Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network
In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance o...
Saved in:
| Published in | IEEE access Vol. 9; pp. 47491 - 47502 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3068316 |
Cover
| Abstract | In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance of the data sets themselves, affective features' extraction from electroencephalogram signals, and the design of classifiers with excellent performance, pose a great challenge to the subject. Motivated by the outstanding performance of deep learning approaches in pattern recognition tasks, we propose a method based on convolutional neural network with data augmentation method Borderline-synthetic minority oversampling technique. First, we obtain 32-channel electroencephalogram signals from DEAP data set, which is the standard data set of emotion recognition. Then, after data pre-processing, we extract features in frequency domain and data augmentation based on the data augmentation algorithm above for getting more balanced data. Finally, we train a one dimensional convolutional neural network for three classification on two emotional dimensions valence and arousal. Meanwhile, the proposed method is compared with some traditional machine learning methods and some existing methods by other researchers, which is proved to be effective in emotion recognition, and the average accuracy rate of 32 subjects on valence and arousal are 97.47% and 97.76% respectively. Compared with other existing methods, the performance of the proposed method with data augmentation algorithm Borderline-SMOTE shows its advantage in affective emotional recognition than that without Borderline-SMOTE. |
|---|---|
| AbstractList | In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance of the data sets themselves, affective features’ extraction from electroencephalogram signals, and the design of classifiers with excellent performance, pose a great challenge to the subject. Motivated by the outstanding performance of deep learning approaches in pattern recognition tasks, we propose a method based on convolutional neural network with data augmentation method Borderline-synthetic minority oversampling technique. First, we obtain 32-channel electroencephalogram signals from DEAP data set, which is the standard data set of emotion recognition. Then, after data pre-processing, we extract features in frequency domain and data augmentation based on the data augmentation algorithm above for getting more balanced data. Finally, we train a one dimensional convolutional neural network for three classification on two emotional dimensions valence and arousal. Meanwhile, the proposed method is compared with some traditional machine learning methods and some existing methods by other researchers, which is proved to be effective in emotion recognition, and the average accuracy rate of 32 subjects on valence and arousal are 97.47% and 97.76% respectively. Compared with other existing methods, the performance of the proposed method with data augmentation algorithm Borderline-SMOTE shows its advantage in affective emotional recognition than that without Borderline-SMOTE. |
| Author | Chen, Yu Chang, Rui Guo, Jifeng |
| Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China – sequence: 2 givenname: Rui orcidid: 0000-0001-6996-202X surname: Chang fullname: Chang, Rui organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China – sequence: 3 givenname: Jifeng orcidid: 0000-0002-8692-6255 surname: Guo fullname: Guo, Jifeng email: guojifeng@nefu.edu.cn organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China |
| BookMark | eNptkUFv1DAQhSNUJErpL-glEucsdhw7znEb0lKppRJbztasPVm8ZOPFdqh646eTbKoVWuHLjMbve2P5vU_OetdjklxRsqCUVJ-Wdd2sVouc5HTBiJCMijfJeU5FlTHOxNk__bvkMoQtGY8cR7w8T_40bYs6htS16WeIkC6HzQ77CNG6Pn3A-MOZ9Np5g76zPWarh8enJh2vmp07SL6hdpveHvrRo2lu05Xd9NCF9BoCmklbu_6364ZJA136FQd_KPHZ-Z8fkrftKMbL13qRfL9pnuov2f3j7V29vM90QWTMKlryUpicCcOl1Pm61azQUpuqwApLMBwYkZJpTVsCZi2kpkgM0YxXLRUtu0juZl_jYKv23u7AvygHVh0Gzm8U-Gh1h4oxbniOBCgvCig0VGQNknCDhREMxehVzF5Dv4eXZ-i6oyElagpFgdYYgppCUa-hjNjHGdt792vAENXWDX76KpVzUpFSlFyOqmpWae9C8Ngqbec4ogfbHTfMsZ9uYCfs6bv-T13NlEXEI1ExyVkp2F9vuLmz |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3224725 crossref_primary_10_1007_s11042_023_14354_9 crossref_primary_10_1088_2057_1976_ad31f9 crossref_primary_10_1186_s40537_025_01119_4 crossref_primary_10_3233_IDT_230320 crossref_primary_10_3390_a17110489 crossref_primary_10_3390_app11156987 crossref_primary_10_3390_tomography10120138 crossref_primary_10_3389_fpsyg_2021_771591 crossref_primary_10_1016_j_jneumeth_2024_110129 crossref_primary_10_1038_s41598_024_75896_y crossref_primary_10_1016_j_infoh_2024_06_001 crossref_primary_10_1007_s42979_023_02543_0 crossref_primary_10_54097_jceim_v10i1_5368 crossref_primary_10_1080_09540091_2025_2467387 crossref_primary_10_3390_s23042333 crossref_primary_10_1155_2022_8735201 crossref_primary_10_1142_S0129065723500673 crossref_primary_10_3390_s24165433 crossref_primary_10_1109_TSG_2023_3325390 crossref_primary_10_1016_j_ecmx_2025_100965 crossref_primary_10_1016_j_ijleo_2022_170375 crossref_primary_10_3390_app12052527 crossref_primary_10_3390_s22239078 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_32604_csse_2023_034910 crossref_primary_10_1109_ACCESS_2023_3244682 crossref_primary_10_3390_computers12020026 |
| Cites_doi | 10.1109/WiSPNET.2016.7566545 10.1007/s11042-018-5885-9 10.1016/S1364-6613(99)01417-5 10.1109/ICME.2014.6890301 10.1109/34.954607 10.1109/IACC.2016.25 10.1109/TIP.2015.2416634 10.1109/CIVEMSA45640.2019.9071594 10.1109/BCI48061.2020.9061656 10.1109/COGINF.2011.6016124 10.1109/INDICON47234.2019.9028978 10.1109/IPACT.2017.8245056 10.1109/SIU.2019.8806497 10.1109/ACCESS.2017.2672722 10.1109/ACCESS.2019.2918251 10.23919/CISTI49556.2020.9141004 10.1109/iww-BCI.2014.6782576 10.1109/JCSSE.2014.6841851 10.1109/TNSRE.2018.2864119 10.1109/TAFFC.2016.2542812 10.1109/TNSRE.2006.875577 10.1109/79.911197 10.1109/T-AFFC.2011.15 10.1109/TNSRE.2019.2909100 10.1109/MPRV.2011.50 10.1109/BCI48061.2020.9061624 10.3389/fnbot.2019.00037 10.1109/ECACE.2019.8679156 10.1109/ICICCS48265.2020.9120928 10.1109/ICDE48307.2020.9153878 10.1109/CPEE50798.2020.9238743 10.1088/1741-2552/ab0ab5 10.1109/ICCCNT.2017.8204119 10.1016/j.compbiomed.2013.10.017 10.14569/IJACSA.2017.081046 10.1109/IJCNN.2018.8489331 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2021.3068316 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 47502 |
| ExternalDocumentID | oai_doaj_org_article_335d52e0a1544a4ca90ba805de4d63e6 10.1109/access.2021.3068316 10_1109_ACCESS_2021_3068316 9385376 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61300098 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2572015DY07 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Heilongjiang Province grantid: F201347 funderid: 10.13039/501100005046 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-917576d236d588c2bfc34c8cd94e9e7ad5a30883cc1f0adb68c1e0d0c359f16f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:44 EDT 2025 Wed Oct 01 15:52:19 EDT 2025 Sun Jun 29 15:26:27 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Oct 01 04:44:00 EDT 2025 Wed Aug 27 02:29:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-917576d236d588c2bfc34c8cd94e9e7ad5a30883cc1f0adb68c1e0d0c359f16f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6996-202X 0000-0002-8692-6255 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09385376.pdf |
| PQID | 2509076758 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_335d52e0a1544a4ca90ba805de4d63e6 proquest_journals_2509076758 crossref_citationtrail_10_1109_ACCESS_2021_3068316 ieee_primary_9385376 unpaywall_primary_10_1109_access_2021_3068316 crossref_primary_10_1109_ACCESS_2021_3068316 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 cai (ref8) 2020 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref16 ref19 ref18 ashraf (ref40) 2020 tahghighi (ref10) 2020 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 chollet (ref38) 2018 ref21 ref43 ref28 ref27 ref7 ref9 ref4 ref3 ref6 ref5 franca (ref34) 2020 hui (ref36) 2005 hu (ref29) 2020 |
| References_xml | – ident: ref6 doi: 10.1109/WiSPNET.2016.7566545 – ident: ref32 doi: 10.1007/s11042-018-5885-9 – ident: ref2 doi: 10.1016/S1364-6613(99)01417-5 – ident: ref1 doi: 10.1109/ICME.2014.6890301 – ident: ref12 doi: 10.1109/34.954607 – ident: ref39 doi: 10.1109/IACC.2016.25 – ident: ref9 doi: 10.1109/TIP.2015.2416634 – ident: ref26 doi: 10.1109/CIVEMSA45640.2019.9071594 – ident: ref35 doi: 10.1109/BCI48061.2020.9061656 – ident: ref3 doi: 10.1109/COGINF.2011.6016124 – ident: ref21 doi: 10.1109/INDICON47234.2019.9028978 – year: 2020 ident: ref29 article-title: Data augmentation imbalance for imbalanced attribute classification publication-title: arXiv 2004 13628 – ident: ref17 doi: 10.1109/IPACT.2017.8245056 – ident: ref28 doi: 10.1109/SIU.2019.8806497 – start-page: 1 year: 2020 ident: ref40 article-title: A summarization of the visual depression databases for depression detection publication-title: Proc 6th Int Conf Wireless Telematics (ICWT) – ident: ref7 doi: 10.1109/ACCESS.2017.2672722 – ident: ref43 doi: 10.1109/ACCESS.2019.2918251 – ident: ref41 doi: 10.23919/CISTI49556.2020.9141004 – start-page: 878 year: 2005 ident: ref36 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning publication-title: Proc Int Conf Intell Comput – ident: ref14 doi: 10.1109/iww-BCI.2014.6782576 – ident: ref19 doi: 10.1109/JCSSE.2014.6841851 – start-page: 875 year: 2020 ident: ref34 article-title: Legal judgment prediction in the context of energy market using gradient boosting publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC) – ident: ref23 doi: 10.1109/TNSRE.2018.2864119 – ident: ref11 doi: 10.1109/TAFFC.2016.2542812 – ident: ref15 doi: 10.1109/TNSRE.2006.875577 – year: 2020 ident: ref10 article-title: Deformable convolutional LSTM for human body emotion recognition publication-title: arXiv 2010 14607 – ident: ref4 doi: 10.1109/79.911197 – ident: ref30 doi: 10.1109/T-AFFC.2011.15 – ident: ref42 doi: 10.1109/TNSRE.2019.2909100 – year: 2020 ident: ref8 article-title: Emotion controllable speech synthesis using emotion-unlabeled dataset with the assistance of cross-domain speech emotion recognition publication-title: arXiv 2010 13350 – ident: ref5 doi: 10.1109/MPRV.2011.50 – ident: ref16 doi: 10.1109/BCI48061.2020.9061624 – ident: ref24 doi: 10.3389/fnbot.2019.00037 – ident: ref18 doi: 10.1109/ECACE.2019.8679156 – ident: ref37 doi: 10.1109/ICICCS48265.2020.9120928 – ident: ref13 doi: 10.1109/ICDE48307.2020.9153878 – ident: ref33 doi: 10.1109/CPEE50798.2020.9238743 – ident: ref22 doi: 10.1088/1741-2552/ab0ab5 – ident: ref31 doi: 10.1109/ICCCNT.2017.8204119 – ident: ref20 doi: 10.1016/j.compbiomed.2013.10.017 – ident: ref25 doi: 10.14569/IJACSA.2017.081046 – year: 2018 ident: ref38 article-title: Keras: The Python deep learning library publication-title: Astrophysics Source – ident: ref27 doi: 10.1109/IJCNN.2018.8489331 |
| SSID | ssj0000816957 |
| Score | 2.4578013 |
| Snippet | In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47491 |
| SubjectTerms | Algorithms Arousal Artificial intelligence Artificial neural networks Borderline-Synthetic minority oversampling technique Brain modeling Classification algorithms convolutional neural network Data augmentation Datasets Electroencephalogram Electroencephalography Emotion recognition Emotions Feature extraction Human-computer interface Machine learning Neural networks Oversampling Pattern recognition Physiology Standard data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PT9swFMctxAV2mMbYtGyAfNiRDDv-EfvYljA0qUMaIHGzXm0HTepSNNpNu_GnYztuFTSJXXZKlDjWS96L_V7kfL4IffS-BaWFK5lUtuRMkhIY8NIK4amnEriPPydPv8rza_7lRtwMpL7imrAeD9w_uBPGhBOVJxCxMcAtaDIDRYTz3EnmE2ybKD0optIYrKjUos6YIUr0yWgyCXcUCsKKfgppsmJR4XwwFSVif5ZYeZJt7qy6O_jzG-bzwcRz9gq9zBkjHvWW7qEt371GLwYcwX300DOI7_GixaewBDxa3f7IPxV1eJpEovE4UTZjVlleTi-uGhxONb2ID_62XkYU9kMfTfMZX36_jWhlPA7TnIttJ4vuV47TYE6EeqRNWkX-Bl2fNVeT8zJLK5SWE7UMQ1wdCg1XMemEUraatZZxq6zT3GtfgxPAwvjDrKUtATcLjqSeOGKZ0C2VLXuLtrtF598hrAivmQdNnQYe6fx1TVwogiSr2uDvqkDV-ikbm7njUf5iblL9QbTpXWOia0x2TYGONxfd9diN55uPo_s2TSMzOx0IkWRyJJl_RVKB9qPzN51opiLrpkAH62Aw-f2-NyFx1CRycFSByk2A_GUqJNHLJ6a-_x-mfkC7sc_-U9AB2l7-XPnDkBwtZ0fpPXgEPigHuA priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4JYKMgHjs3Wie3EPu4uKRXSgkRbqbfIsSdVxZKtaAKCEz8dj-ONtoAQp1jJxBlrxvaMM_MNIa8BGqO0dAnPlU0Ez1liuBGJlRJSSHMjAJOTl-_zk3Px7kJe7JDDMRcGAELwGUyxGf7lu7Xt8ajsSHOF6CO7ZLdQ-ZCrNZ6nYAEJLYsILJQyfTRbLPwYvAuYpVNvGCuONc23Np-A0R-LqtyyL-_07bX5_s2sVltbzfEDstwwOUSYfJr2XT21P37Db_zfUTwk96PNSWeDkjwiO9A-Jve2kAj3yc8BxfiGrhv6xnSGzvrLzzEtqaXLUGaazgNOJ9qlyenyw1lJ_aNyKANEP24CkXzb91GWb-np1SWCM9O53ygd0i7W7deo6Z4dhAUJlxCH_oScH5dni5MkFmdIrGCq84tk4V0Vl_HcSaVsVjeWC6us0wI0FMZJw_0Kxq1NG2Zc7VUhBeaY5VI3ad7wp2SvXbfwjFDFRMHB6NRpIxDfvyiY825UzrPGa0w2IdlGapWNyOVYQGNVBQ-G6WoQdYWirqKoJ-RwfOl6AO74N_kc1WEkRdTtcMOLroqTuOJcOpkBMwhhZIQ1mtVGMelAuJyD72QfxT12EiU9IQcb5ariCnFTedNTM0TSUROSjAr3B6smlM28xerzv3_lBbmLVMPx0AHZ67708NIbTF39KsyUXw2QEVM priority: 102 providerName: IEEE |
| Title | Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/9385376 https://www.proquest.com/docview/2509076758 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09385376.pdf https://doaj.org/article/335d52e0a1544a4ca90ba805de4d63e6 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage0A8jMtAFEblBx5J6sSX2I9tyZiQOhBbpfEUubYzTStptaXcnvjpHDtu1YGEBE-JEsc60flsn-PL9yH0yrlaS8VtQoU0CaOCJJpqlhjOXeYyoZnzh5OnJ-J4xt6d8_M44RbOwjjnwuYzl_rbsJZ_6RbfiqHIPXmaGiqa5TAsDiEVl56LJF3Z-i7aExxi8R7am518GH3yinKZUAkNa5MvIrHmUAcNQkgK8yyFUFlSr3K-MxwF1v4os3Ir4ry3blb6-1e9WOwMPkcPULUxu9tzcpWu23lqfvzG6Pj___UQ7ce4FI86ID1Cd1zzGN3fYSs8QD87puMbvKzxG91qPFpffI5Hlxo8DVLUeBy4PH3smpxO35-VGF6VnVQQ_rjZrAT3UEdZvsWnlxeewBmPYTC1vuxk2XyJrQHM8dQh4RL2qj9Bs6PybHKcRAGHxDAiW-hIC0hnbE6F5VKafF4byow0VjGnXKEt1xR6OWpMVhNt5wCXzBFLDOWqzkRNn6Jes2zcM4QlYQV1WmVWaeY1AIqCWEi1BM1rQFXeR_nGj5WJ7OZeZGNRhSyHqGo0mQCkK-_8Kjq_j15vP1p15B5_Lz72ANkW9czc4QE4s4oNvaKUW547oj3NkWZGKzLXknDrmBXUQSUHHgDbSqK3--hwA7cq9iI3FYSnini2HdlHyRaCf5jawfqWqc__sfwh6rXXa_cSAqx2PggTE4NwFnIQW9QvLCohVA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQe-CqIhQI-cGy2Tmwn9nF3SVmgKRLdSr1Fjj2pENtsRRMQnPjp2I432gJCnGIljjPWjO2xM_MeQq8AaiUkNxFNhY4YTUmkqGKR5hxiiFPFwCUnFyfp_Iy9O-fnW-hgyIUBAB98BmNX9P_yzUp37qjsUFLh0EduoducMcb7bK3hRMVRSEieBWihmMjDyWxme2E3gUk8tq6xoI7VfGP58Sj9gVblhoe50zVX6vs3tVxuLDZH91CxFrOPMfk87tpqrH_8huD4v_24j-4GrxNPejN5gLageYh2N7AI99DPHsf4Gq9q_Fq1Ck-6i8uQmNTgwhNN46lH6nSeaXRafFjk2D7KeyIg_HEdimTLto08f4NPP104eGY8tUulcXVnq-ZrsHUrjgMG8Rcfif4InR3li9k8CvQMkWZEtHaazOxmxSQ0NVwInVS1pkwLbSQDCZkyXFE7h1Gt45ooU1ljiIEYoimXdZzW9DHablYNPEFYEJZRUDI2UjGH8J9lxNiNVEqT2tpMMkLJWmulDtjljkJjWfo9DJFlr-rSqboMqh6hg-Glqx6649_Vp84chqoOd9vfsKorwzAuKeWGJ0CUAzFSTCtJKiUIN8BMSsE2sufUPTQSND1C-2vjKsMccV1a51MSh6UjRigaDO4PUZUnzrwh6tO_f-Ul2pkviuPy-O3J-2fojnujPyzaR9vtlw6eW_eprV74UfMLeZkUoA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOyAOfA1Ex0A-cCSpE3_EPrYlY0LqQGyVxilybGeaKGm1pXyd-NN5dtyqAwkJTrESx3rR-9l-L7Z_P4ReOtdoqbhNqJAmYVSQRFPNEsO5y1wmNHP-cPLsRBzP2dtzfh5_uIWzMM65sPnMpb4Y1vIv3eJbMRK5J09TI0WzHKbFEaTi0nORpCvb3EZ7gkMsPkB785P3449eUS4TKqFhbfJZJNYc6aBBCElhnqUQKkvqVc53pqPA2h9lVm5EnHfW7Up__6oXi53J5-g-qjZm93tOPqXrrk7Nj98YHf__ux6gezEuxeMeSA_RLdc-Qnd32Ar30c-e6fgaLxv8Wncaj9cXn-PRpRbPghQ1ngQuTx-7Jqezd2clhkdlLxWEP2w2K0EZ2ijLN_j08sITOOMJTKbW150u2y-xN4A5njokXMJe9cdoflSeTY-TKOCQGEZkBwNpAemMzamwXEqT142hzEhjFXPKFdpyTWGUo8ZkDdG2BrhkjlhiKFdNJhr6BA3aZeueIiwJK6jTKrNKM68BUBTEQqolaN4AqvIhyjd-rExkN_ciG4sqZDlEVePpFCBdeedX0flD9Gr70qon9_h79YkHyLaqZ-YON8CZVezoFaXc8twR7WmONDNakVpLwq1jVlAHjex7AGwbid4eosMN3Ko4ilxXEJ4q4tl25BAlWwj-YWoP6xumHvxj_UM06K7W7jkEWF39IvaiX61-H14 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Data+Augmentation+Method+Borderline-SMOTE+on+Emotion+Recognition+of+EEG+Signals+Based+on+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Chen%2C+Yu&rft.au=Chang%2C+Rui&rft.au=Guo%2C+Jifeng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=47491&rft.epage=47502&rft_id=info:doi/10.1109%2FACCESS.2021.3068316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3068316 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |