GAN-Based Image Deblurring Using DCT Loss With Customized Datasets
In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and G...
        Saved in:
      
    
          | Published in | IEEE access Vol. 9; pp. 135224 - 135233 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2021.3116194 | 
Cover
| Abstract | In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale and multi-patch architectures of CNN restore blurred images clearly and suppress more ringing or blocking artifacts, but they take a longer time to process. To improve the quality of deblured images and reduce the computational time, we propose a method called "DeblurDCTGAN" that preserves texture and suppresses ringing artifacts in the restored image without multi-scale or multi-patch architecture using DCT based loss. This loss compares the restored image and the ground truth image in the frequency domain. With this loss, DeblurDCTGAN can reduce block noise and ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances in terms of PSNR, SSIM, and running time compared with conventional methods. In terms of real image datasets, DeblurDCTGAN shows a better performance by using a customized training dataset made from GoPro, DVD, NFS and HIDE training datasets. Experimented code with pre-trained weights, datasets and results are available at https://github.com/Hiroki-Tomosada/DCTGAN-master | 
    
|---|---|
| AbstractList | In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale and multi-patch architectures of CNN restore blurred images clearly and suppress more ringing or blocking artifacts, but they take a longer time to process. To improve the quality of deblured images and reduce the computational time, we propose a method called "DeblurDCTGAN" that preserves texture and suppresses ringing artifacts in the restored image without multi-scale or multi-patch architecture using DCT based loss. This loss compares the restored image and the ground truth image in the frequency domain. With this loss, DeblurDCTGAN can reduce block noise and ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances in terms of PSNR, SSIM, and running time compared with conventional methods. In terms of real image datasets, DeblurDCTGAN shows a better performance by using a customized training dataset made from GoPro, DVD, NFS and HIDE training datasets. Experimented code with pre-trained weights, datasets and results are available at https://github.com/Hiroki-Tomosada/DCTGAN-master | 
    
| Author | Ikehara, Masaaki Tomosada, Hiroki Kudo, Takahiro Fujisawa, Takanori  | 
    
| Author_xml | – sequence: 1 givenname: Hiroki orcidid: 0000-0002-7626-6070 surname: Tomosada fullname: Tomosada, Hiroki email: tomosada@tkhm.elec.keio.ac.jp organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan – sequence: 2 givenname: Takahiro orcidid: 0000-0002-2618-7374 surname: Kudo fullname: Kudo, Takahiro email: kudo@tkhm.elec.keio.ac.jp organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan – sequence: 3 givenname: Takanori orcidid: 0000-0001-7632-5846 surname: Fujisawa fullname: Fujisawa, Takanori organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan – sequence: 4 givenname: Masaaki orcidid: 0000-0003-3461-1507 surname: Ikehara fullname: Ikehara, Masaaki email: ikehara@tkhm.elec.keio.ac.jp organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan  | 
    
| BookMark | eNqFkc1O3DAURq0KpFLgCdhE6jrTazv-Ww4ZCiON2gWgLi3HcaYeZeKp7QjRp2-GIFTRRb2wrat7zpU_f0InQxgcQlcYFhiD-rKs65v7-wUBghcUY45V9QGdEcxVSRnlJ3_dP6LLlHYwLTmVmDhD17fLb-W1Sa4t1nuzdcXKNf0Yox-2xWM67qv6odiElIofPv8s6jHlsPe_p_6VyROX0wU67Uyf3OXreY4ev9481Hfl5vvtul5uSluBzKWiUvIOi7YRgneWUFwBBcJJK61QrW1pB5IwKgTBjDvLWsc7JqRQqlFAMT1H69nbBrPTh-j3Jj7rYLx-KYS41SZmb3unSUXAKABsSVMp2jQNmI65lhlXcai6yVXNrnE4mOcn0_dvQgz6GKs21rqU9DFW_RrrhH2esUMMv0aXst6FMQ7TqzVhEjAA52TqonOXjVNu0XX_uOcve-9W7yjrs8k-DDka3_-HvZpZ75x7m6YYw1JS-gcVR6Dy | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_023_15916_7 crossref_primary_10_1007_s41870_023_01322_7 crossref_primary_10_1016_j_ymssp_2024_112240 crossref_primary_10_1109_JSTARS_2024_3450429 crossref_primary_10_1007_s00500_024_09700_4 crossref_primary_10_1109_ACCESS_2022_3194524 crossref_primary_10_1088_1402_4896_ad203c crossref_primary_10_21595_jme_2023_23765 crossref_primary_10_1109_ACCESS_2023_3321895 crossref_primary_10_1109_ACCESS_2023_3243173 crossref_primary_10_1587_nolta_14_449 crossref_primary_10_3390_a16120574  | 
    
| Cites_doi | 10.1109/ACCESS.2020.2984002 10.1109/ICCV.2019.00897 10.1109/ICCV.2019.00567 10.1109/ACCESS.2020.2967823 10.1109/CVPR.2015.7298677 10.1109/CVPR42600.2020.00366 10.1109/CVPR.2019.00397 10.1109/ACCESS.2020.3039281 10.1109/CVPR.2014.348 10.1109/CVPR.2013.147 10.1109/ICCV.2015.123 10.1109/CVPR.2016.90 10.1109/CVPR.2017.35 10.1109/TIP.2015.2512108 10.1109/ICCV.2017.244 10.1109/ICIP.2017.8296984 10.1109/CVPR.2009.5206848 10.1016/j.patcog.2018.11.028 10.1109/CVPR.2019.00613 10.1109/CVPR.2018.00853 10.1109/CVPR.2016.188 10.1109/CVPR.2017.33 10.1109/ACCESS.2019.2942779 10.1109/TPAMI.2017.2753804 10.1109/CVPR.2017.19 10.1109/ICCV.2017.128 10.1109/TIP.2020.2995048 10.1007/s11263-011-0502-7  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2021.3116194 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 135233 | 
    
| ExternalDocumentID | oai_doaj_org_article_2420a9001c2b493bbb0af5ed5ae4604f 10.1109/access.2021.3116194 10_1109_ACCESS_2021_3116194 9551883  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-93886f17db776fc2314030262d8c79dcd3f08253772156ec5de6f578799b90313 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:52:15 EDT 2025 Wed Oct 01 16:27:20 EDT 2025 Mon Jun 30 04:39:19 EDT 2025 Wed Oct 01 04:57:36 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Aug 27 02:26:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-93886f17db776fc2314030262d8c79dcd3f08253772156ec5de6f578799b90313 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-3461-1507 0000-0001-7632-5846 0000-0002-7626-6070 0000-0002-2618-7374  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09551883.pdf | 
    
| PQID | 2580100662 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | ieee_primary_9551883 crossref_citationtrail_10_1109_ACCESS_2021_3116194 unpaywall_primary_10_1109_access_2021_3116194 doaj_primary_oai_doaj_org_article_2420a9001c2b493bbb0af5ed5ae4604f proquest_journals_2580100662 crossref_primary_10_1109_ACCESS_2021_3116194  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref34 ref12 tomosada (ref13) 2021 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 kupyn (ref7) 2017 ref16 goodfellow (ref18) 2014 ref24 sutskever (ref20) 2014 ref23 ref26 ref25 lin (ref33) 2014 ref22 ref21 ref28 xingjian (ref19) 2015 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – start-page: 3104 year: 2014 ident: ref20 article-title: Sequence to sequence learning with neural networks publication-title: Proc Adv NIPS – ident: ref22 doi: 10.1109/ACCESS.2020.2984002 – start-page: 3675 year: 2021 ident: ref13 article-title: GAN-based image deblurring using DCT discriminator publication-title: Proc Int Conf Pattern Recognit (ICPR) – ident: ref8 doi: 10.1109/ICCV.2019.00897 – ident: ref31 doi: 10.1109/ICCV.2019.00567 – ident: ref23 doi: 10.1109/ACCESS.2020.2967823 – ident: ref17 doi: 10.1109/CVPR.2015.7298677 – ident: ref21 doi: 10.1109/CVPR42600.2020.00366 – start-page: 2672 year: 2014 ident: ref18 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref24 doi: 10.1109/CVPR.2019.00397 – ident: ref3 doi: 10.1109/ACCESS.2020.3039281 – ident: ref15 doi: 10.1109/CVPR.2014.348 – ident: ref16 doi: 10.1109/CVPR.2013.147 – ident: ref25 doi: 10.1109/ICCV.2015.123 – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1109/CVPR.2017.35 – year: 2014 ident: ref33 article-title: Microsoft COCO: Common objects in context publication-title: arXiv 1405 0312 – ident: ref1 doi: 10.1109/TIP.2015.2512108 – start-page: 802 year: 2015 ident: ref19 article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1109/ICCV.2017.244 – ident: ref32 doi: 10.1109/ICIP.2017.8296984 – ident: ref27 doi: 10.1109/CVPR.2009.5206848 – ident: ref6 doi: 10.1016/j.patcog.2018.11.028 – ident: ref10 doi: 10.1109/CVPR.2019.00613 – ident: ref9 doi: 10.1109/CVPR.2018.00853 – ident: ref34 doi: 10.1109/CVPR.2016.188 – ident: ref29 doi: 10.1109/CVPR.2017.33 – year: 2017 ident: ref7 article-title: DeblurGAN: Blind motion deblurring using conditional adversarial networks publication-title: arXiv 1711 07064 – ident: ref12 doi: 10.1109/ACCESS.2019.2942779 – ident: ref2 doi: 10.1109/TPAMI.2017.2753804 – ident: ref4 doi: 10.1109/CVPR.2017.19 – ident: ref30 doi: 10.1109/ICCV.2017.128 – ident: ref11 doi: 10.1109/TIP.2020.2995048 – ident: ref14 doi: 10.1007/s11263-011-0502-7  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.2832623 | 
    
| Snippet | In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 135224 | 
    
| SubjectTerms | Algorithms Artificial neural networks blind deconvolution Blocking Computing time Customization Datasets Deconvolution Discrete cosine transform discrete cosine transform (DCT) Discrete cosine transforms GAN Generative adversarial networks Generators Image deblurring Image quality Image restoration Noise measurement Noise reduction non-uniform Optical disks Training  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl9JD1RaqboHKhx6JcGLHzhx3QymgwgkEN8ufLdKSIsiqan89YyesdlWpvfQWRbY1mRnPzLOcN4R8MgoqZ0EUoEIoBPe-AI9PKvKaBVvzCOlv5PMLeXIlzm7qm5VWX-lO2EAPPCjuEFMIM4DB1FVWALfWMhPr4GsThGQipujLGlgBUzkGN6WEWo00QyWDw2nb4hchIKxKxKllAu9rqSgz9o8tVtaqzReL7t78-mnm85XEc_yavBorRjodJH1DNkL3lrxc4RHcJrMv04tihvnI09M7DBAUo8g8ne1132i-E0CP2kv6FYWg17f9d9ousOS7u_2N449Mj_P6xx1ydfz5sj0pxuYIhROs6QvgTSNjqbxVSkaHZZrA_VrJyjdOgXeex4T-OFbPCNGCq32QMW1PAAuJsPEd2ex-dOE9oZgmG45Az5aNFBGkUcqXzJXOeSNCxSeketaTdiNzeGpgMdcZQTDQg3J1Uq4elTshB8tJ9wNxxt-Hz5IBlkMT63V-gb6gR1_Q__KFCdlO5lsuApluDuXfezanHnfoo65qzM2Z_35CiqWJ_xDV5LaVa6J--B-i7pKttOZwmLNHNvuHRdjH8qa3H7MnPwGa2PCM priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgWRUpAPHJttEjt2fNxNKQXRnlrRW-RXoGKbVm0iRH89Y8cbdQEhblY0TmzPjOcR-xuAd0rIwmjJUimcSxm1NpUWW6KlZeZ0SVvpbyMfn_CjM_bpvDzfgL3pLoxzLhw-czPfDP_y7ZUZfKpsXwb4MLoJm6Li412tKZ_iC0jIUkRgoTyT-_O6xjlgCFjkGJnmPlxfMz4Boz8WVVnzLx8M3bX6-UMtl_dMzeETOF4Ncjxh8n029Hpm7n7Db_zfWTyFx9HnJPNRSJ7Bhuuew6N7SITbsPgwP0kXaNEs-XiJWwzBfWjps4PdVxJOFZCD-pR8xkmRLxf9N1IP6DReXtwh_YHqsV9_-wLODt-f1kdpLK-QGpZVfSppVfE2F1YLwVuDjh5DjS94YSsjpDWWtj5-pOh_Y5DnTGkdb72CS6mlh3x8CVvdVedeAUFDW1EMFXVecdZKroSweWZyY6xirqAJFKt1b0zEHvclMJZNiEEy2YzMajyzmsisBPamTtcj9Ma_yReeoROpx80OD3Dxm6iGDTokmZJomk2hmaRa60y1pbOlcoxnrE1g2zNseknkVQK7K_Fooo7fNkWJ1j0g6CeQTiLzx1BVKHy5NtSdv3_lNTz0VGOCZxe2-pvBvUGXp9dvg6z_AhQ6-ds priority: 102 providerName: IEEE  | 
    
| Title | GAN-Based Image Deblurring Using DCT Loss With Customized Datasets | 
    
| URI | https://ieeexplore.ieee.org/document/9551883 https://www.proquest.com/docview/2580100662 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09551883.pdf https://doaj.org/article/2420a9001c2b493bbb0af5ed5ae4604f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOyAOfA20jFHlwJG0SezY8bHNGANBxWEV42T5E6plYdpSwfbX79l1qxUkJLhFkR05es_v_X7--D2EXkvGS604yTizNiPYmIwbeGIOV7lVFXbc30b-NKPHc_LhtDqNC27hLoy1Nhw-syP_GPbyF7b9xca09OJpfEwhxQNJGHvttKKugQoadx_t0Aqw-ADtzGefJ199RbmC8gyHvcmXUVhzLEMNQiCFZQFctfAEfisdBdX-WGZlC3E-WHYX8vqnbNs7yefoMRLrYa_OnJyNlr0a6ZvfFB3__7-eoEcRl6aTlSM9Rfds9ww9vKNWuIum7yazbApZz6TvzyEMpRCrWr-C2H1Lw8mD9LA5ST_Cb6ZfFv33tFkCsDxf3ED7Q9lDv_7qOZofvT1pjrNYgiHTJK_7jOO6pq5gRjFGnQYwSCAqlLQ0tWbcaIOd55gYMDoQQasrY6nzQYBzxb0s5As06H50dg-lkIxrDHRSFTUljlPJmClyXWhtJLElTlC5toTQUZ_cl8loReApOReTpgGnFN58IpovQW82nS5W8hx_bz71Jt409dra4QWYQ8SpKgC05JJD-talIhwrpXLpKmsqaQnNiUvQrjfh5iPRXgk6WDuMiHHgSpQVIICgsp-gbONEfwx15ZhbQ93_x_YHaNBfLu0rgEi9GoalhWG4zTiMc-IWhxgKEQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6Vcig98CqIQIEcODbbJLbj-LibUrawu6et6M2KHykV27RqEyH66xk72agLCHGzIjvxeGY8j9jfAHwouUi1EjQS3NqIEmMiYbDFK8JiqxiphLuNPF9k01P6-YydbcHBcBfGWusPn9mRa_p_-eZKty5Vdig8fBh5AA8ZpZR1t7WGjIorISEY76GFklgcjosCqcAgME0wNk1cwL5hfjxKf19WZcPD3Gnr6_Lnj3K1umdsjp_AfD3N7ozJ91HbqJG--w3B8X_peAqPe68zHHdi8gy2bP0cdu9hEe7B5NN4EU3Qppnw5BI3mRB3opXLD9bnoT9XEB4Vy3CGRIVfL5pvYdGi23h5cYf9j8oGxzW3L-D0-OOymEZ9gYVI0zhvIkHyPKsSbhTnWaXR1aOo82mWmlxzYbQhlYsgCXrgGOZZzYzNKqfiQijhQB9fwnZ9VdtXEKKpzQkGiyrJM1qJrOTcJLFOtDYltSkJIF2vu9Q9-rgrgrGSPgqJheyYJR2zZM-sAA6GQdcd-Ma_u08cQ4euDjnbP8DFl70iSnRJ4lKgcdapooIopeKyYtaw0tIsplUAe45hw0t6XgWwvxYP2Wv5rUwZ2nePoR9ANIjMH1MtfenLjam-_vtX3sPOdDmfydnJ4ssbeORGdOmefdhublr7Fh2gRr3zcv8LT9z9KA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge0Ac-CqIQEE-cCS7SezY8XE3pRQEKw5dUU6WP8uKNFQ0K6C_nrHXu-qChAS3KJpEtmYy857tvEHoheKiMlrQXHDnckqszYWFK-5JXThdEy_C38jv5-x4Qd-e1qdpwS3-C-Oci4fP3Dhcxr38pet-8AmrgniamDAo8UASJkE7rWwaoILW30R7rAYsPkJ7i_mH6afQUa5kIidxb_JpEtacqNiDEEhhVQJXLQOB3ylHUbU_tVnZQZy3Vv2F-vlddd214nN0F8nNsNdnTr6MV4Mem6vfFB3_f1730J2ES_F0HUj30Q3XP0C3r6kV7qPZ6-k8n0HVs_jNOaQhDLmqCyuI_RmOJw_wYXuC38E08cfl8Bm3KwCW58srsD9UAzw3XD5Ei6NXJ-1xnlow5IYWzZAL0jTMl9xqzpk3AAYpZIWKVbYxXFhjiQ8ckwBGByLoTG0d8yEJCKFFkIV8hEb91949RhiKcUOATuqyYdQLpji3ZWFKY6yiriIZqjaekCbpk4c2GZ2MPKUQctq2EJQyuE8m92Xo5fahi7U8x9_NZ8HFW9OgrR1vgDtk-lQlgJZCCSjfptJUEK11oXztbK0cZQX1GdoPLty-JPkrQwebgJEpD1zKqgYEEFX2M5Rvg-iPoa4Dc2eoT_7R_gCNhm8r9wwg0qCfp-_gFx-uCBs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-Based+Image+Deblurring+Using+DCT+Loss+With+Customized+Datasets&rft.jtitle=IEEE+access&rft.au=Tomosada%2C+Hiroki&rft.au=Kudo%2C+Takahiro&rft.au=Fujisawa%2C+Takanori&rft.au=Ikehara%2C+Masaaki&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=135224&rft.epage=135233&rft_id=info:doi/10.1109%2FACCESS.2021.3116194&rft.externalDocID=9551883 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |