016/j.jad.2018.08.058
– ident: ref52
  doi: 10.1159/000438457
– ident: ref56
  doi: 10.1016/j.jad.2016.10.021
– year: 2004
  ident: ref45
  publication-title: Discriminant Analysis and Statistical Pattern Recognition
– year: 2019
  ident: ref16
  publication-title: Depression
– ident: ref23
  doi: 10.1142/S0219622019500342
– start-page: 1
  year: 2015
  ident: ref13
  article-title: Single channel wireless EEG device for real-time fatigue level detection
  publication-title: Proc Int Joint Conf Neural Netw (IJCNN)
– ident: ref48
  doi: 10.1016/j.euroneuro.2009.06.001
– volume: 29
  start-page: 1816e
  year: 2020
  ident: ref47
  article-title: Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.1816
– ident: ref3
  doi: 10.1177/1550059411435857
– ident: ref46
  doi: 10.1007/s00357-019-09327-3
– ident: ref27
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref32
  doi: 10.1016/j.cmpb.2012.10.008
– volume: 7
  start-page: 143
  year: 2016
  ident: ref50
  article-title: Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications
  publication-title: Basic Clinical Neurosci
– ident: ref15
  doi: 10.1016/j.bja.2018.08.021
– ident: ref38
  doi: 10.1055/s-2000-8356
– ident: ref41
  doi: 10.1016/j.biopsych.2007.10.009
– volume: 43
  start-page: 2110
  year: 2013
  ident: ref6
  article-title: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.002
– volume: 1
  start-page: 1
  year: 1961
  ident: ref34
  article-title: On measures of entropy and information
  publication-title: Proc 4th Berkeley Symp Math Statist Probab
– ident: ref9
  doi: 10.3233/THC-174679
– year: 0
  ident: ref28
  article-title: An ICA algorithm based on a fuzzy non-Gaussianity measure
– volume: 49
  start-page: 10
  year: 2004
  ident: ref18
  article-title: The human cost of not achieving full remission in depression
  publication-title: Can J Psychiatry
– ident: ref19
  doi: 10.1109/ICBME.2017.8430273
– ident: ref31
  doi: 10.1016/0167-2789(88)90081-4
– ident: ref24
  doi: 10.1016/j.cmpb.2017.11.023
– ident: ref7
  doi: 10.1016/j.compbiomed.2012.09.012
– ident: ref54
  doi: 10.1016/j.brs.2017.10.015
– year: 2007
  ident: ref43
  publication-title: mRMR (minimum Redundancy Maximum Relevance Feature Selection)
– ident: ref1
  doi: 10.3389/fnhum.2019.00250
– ident: ref22
  doi: 10.1016/j.bspc.2016.09.010
– ident: ref21
  doi: 10.3109/09540261.2013.816269
– ident: ref11
  doi: 10.1016/j.clinph.2007.06.061
– ident: ref30
  doi: 10.1016/j.ijpsycho.2012.05.001
– ident: ref25
  doi: 10.1016/j.jad.2019.05.070
– ident: ref51
  doi: 10.1142/S0219519414500353
– ident: ref49
  doi: 10.1016/j.biopsycho.2014.03.003
– ident: ref39
  doi: 10.1016/j.jad.2015.04.029
– ident: ref42
  doi: 10.1142/S0219720005001004
– start-page: 3
  year: 1975
  ident: ref35
  article-title: Time domain descriptors and their relation to a particular model for generation of EEG activity
  publication-title: CEAN Computerized EEG Analysis
– year: 2000
  ident: ref26
  publication-title: Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR
– ident: ref33
  doi: 10.1103/PhysRevA.36.4456
– ident: ref37
  doi: 10.1016/0165-0327(96)00003-1
– ident: ref36
  doi: 10.1016/j.cmpb.2010.07.011
SSID ssj0000816957
Score 2.2843878
Snippet In multichannel EEG, several electrodes are attached to the head that may be annoying for patients and troublesome for operators. Moreover, the number of...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3417
SubjectTerms Algorithms
Case studies
Classification
Classifiers
Clinical outcomes
Datasets
Depression
Electrodes
Electroencephalography
Feature extraction
K-nearest neighbors algorithm
major depressive disorder
Mental depression
prediction treatment response
Redundancy
single channel EEG
Spatial resolution
Testing
Time series analysis
Training
Transcranial magnetic stimulation
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGXrYehj42NOsDOvRYo7Iiy9JuWZY2KJC2wFqgN0G26cNgOEWarOi_LykrQYIC66UnA7Jk0CRt8rOpj4yd2lpBBtInyiuRKJPpxBQEVhSkICpt04I2Ck-u9fheXT1kD2utvqgmrKMH7hR3LqQtMeXQRgJhEW-FUh6jrle5BqUDzyeGsTUwFd7BJtU2yyPNUCrs-WA4xDtCQCgRpxIotP2NUBQY-2OLlY1s8_OiffQvz75p1gLPxQ77GjNGPugk3WWfoN1j22s8gvus-YOHBjhtFWih4aPRJQ_dLqkOKKj-Jx_wIQYsTnWDL3za8tsZ_aKhc3xa84n_O53x37Es9h_wJSsnv1tWovObxRzdE76x-4vR3XCcxDYKSamEmSe2X4MxlfJW5rIwVW0wR02LSpaFKPM895p6o5vc1zggjAdrFVHqIPQSulam_51ttdMWDhjHZKQEDxVkJUb-VBtMnwAQxikvjM3KHpNLjboycoxTq4vGBawhrOvM4MgMLpqhx85Wix47io3_T_9FplpNJX7sMIBe46LXuPe8psf2ydCri1hCTlr32NHS8C4-y09OEiVihlEbVyUrZ3gjqg8NLjdE_fERoh6yL5LqaMJnnyO2NZ8t4BgToXlxEnz-FabX_Io
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXaXoADXwWxUJAPHJutk3Ucm9uybKmQFpBopd4ix5kcSpRUSwIqv54Zx4m6gBCnRInt2Hp2_MYev2HstakkpJDYSFopIqlTFemCjBUJMYhSmbigg8Kbj-rsQn64TC_32PF0FgYAvPMZzOnW7-WXretpqezEEL9Vap_tZ5kZzmpN6ykUQMKkWRAWioU5Wa5W2AY0ARO0TMkMNIudycdr9IegKjv88k7fXNubH7aub001pw_YZqzk4GHydd53xdz9_E2_8X9b8ZDdD5yTL4dO8ojtQfOY3bulRHjI6i94qYHTYYMGar5ev-c-XiZ5Ennw3vAlX-GUx8nz8Ia3Df-8pU0eesfbim_sVbvl74Jj7Xfgo64nPx992fmnvsMODk_Yxen6fHUWhUAMkZNCd5FZVKB1Ka1JsqTQZaWR5cZFmbhCuCzLrKLo6jqzFT4Q2oIxkkR50HgTqpJ68ZQdNG0DzxhHOuPAQgmpQ-4QK40EDAANQWmFNqmbsWREKHdBpZyCZdS5t1aEyQdYc4I1D7DO2PGU6XoQ6fh38rcE_ZSUFLb9A4QpDwM2F4lxSHWVToBsYGuElBbZnpWZAqmwkEOCdiokoDpjR2NHysPf4FuekKhiivM-5oqmzvVHVa0PkblT1ed__8oLdjch3xq_FHTEDrptDy-RHHXFKz8qfgFOTwg_
  priority: 102
  providerName: IEEE
Title Single Channel EEG Classification: A Case Study on Prediction of Major Depressive Disorder Treatment Outcome
URI https://ieeexplore.ieee.org/document/9306766
https://www.proquest.com/docview/2475959903
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306766.pdf
https://doaj.org/article/029c566682e8409a9044a172a476e463
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwqh84EjaxHEcm1spHRPSxiRWaZwsJ3mRBlFalRQYfz3vuU61goQEp0SJHTl6z_b32c_fY-ylqSVkIFwknYwjqTMV6YLIioQE4kqZpKCDwqdn6mQh319ml2HBzZ-FAQAffAZjuvV7-VfQ_MgnSpB4mpmYNBE4LU6QiuNIq9R4VdW32YGiDaYBO1icnU8_UUa5RJko9XuTz4Ow5sT5HIRICgVyVSKGJt2bjrxqf0izsoc472zalbv-7prmxuRzfJ_ZvtnbmJMv401XjMufvyk6_v9_PWD3Ai7l060jPWS3oH3E7t5QKzxkzUe8NMDpQEILDZ_P33GfU5OijbyBX_Mpn-G0yCk68ZovW36-po0geseXNT91n5dr_jYE334D3mt_8os-3p1_2HTYCeAxWxzPL2YnUUjWEJUy1l1k0hq0rqQzIheFrmqNSDgpKlEWcZnnuVOUgV3nrsYHsXZgjCThHiR4saqlTp-wQbts4SnjCHlKcFBBViK-SJRGkAaAZFG6WJusHDLR28yWQcmcEmo01jOa2NjpbIbua8nQNhh6yF7tKq22Qh5_L_6GnGFXlFS4_QM0nA2d2sbClAiHlRZAPNmZWEqHiNDJXIFU-JFDMvbuI8GyQ3bUu5YNI8ZXK0h4MUNsgLWinbv90dStC-819dk_lj9ig269gRcIprpi5BchRv7c4yj0nl-xoRg8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGOIwd-DUQhQE-cFw6J3Ucm1spHQXWgUQn7RY5zssBomTqGtD463kvcaIVEOKUKHESR58df5_z_D3GXplCQgyRDaSVIpA6VoHOSKxICEHkyoQZLRRenqnFufxwEV_ssKNhLQwAtMFnMKbd9l9-XruGpsqODfFbpW6x2zGqiqRbrTXMqFAKCRMn3looFOZ4OpvhW6AIjFCbkhA0k63hp3Xp92lVthjmXlNd2usftixvDDYn99iyr2YXY_Jt3Gyysfv5m4Pj_77HfXbXs04-7ZrJA7YD1UO2f8OL8ICVX3BTAqflBhWUfD5_x9uMmRRL1ML3mk_5DAc9TrGH17yu-Oc1_eahc7wu-NJ-rdf8rQ-t_Q68d_bkqz6anX9qNtjE4RE7P5mvZovAp2IInBR6E5hJAVrn0pooiTKdFxp5bpjlkcuES5LEKsqvrhNb4AGhLRgjyZYH5ZtQhdSTx2y3qit4wjgSGgcWcogdsodQaaRgACgFpRXaxG7Eoh6h1HmfckqXUaatXhEm7WBNCdbUwzpiR8NFl51Nx7-LvyHoh6Lksd0eQJhS32VTERmHZFfpCEgFWyOktMj3rEwUSIU3OSBoh5t4VEfssG9Iqf8eXKUR2SrGOPLjVcHQuP6oqm2TZG5V9enfn_KS7S1Wy9P09P3Zx2fsTkSRNu3E0CHb3awbeI5UaZO9aHvIL1E9C5A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJG0juM4NrdSuqyQdlmJrbScLCeZSECUVqUFll_PjOtUW5CQ4JQosS1HM7bfi8dvGHthGwU5SJ8or0SiTK4TUxJZUZCCqLVNSzoofHqmT-bq3WV-GX-4hbMwABCCz2BEt2Ev_xO0P4qxliSeZsc2SyUui2Ok4jjTaj1a1s1NdqBpg2nADuZn55OPlFEu1TbJwt7k0yisOfYhByGSQolclYihzfaWo6DaH9Os7CHOW5tu6a---7a9tvgc32Wu7_Y25uTLaLMuR9XP3xQd__-77rE7EZfyydaR7rMb0D1gt6-pFR6y9gNeWuB0IKGDls9mb3nIqUnRRsHAr_iET3FZ5BSdeMUXHT9f0UYQveOLhp_6z4sVfxODb78B77U_-UUf787fb9Y4COAhmx_PLqYnSUzWkFRKmHViswaMqZW3spClqRuDSDgta1mVoiqKwmvKwG4K3-ADYTxYq0i4Bwme0I0y2SM26BYdPGYcIU8FHmrIK8QXqTYI0gCQLCovjM2rIZO9zVwVlcwpoUbrAqMR1k2mU3RfR4Z20dBD9nJXabkV8vh78dfkDLuipMIdHqDhXBzUTkhbIRzWRgLxZG-FUh4RoVeFBqWxkUMy9q6RaNkhO-pdy8UZ46uTJLyYIzbAWsnO3f7o6taF97r65B_LH7HBerWBZwim1uXzOGJ-AaAkFkY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Channel+EEG+Classification%3A+A+Case+Study+on+Prediction+of+Major+Depressive+Disorder+Treatment+Outcome&rft.jtitle=IEEE+access&rft.au=Hasanzadeh%2C+Fatemeh&rft.au=Mohebbi%2C+Maryam&rft.au=Rostami%2C+Reza&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=3417&rft.epage=3427&rft_id=info:doi/10.1109%2FACCESS.2020.3046993&rft.externalDocID=9306766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon