GAN-Based Image Deblurring Using DCT Loss With Customized Datasets

In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and G...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 135224 - 135233
Main Authors Tomosada, Hiroki, Kudo, Takahiro, Fujisawa, Takanori, Ikehara, Masaaki
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3116194

Cover

Abstract In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale and multi-patch architectures of CNN restore blurred images clearly and suppress more ringing or blocking artifacts, but they take a longer time to process. To improve the quality of deblured images and reduce the computational time, we propose a method called "DeblurDCTGAN" that preserves texture and suppresses ringing artifacts in the restored image without multi-scale or multi-patch architecture using DCT based loss. This loss compares the restored image and the ground truth image in the frequency domain. With this loss, DeblurDCTGAN can reduce block noise and ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances in terms of PSNR, SSIM, and running time compared with conventional methods. In terms of real image datasets, DeblurDCTGAN shows a better performance by using a customized training dataset made from GoPro, DVD, NFS and HIDE training datasets. Experimented code with pre-trained weights, datasets and results are available at https://github.com/Hiroki-Tomosada/DCTGAN-master
AbstractList In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train our model on a new dataset which is customized to include images with large motion blurs. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale and multi-patch architectures of CNN restore blurred images clearly and suppress more ringing or blocking artifacts, but they take a longer time to process. To improve the quality of deblured images and reduce the computational time, we propose a method called "DeblurDCTGAN" that preserves texture and suppresses ringing artifacts in the restored image without multi-scale or multi-patch architecture using DCT based loss. This loss compares the restored image and the ground truth image in the frequency domain. With this loss, DeblurDCTGAN can reduce block noise and ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances in terms of PSNR, SSIM, and running time compared with conventional methods. In terms of real image datasets, DeblurDCTGAN shows a better performance by using a customized training dataset made from GoPro, DVD, NFS and HIDE training datasets. Experimented code with pre-trained weights, datasets and results are available at https://github.com/Hiroki-Tomosada/DCTGAN-master
Author Ikehara, Masaaki
Tomosada, Hiroki
Kudo, Takahiro
Fujisawa, Takanori
Author_xml – sequence: 1
  givenname: Hiroki
  orcidid: 0000-0002-7626-6070
  surname: Tomosada
  fullname: Tomosada, Hiroki
  email: tomosada@tkhm.elec.keio.ac.jp
  organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
– sequence: 2
  givenname: Takahiro
  orcidid: 0000-0002-2618-7374
  surname: Kudo
  fullname: Kudo, Takahiro
  email: kudo@tkhm.elec.keio.ac.jp
  organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
– sequence: 3
  givenname: Takanori
  orcidid: 0000-0001-7632-5846
  surname: Fujisawa
  fullname: Fujisawa, Takanori
  organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
– sequence: 4
  givenname: Masaaki
  orcidid: 0000-0003-3461-1507
  surname: Ikehara
  fullname: Ikehara, Masaaki
  email: ikehara@tkhm.elec.keio.ac.jp
  organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
BookMark eNqFkc1O3DAURq0KpFLgCdhE6jrTazv-Ww4ZCiON2gWgLi3HcaYeZeKp7QjRp2-GIFTRRb2wrat7zpU_f0InQxgcQlcYFhiD-rKs65v7-wUBghcUY45V9QGdEcxVSRnlJ3_dP6LLlHYwLTmVmDhD17fLb-W1Sa4t1nuzdcXKNf0Yox-2xWM67qv6odiElIofPv8s6jHlsPe_p_6VyROX0wU67Uyf3OXreY4ev9481Hfl5vvtul5uSluBzKWiUvIOi7YRgneWUFwBBcJJK61QrW1pB5IwKgTBjDvLWsc7JqRQqlFAMT1H69nbBrPTh-j3Jj7rYLx-KYS41SZmb3unSUXAKABsSVMp2jQNmI65lhlXcai6yVXNrnE4mOcn0_dvQgz6GKs21rqU9DFW_RrrhH2esUMMv0aXst6FMQ7TqzVhEjAA52TqonOXjVNu0XX_uOcve-9W7yjrs8k-DDka3_-HvZpZ75x7m6YYw1JS-gcVR6Dy
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_023_15916_7
crossref_primary_10_1007_s41870_023_01322_7
crossref_primary_10_1016_j_ymssp_2024_112240
crossref_primary_10_1109_JSTARS_2024_3450429
crossref_primary_10_1007_s00500_024_09700_4
crossref_primary_10_1109_ACCESS_2022_3194524
crossref_primary_10_1088_1402_4896_ad203c
crossref_primary_10_21595_jme_2023_23765
crossref_primary_10_1109_ACCESS_2023_3321895
crossref_primary_10_1109_ACCESS_2023_3243173
crossref_primary_10_1587_nolta_14_449
crossref_primary_10_3390_a16120574
Cites_doi 10.1109/ACCESS.2020.2984002
10.1109/ICCV.2019.00897
10.1109/ICCV.2019.00567
10.1109/ACCESS.2020.2967823
10.1109/CVPR.2015.7298677
10.1109/CVPR42600.2020.00366
10.1109/CVPR.2019.00397
10.1109/ACCESS.2020.3039281
10.1109/CVPR.2014.348
10.1109/CVPR.2013.147
10.1109/ICCV.2015.123
10.1109/CVPR.2016.90
10.1109/CVPR.2017.35
10.1109/TIP.2015.2512108
10.1109/ICCV.2017.244
10.1109/ICIP.2017.8296984
10.1109/CVPR.2009.5206848
10.1016/j.patcog.2018.11.028
10.1109/CVPR.2019.00613
10.1109/CVPR.2018.00853
10.1109/CVPR.2016.188
10.1109/CVPR.2017.33
10.1109/ACCESS.2019.2942779
10.1109/TPAMI.2017.2753804
10.1109/CVPR.2017.19
10.1109/ICCV.2017.128
10.1109/TIP.2020.2995048
10.1007/s11263-011-0502-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3116194
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 135233
ExternalDocumentID oai_doaj_org_article_2420a9001c2b493bbb0af5ed5ae4604f
10.1109/access.2021.3116194
10_1109_ACCESS_2021_3116194
9551883
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-93886f17db776fc2314030262d8c79dcd3f08253772156ec5de6f578799b90313
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:15 EDT 2025
Wed Oct 01 16:27:20 EDT 2025
Mon Jun 30 04:39:19 EDT 2025
Wed Oct 01 04:57:36 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Wed Aug 27 02:26:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-93886f17db776fc2314030262d8c79dcd3f08253772156ec5de6f578799b90313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3461-1507
0000-0001-7632-5846
0000-0002-7626-6070
0000-0002-2618-7374
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09551883.pdf
PQID 2580100662
PQPubID 4845423
PageCount 10
ParticipantIDs ieee_primary_9551883
crossref_citationtrail_10_1109_ACCESS_2021_3116194
unpaywall_primary_10_1109_access_2021_3116194
doaj_primary_oai_doaj_org_article_2420a9001c2b493bbb0af5ed5ae4604f
proquest_journals_2580100662
crossref_primary_10_1109_ACCESS_2021_3116194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
tomosada (ref13) 2021
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
kupyn (ref7) 2017
ref16
goodfellow (ref18) 2014
ref24
sutskever (ref20) 2014
ref23
ref26
ref25
lin (ref33) 2014
ref22
ref21
ref28
xingjian (ref19) 2015
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 3104
  year: 2014
  ident: ref20
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc Adv NIPS
– ident: ref22
  doi: 10.1109/ACCESS.2020.2984002
– start-page: 3675
  year: 2021
  ident: ref13
  article-title: GAN-based image deblurring using DCT discriminator
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– ident: ref8
  doi: 10.1109/ICCV.2019.00897
– ident: ref31
  doi: 10.1109/ICCV.2019.00567
– ident: ref23
  doi: 10.1109/ACCESS.2020.2967823
– ident: ref17
  doi: 10.1109/CVPR.2015.7298677
– ident: ref21
  doi: 10.1109/CVPR42600.2020.00366
– start-page: 2672
  year: 2014
  ident: ref18
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1109/CVPR.2019.00397
– ident: ref3
  doi: 10.1109/ACCESS.2020.3039281
– ident: ref15
  doi: 10.1109/CVPR.2014.348
– ident: ref16
  doi: 10.1109/CVPR.2013.147
– ident: ref25
  doi: 10.1109/ICCV.2015.123
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1109/CVPR.2017.35
– year: 2014
  ident: ref33
  article-title: Microsoft COCO: Common objects in context
  publication-title: arXiv 1405 0312
– ident: ref1
  doi: 10.1109/TIP.2015.2512108
– start-page: 802
  year: 2015
  ident: ref19
  article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/ICCV.2017.244
– ident: ref32
  doi: 10.1109/ICIP.2017.8296984
– ident: ref27
  doi: 10.1109/CVPR.2009.5206848
– ident: ref6
  doi: 10.1016/j.patcog.2018.11.028
– ident: ref10
  doi: 10.1109/CVPR.2019.00613
– ident: ref9
  doi: 10.1109/CVPR.2018.00853
– ident: ref34
  doi: 10.1109/CVPR.2016.188
– ident: ref29
  doi: 10.1109/CVPR.2017.33
– year: 2017
  ident: ref7
  article-title: DeblurGAN: Blind motion deblurring using conditional adversarial networks
  publication-title: arXiv 1711 07064
– ident: ref12
  doi: 10.1109/ACCESS.2019.2942779
– ident: ref2
  doi: 10.1109/TPAMI.2017.2753804
– ident: ref4
  doi: 10.1109/CVPR.2017.19
– ident: ref30
  doi: 10.1109/ICCV.2017.128
– ident: ref11
  doi: 10.1109/TIP.2020.2995048
– ident: ref14
  doi: 10.1007/s11263-011-0502-7
SSID ssj0000816957
Score 2.2832623
Snippet In this paper, we propose a high quality image deblurring method that uses discrete cosine transform (DCT) and requires less computational complexity. We train...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135224
SubjectTerms Algorithms
Artificial neural networks
blind deconvolution
Blocking
Computing time
Customization
Datasets
Deconvolution
Discrete cosine transform
discrete cosine transform (DCT)
Discrete cosine transforms
GAN
Generative adversarial networks
Generators
Image deblurring
Image quality
Image restoration
Noise measurement
Noise reduction
non-uniform
Optical disks
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl9JD1RaqboHKhx6JcGLHzhx3QymgwgkEN8ufLdKSIsiqan89YyesdlWpvfQWRbY1mRnPzLOcN4R8MgoqZ0EUoEIoBPe-AI9PKvKaBVvzCOlv5PMLeXIlzm7qm5VWX-lO2EAPPCjuEFMIM4DB1FVWALfWMhPr4GsThGQipujLGlgBUzkGN6WEWo00QyWDw2nb4hchIKxKxKllAu9rqSgz9o8tVtaqzReL7t78-mnm85XEc_yavBorRjodJH1DNkL3lrxc4RHcJrMv04tihvnI09M7DBAUo8g8ne1132i-E0CP2kv6FYWg17f9d9ousOS7u_2N449Mj_P6xx1ydfz5sj0pxuYIhROs6QvgTSNjqbxVSkaHZZrA_VrJyjdOgXeex4T-OFbPCNGCq32QMW1PAAuJsPEd2ex-dOE9oZgmG45Az5aNFBGkUcqXzJXOeSNCxSeketaTdiNzeGpgMdcZQTDQg3J1Uq4elTshB8tJ9wNxxt-Hz5IBlkMT63V-gb6gR1_Q__KFCdlO5lsuApluDuXfezanHnfoo65qzM2Z_35CiqWJ_xDV5LaVa6J--B-i7pKttOZwmLNHNvuHRdjH8qa3H7MnPwGa2PCM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgWRUpAPHJttEjt2fNxNKQXRnlrRW-RXoGKbVm0iRH89Y8cbdQEhblY0TmzPjOcR-xuAd0rIwmjJUimcSxm1NpUWW6KlZeZ0SVvpbyMfn_CjM_bpvDzfgL3pLoxzLhw-czPfDP_y7ZUZfKpsXwb4MLoJm6Li412tKZ_iC0jIUkRgoTyT-_O6xjlgCFjkGJnmPlxfMz4Boz8WVVnzLx8M3bX6-UMtl_dMzeETOF4Ncjxh8n029Hpm7n7Db_zfWTyFx9HnJPNRSJ7Bhuuew6N7SITbsPgwP0kXaNEs-XiJWwzBfWjps4PdVxJOFZCD-pR8xkmRLxf9N1IP6DReXtwh_YHqsV9_-wLODt-f1kdpLK-QGpZVfSppVfE2F1YLwVuDjh5DjS94YSsjpDWWtj5-pOh_Y5DnTGkdb72CS6mlh3x8CVvdVedeAUFDW1EMFXVecdZKroSweWZyY6xirqAJFKt1b0zEHvclMJZNiEEy2YzMajyzmsisBPamTtcj9Ma_yReeoROpx80OD3Dxm6iGDTokmZJomk2hmaRa60y1pbOlcoxnrE1g2zNseknkVQK7K_Fooo7fNkWJ1j0g6CeQTiLzx1BVKHy5NtSdv3_lNTz0VGOCZxe2-pvBvUGXp9dvg6z_AhQ6-ds
  priority: 102
  providerName: IEEE
Title GAN-Based Image Deblurring Using DCT Loss With Customized Datasets
URI https://ieeexplore.ieee.org/document/9551883
https://www.proquest.com/docview/2580100662
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09551883.pdf
https://doaj.org/article/2420a9001c2b493bbb0af5ed5ae4604f
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOyAOfA20jFHlwJG0SezY8bHNGANBxWEV42T5E6plYdpSwfbX79l1qxUkJLhFkR05es_v_X7--D2EXkvGS604yTizNiPYmIwbeGIOV7lVFXbc30b-NKPHc_LhtDqNC27hLoy1Nhw-syP_GPbyF7b9xca09OJpfEwhxQNJGHvttKKugQoadx_t0Aqw-ADtzGefJ199RbmC8gyHvcmXUVhzLEMNQiCFZQFctfAEfisdBdX-WGZlC3E-WHYX8vqnbNs7yefoMRLrYa_OnJyNlr0a6ZvfFB3__7-eoEcRl6aTlSM9Rfds9ww9vKNWuIum7yazbApZz6TvzyEMpRCrWr-C2H1Lw8mD9LA5ST_Cb6ZfFv33tFkCsDxf3ED7Q9lDv_7qOZofvT1pjrNYgiHTJK_7jOO6pq5gRjFGnQYwSCAqlLQ0tWbcaIOd55gYMDoQQasrY6nzQYBzxb0s5As06H50dg-lkIxrDHRSFTUljlPJmClyXWhtJLElTlC5toTQUZ_cl8loReApOReTpgGnFN58IpovQW82nS5W8hx_bz71Jt409dra4QWYQ8SpKgC05JJD-talIhwrpXLpKmsqaQnNiUvQrjfh5iPRXgk6WDuMiHHgSpQVIICgsp-gbONEfwx15ZhbQ93_x_YHaNBfLu0rgEi9GoalhWG4zTiMc-IWhxgKEQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6Vcig98CqIQIEcODbbJLbj-LibUrawu6et6M2KHykV27RqEyH66xk72agLCHGzIjvxeGY8j9jfAHwouUi1EjQS3NqIEmMiYbDFK8JiqxiphLuNPF9k01P6-YydbcHBcBfGWusPn9mRa_p_-eZKty5Vdig8fBh5AA8ZpZR1t7WGjIorISEY76GFklgcjosCqcAgME0wNk1cwL5hfjxKf19WZcPD3Gnr6_Lnj3K1umdsjp_AfD3N7ozJ91HbqJG--w3B8X_peAqPe68zHHdi8gy2bP0cdu9hEe7B5NN4EU3Qppnw5BI3mRB3opXLD9bnoT9XEB4Vy3CGRIVfL5pvYdGi23h5cYf9j8oGxzW3L-D0-OOymEZ9gYVI0zhvIkHyPKsSbhTnWaXR1aOo82mWmlxzYbQhlYsgCXrgGOZZzYzNKqfiQijhQB9fwnZ9VdtXEKKpzQkGiyrJM1qJrOTcJLFOtDYltSkJIF2vu9Q9-rgrgrGSPgqJheyYJR2zZM-sAA6GQdcd-Ma_u08cQ4euDjnbP8DFl70iSnRJ4lKgcdapooIopeKyYtaw0tIsplUAe45hw0t6XgWwvxYP2Wv5rUwZ2nePoR9ANIjMH1MtfenLjam-_vtX3sPOdDmfydnJ4ssbeORGdOmefdhublr7Fh2gRr3zcv8LT9z9KA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge0Ac-CqIQEE-cCS7SezY8XE3pRQEKw5dUU6WP8uKNFQ0K6C_nrHXu-qChAS3KJpEtmYy857tvEHoheKiMlrQXHDnckqszYWFK-5JXThdEy_C38jv5-x4Qd-e1qdpwS3-C-Oci4fP3Dhcxr38pet-8AmrgniamDAo8UASJkE7rWwaoILW30R7rAYsPkJ7i_mH6afQUa5kIidxb_JpEtacqNiDEEhhVQJXLQOB3ylHUbU_tVnZQZy3Vv2F-vlddd214nN0F8nNsNdnTr6MV4Mem6vfFB3_f1730J2ES_F0HUj30Q3XP0C3r6kV7qPZ6-k8n0HVs_jNOaQhDLmqCyuI_RmOJw_wYXuC38E08cfl8Bm3KwCW58srsD9UAzw3XD5Ei6NXJ-1xnlow5IYWzZAL0jTMl9xqzpk3AAYpZIWKVbYxXFhjiQ8ckwBGByLoTG0d8yEJCKFFkIV8hEb91949RhiKcUOATuqyYdQLpji3ZWFKY6yiriIZqjaekCbpk4c2GZ2MPKUQctq2EJQyuE8m92Xo5fahi7U8x9_NZ8HFW9OgrR1vgDtk-lQlgJZCCSjfptJUEK11oXztbK0cZQX1GdoPLty-JPkrQwebgJEpD1zKqgYEEFX2M5Rvg-iPoa4Dc2eoT_7R_gCNhm8r9wwg0qCfp-_gFx-uCBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-Based+Image+Deblurring+Using+DCT+Loss+With+Customized+Datasets&rft.jtitle=IEEE+access&rft.au=Tomosada%2C+Hiroki&rft.au=Kudo%2C+Takahiro&rft.au=Fujisawa%2C+Takanori&rft.au=Ikehara%2C+Masaaki&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=135224&rft.epage=135233&rft_id=info:doi/10.1109%2FACCESS.2021.3116194&rft.externalDocID=9551883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon