Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network

In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance o...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 47491 - 47502
Main Authors Chen, Yu, Chang, Rui, Guo, Jifeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3068316

Cover

Abstract In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance of the data sets themselves, affective features' extraction from electroencephalogram signals, and the design of classifiers with excellent performance, pose a great challenge to the subject. Motivated by the outstanding performance of deep learning approaches in pattern recognition tasks, we propose a method based on convolutional neural network with data augmentation method Borderline-synthetic minority oversampling technique. First, we obtain 32-channel electroencephalogram signals from DEAP data set, which is the standard data set of emotion recognition. Then, after data pre-processing, we extract features in frequency domain and data augmentation based on the data augmentation algorithm above for getting more balanced data. Finally, we train a one dimensional convolutional neural network for three classification on two emotional dimensions valence and arousal. Meanwhile, the proposed method is compared with some traditional machine learning methods and some existing methods by other researchers, which is proved to be effective in emotion recognition, and the average accuracy rate of 32 subjects on valence and arousal are 97.47% and 97.76% respectively. Compared with other existing methods, the performance of the proposed method with data augmentation algorithm Borderline-SMOTE shows its advantage in affective emotional recognition than that without Borderline-SMOTE.
AbstractList In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological signals, especially electroencephalogram signals, has become a popular research topic and attracted wide attention. However, the imbalance of the data sets themselves, affective features’ extraction from electroencephalogram signals, and the design of classifiers with excellent performance, pose a great challenge to the subject. Motivated by the outstanding performance of deep learning approaches in pattern recognition tasks, we propose a method based on convolutional neural network with data augmentation method Borderline-synthetic minority oversampling technique. First, we obtain 32-channel electroencephalogram signals from DEAP data set, which is the standard data set of emotion recognition. Then, after data pre-processing, we extract features in frequency domain and data augmentation based on the data augmentation algorithm above for getting more balanced data. Finally, we train a one dimensional convolutional neural network for three classification on two emotional dimensions valence and arousal. Meanwhile, the proposed method is compared with some traditional machine learning methods and some existing methods by other researchers, which is proved to be effective in emotion recognition, and the average accuracy rate of 32 subjects on valence and arousal are 97.47% and 97.76% respectively. Compared with other existing methods, the performance of the proposed method with data augmentation algorithm Borderline-SMOTE shows its advantage in affective emotional recognition than that without Borderline-SMOTE.
Author Chen, Yu
Chang, Rui
Guo, Jifeng
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-6996-202X
  surname: Chang
  fullname: Chang, Rui
  organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
– sequence: 3
  givenname: Jifeng
  orcidid: 0000-0002-8692-6255
  surname: Guo
  fullname: Guo, Jifeng
  email: guojifeng@nefu.edu.cn
  organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
BookMark eNptkUFv1DAQhSNUJErpL-glEucsdhw7znEb0lKppRJbztasPVm8ZOPFdqh646eTbKoVWuHLjMbve2P5vU_OetdjklxRsqCUVJ-Wdd2sVouc5HTBiJCMijfJeU5FlTHOxNk__bvkMoQtGY8cR7w8T_40bYs6htS16WeIkC6HzQ77CNG6Pn3A-MOZ9Np5g76zPWarh8enJh2vmp07SL6hdpveHvrRo2lu05Xd9NCF9BoCmklbu_6364ZJA136FQd_KPHZ-Z8fkrftKMbL13qRfL9pnuov2f3j7V29vM90QWTMKlryUpicCcOl1Pm61azQUpuqwApLMBwYkZJpTVsCZi2kpkgM0YxXLRUtu0juZl_jYKv23u7AvygHVh0Gzm8U-Gh1h4oxbniOBCgvCig0VGQNknCDhREMxehVzF5Dv4eXZ-i6oyElagpFgdYYgppCUa-hjNjHGdt792vAENXWDX76KpVzUpFSlFyOqmpWae9C8Ngqbec4ogfbHTfMsZ9uYCfs6bv-T13NlEXEI1ExyVkp2F9vuLmz
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3224725
crossref_primary_10_1007_s11042_023_14354_9
crossref_primary_10_1088_2057_1976_ad31f9
crossref_primary_10_1186_s40537_025_01119_4
crossref_primary_10_3233_IDT_230320
crossref_primary_10_3390_a17110489
crossref_primary_10_3390_app11156987
crossref_primary_10_3390_tomography10120138
crossref_primary_10_3389_fpsyg_2021_771591
crossref_primary_10_1016_j_jneumeth_2024_110129
crossref_primary_10_1038_s41598_024_75896_y
crossref_primary_10_1016_j_infoh_2024_06_001
crossref_primary_10_1007_s42979_023_02543_0
crossref_primary_10_54097_jceim_v10i1_5368
crossref_primary_10_1080_09540091_2025_2467387
crossref_primary_10_3390_s23042333
crossref_primary_10_1155_2022_8735201
crossref_primary_10_1142_S0129065723500673
crossref_primary_10_3390_s24165433
crossref_primary_10_1109_TSG_2023_3325390
crossref_primary_10_1016_j_ecmx_2025_100965
crossref_primary_10_1016_j_ijleo_2022_170375
crossref_primary_10_3390_app12052527
crossref_primary_10_3390_s22239078
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_32604_csse_2023_034910
crossref_primary_10_1109_ACCESS_2023_3244682
crossref_primary_10_3390_computers12020026
Cites_doi 10.1109/WiSPNET.2016.7566545
10.1007/s11042-018-5885-9
10.1016/S1364-6613(99)01417-5
10.1109/ICME.2014.6890301
10.1109/34.954607
10.1109/IACC.2016.25
10.1109/TIP.2015.2416634
10.1109/CIVEMSA45640.2019.9071594
10.1109/BCI48061.2020.9061656
10.1109/COGINF.2011.6016124
10.1109/INDICON47234.2019.9028978
10.1109/IPACT.2017.8245056
10.1109/SIU.2019.8806497
10.1109/ACCESS.2017.2672722
10.1109/ACCESS.2019.2918251
10.23919/CISTI49556.2020.9141004
10.1109/iww-BCI.2014.6782576
10.1109/JCSSE.2014.6841851
10.1109/TNSRE.2018.2864119
10.1109/TAFFC.2016.2542812
10.1109/TNSRE.2006.875577
10.1109/79.911197
10.1109/T-AFFC.2011.15
10.1109/TNSRE.2019.2909100
10.1109/MPRV.2011.50
10.1109/BCI48061.2020.9061624
10.3389/fnbot.2019.00037
10.1109/ECACE.2019.8679156
10.1109/ICICCS48265.2020.9120928
10.1109/ICDE48307.2020.9153878
10.1109/CPEE50798.2020.9238743
10.1088/1741-2552/ab0ab5
10.1109/ICCCNT.2017.8204119
10.1016/j.compbiomed.2013.10.017
10.14569/IJACSA.2017.081046
10.1109/IJCNN.2018.8489331
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3068316
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 47502
ExternalDocumentID oai_doaj_org_article_335d52e0a1544a4ca90ba805de4d63e6
10.1109/access.2021.3068316
10_1109_ACCESS_2021_3068316
9385376
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61300098
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2572015DY07
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: F201347
  funderid: 10.13039/501100005046
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-917576d236d588c2bfc34c8cd94e9e7ad5a30883cc1f0adb68c1e0d0c359f16f3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:44 EDT 2025
Wed Oct 01 15:52:19 EDT 2025
Sun Jun 29 15:26:27 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Oct 01 04:44:00 EDT 2025
Wed Aug 27 02:29:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-917576d236d588c2bfc34c8cd94e9e7ad5a30883cc1f0adb68c1e0d0c359f16f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6996-202X
0000-0002-8692-6255
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09385376.pdf
PQID 2509076758
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_335d52e0a1544a4ca90ba805de4d63e6
proquest_journals_2509076758
crossref_citationtrail_10_1109_ACCESS_2021_3068316
ieee_primary_9385376
unpaywall_primary_10_1109_access_2021_3068316
crossref_primary_10_1109_ACCESS_2021_3068316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
cai (ref8) 2020
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref16
ref19
ref18
ashraf (ref40) 2020
tahghighi (ref10) 2020
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
chollet (ref38) 2018
ref21
ref43
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
franca (ref34) 2020
hui (ref36) 2005
hu (ref29) 2020
References_xml – ident: ref6
  doi: 10.1109/WiSPNET.2016.7566545
– ident: ref32
  doi: 10.1007/s11042-018-5885-9
– ident: ref2
  doi: 10.1016/S1364-6613(99)01417-5
– ident: ref1
  doi: 10.1109/ICME.2014.6890301
– ident: ref12
  doi: 10.1109/34.954607
– ident: ref39
  doi: 10.1109/IACC.2016.25
– ident: ref9
  doi: 10.1109/TIP.2015.2416634
– ident: ref26
  doi: 10.1109/CIVEMSA45640.2019.9071594
– ident: ref35
  doi: 10.1109/BCI48061.2020.9061656
– ident: ref3
  doi: 10.1109/COGINF.2011.6016124
– ident: ref21
  doi: 10.1109/INDICON47234.2019.9028978
– year: 2020
  ident: ref29
  article-title: Data augmentation imbalance for imbalanced attribute classification
  publication-title: arXiv 2004 13628
– ident: ref17
  doi: 10.1109/IPACT.2017.8245056
– ident: ref28
  doi: 10.1109/SIU.2019.8806497
– start-page: 1
  year: 2020
  ident: ref40
  article-title: A summarization of the visual depression databases for depression detection
  publication-title: Proc 6th Int Conf Wireless Telematics (ICWT)
– ident: ref7
  doi: 10.1109/ACCESS.2017.2672722
– ident: ref43
  doi: 10.1109/ACCESS.2019.2918251
– ident: ref41
  doi: 10.23919/CISTI49556.2020.9141004
– start-page: 878
  year: 2005
  ident: ref36
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Proc Int Conf Intell Comput
– ident: ref14
  doi: 10.1109/iww-BCI.2014.6782576
– ident: ref19
  doi: 10.1109/JCSSE.2014.6841851
– start-page: 875
  year: 2020
  ident: ref34
  article-title: Legal judgment prediction in the context of energy market using gradient boosting
  publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC)
– ident: ref23
  doi: 10.1109/TNSRE.2018.2864119
– ident: ref11
  doi: 10.1109/TAFFC.2016.2542812
– ident: ref15
  doi: 10.1109/TNSRE.2006.875577
– year: 2020
  ident: ref10
  article-title: Deformable convolutional LSTM for human body emotion recognition
  publication-title: arXiv 2010 14607
– ident: ref4
  doi: 10.1109/79.911197
– ident: ref30
  doi: 10.1109/T-AFFC.2011.15
– ident: ref42
  doi: 10.1109/TNSRE.2019.2909100
– year: 2020
  ident: ref8
  article-title: Emotion controllable speech synthesis using emotion-unlabeled dataset with the assistance of cross-domain speech emotion recognition
  publication-title: arXiv 2010 13350
– ident: ref5
  doi: 10.1109/MPRV.2011.50
– ident: ref16
  doi: 10.1109/BCI48061.2020.9061624
– ident: ref24
  doi: 10.3389/fnbot.2019.00037
– ident: ref18
  doi: 10.1109/ECACE.2019.8679156
– ident: ref37
  doi: 10.1109/ICICCS48265.2020.9120928
– ident: ref13
  doi: 10.1109/ICDE48307.2020.9153878
– ident: ref33
  doi: 10.1109/CPEE50798.2020.9238743
– ident: ref22
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref31
  doi: 10.1109/ICCCNT.2017.8204119
– ident: ref20
  doi: 10.1016/j.compbiomed.2013.10.017
– ident: ref25
  doi: 10.14569/IJACSA.2017.081046
– year: 2018
  ident: ref38
  article-title: Keras: The Python deep learning library
  publication-title: Astrophysics Source
– ident: ref27
  doi: 10.1109/IJCNN.2018.8489331
SSID ssj0000816957
Score 2.4578013
Snippet In recent years, with the continuous development of artificial intelligence and brain-computer interface technology, emotion recognition based on physiological...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47491
SubjectTerms Algorithms
Arousal
Artificial intelligence
Artificial neural networks
Borderline-Synthetic minority oversampling technique
Brain modeling
Classification algorithms
convolutional neural network
Data augmentation
Datasets
Electroencephalogram
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Human-computer interface
Machine learning
Neural networks
Oversampling
Pattern recognition
Physiology
Standard data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PT9swFMctxAV2mMbYtGyAfNiRDDv-EfvYljA0qUMaIHGzXm0HTepSNNpNu_GnYztuFTSJXXZKlDjWS96L_V7kfL4IffS-BaWFK5lUtuRMkhIY8NIK4amnEriPPydPv8rza_7lRtwMpL7imrAeD9w_uBPGhBOVJxCxMcAtaDIDRYTz3EnmE2ybKD0optIYrKjUos6YIUr0yWgyCXcUCsKKfgppsmJR4XwwFSVif5ZYeZJt7qy6O_jzG-bzwcRz9gq9zBkjHvWW7qEt371GLwYcwX300DOI7_GixaewBDxa3f7IPxV1eJpEovE4UTZjVlleTi-uGhxONb2ID_62XkYU9kMfTfMZX36_jWhlPA7TnIttJ4vuV47TYE6EeqRNWkX-Bl2fNVeT8zJLK5SWE7UMQ1wdCg1XMemEUraatZZxq6zT3GtfgxPAwvjDrKUtATcLjqSeOGKZ0C2VLXuLtrtF598hrAivmQdNnQYe6fx1TVwogiSr2uDvqkDV-ikbm7njUf5iblL9QbTpXWOia0x2TYGONxfd9diN55uPo_s2TSMzOx0IkWRyJJl_RVKB9qPzN51opiLrpkAH62Aw-f2-NyFx1CRycFSByk2A_GUqJNHLJ6a-_x-mfkC7sc_-U9AB2l7-XPnDkBwtZ0fpPXgEPigHuA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADr4JYKMgHjs3Wie3EPu4uKRXSgkRbqbfIsSdVxZKtaAKCEz8dj-ONtoAQp1jJxBlrxvaMM_MNIa8BGqO0dAnPlU0Ez1liuBGJlRJSSHMjAJOTl-_zk3Px7kJe7JDDMRcGAELwGUyxGf7lu7Xt8ajsSHOF6CO7ZLdQ-ZCrNZ6nYAEJLYsILJQyfTRbLPwYvAuYpVNvGCuONc23Np-A0R-LqtyyL-_07bX5_s2sVltbzfEDstwwOUSYfJr2XT21P37Db_zfUTwk96PNSWeDkjwiO9A-Jve2kAj3yc8BxfiGrhv6xnSGzvrLzzEtqaXLUGaazgNOJ9qlyenyw1lJ_aNyKANEP24CkXzb91GWb-np1SWCM9O53ygd0i7W7deo6Z4dhAUJlxCH_oScH5dni5MkFmdIrGCq84tk4V0Vl_HcSaVsVjeWC6us0wI0FMZJw_0Kxq1NG2Zc7VUhBeaY5VI3ad7wp2SvXbfwjFDFRMHB6NRpIxDfvyiY825UzrPGa0w2IdlGapWNyOVYQGNVBQ-G6WoQdYWirqKoJ-RwfOl6AO74N_kc1WEkRdTtcMOLroqTuOJcOpkBMwhhZIQ1mtVGMelAuJyD72QfxT12EiU9IQcb5ariCnFTedNTM0TSUROSjAr3B6smlM28xerzv3_lBbmLVMPx0AHZ67708NIbTF39KsyUXw2QEVM
  priority: 102
  providerName: IEEE
Title Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9385376
https://www.proquest.com/docview/2509076758
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09385376.pdf
https://doaj.org/article/335d52e0a1544a4ca90ba805de4d63e6
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage0A8jMtAFEblBx5J6sSX2I9tyZiQOhBbpfEUubYzTStptaXcnvjpHDtu1YGEBE-JEsc60flsn-PL9yH0yrlaS8VtQoU0CaOCJJpqlhjOXeYyoZnzh5OnJ-J4xt6d8_M44RbOwjjnwuYzl_rbsJZ_6RbfiqHIPXmaGiqa5TAsDiEVl56LJF3Z-i7aExxi8R7am518GH3yinKZUAkNa5MvIrHmUAcNQkgK8yyFUFlSr3K-MxwF1v4os3Ir4ry3blb6-1e9WOwMPkcPULUxu9tzcpWu23lqfvzG6Pj___UQ7ce4FI86ID1Cd1zzGN3fYSs8QD87puMbvKzxG91qPFpffI5Hlxo8DVLUeBy4PH3smpxO35-VGF6VnVQQ_rjZrAT3UEdZvsWnlxeewBmPYTC1vuxk2XyJrQHM8dQh4RL2qj9Bs6PybHKcRAGHxDAiW-hIC0hnbE6F5VKafF4byow0VjGnXKEt1xR6OWpMVhNt5wCXzBFLDOWqzkRNn6Jes2zcM4QlYQV1WmVWaeY1AIqCWEi1BM1rQFXeR_nGj5WJ7OZeZGNRhSyHqGo0mQCkK-_8Kjq_j15vP1p15B5_Lz72ANkW9czc4QE4s4oNvaKUW547oj3NkWZGKzLXknDrmBXUQSUHHgDbSqK3--hwA7cq9iI3FYSnini2HdlHyRaCf5jawfqWqc__sfwh6rXXa_cSAqx2PggTE4NwFnIQW9QvLCohVA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOZQe-CqIhQI-cGy2Tmwn9nF3SVmgKRLdSr1Fjj2pENtsRRMQnPjp2I432gJCnGIljjPWjO2xM_MeQq8AaiUkNxFNhY4YTUmkqGKR5hxiiFPFwCUnFyfp_Iy9O-fnW-hgyIUBAB98BmNX9P_yzUp37qjsUFLh0EduoducMcb7bK3hRMVRSEieBWihmMjDyWxme2E3gUk8tq6xoI7VfGP58Sj9gVblhoe50zVX6vs3tVxuLDZH91CxFrOPMfk87tpqrH_8huD4v_24j-4GrxNPejN5gLageYh2N7AI99DPHsf4Gq9q_Fq1Ck-6i8uQmNTgwhNN46lH6nSeaXRafFjk2D7KeyIg_HEdimTLto08f4NPP104eGY8tUulcXVnq-ZrsHUrjgMG8Rcfif4InR3li9k8CvQMkWZEtHaazOxmxSQ0NVwInVS1pkwLbSQDCZkyXFE7h1Gt45ooU1ljiIEYoimXdZzW9DHablYNPEFYEJZRUDI2UjGH8J9lxNiNVEqT2tpMMkLJWmulDtjljkJjWfo9DJFlr-rSqboMqh6hg-Glqx6649_Vp84chqoOd9vfsKorwzAuKeWGJ0CUAzFSTCtJKiUIN8BMSsE2sufUPTQSND1C-2vjKsMccV1a51MSh6UjRigaDO4PUZUnzrwh6tO_f-Ul2pkviuPy-O3J-2fojnujPyzaR9vtlw6eW_eprV74UfMLeZkUoA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOyAOfA1Ex0A-cCSpE3_EPrYlY0LqQGyVxilybGeaKGm1pXyd-NN5dtyqAwkJTrESx3rR-9l-L7Z_P4ReOtdoqbhNqJAmYVSQRFPNEsO5y1wmNHP-cPLsRBzP2dtzfh5_uIWzMM65sPnMpb4Y1vIv3eJbMRK5J09TI0WzHKbFEaTi0nORpCvb3EZ7gkMsPkB785P3449eUS4TKqFhbfJZJNYc6aBBCElhnqUQKkvqVc53pqPA2h9lVm5EnHfW7Up__6oXi53J5-g-qjZm93tOPqXrrk7Nj98YHf__ux6gezEuxeMeSA_RLdc-Qnd32Ar30c-e6fgaLxv8Wncaj9cXn-PRpRbPghQ1ngQuTx-7Jqezd2clhkdlLxWEP2w2K0EZ2ijLN_j08sITOOMJTKbW150u2y-xN4A5njokXMJe9cdoflSeTY-TKOCQGEZkBwNpAemMzamwXEqT142hzEhjFXPKFdpyTWGUo8ZkDdG2BrhkjlhiKFdNJhr6BA3aZeueIiwJK6jTKrNKM68BUBTEQqolaN4AqvIhyjd-rExkN_ciG4sqZDlEVePpFCBdeedX0flD9Gr70qon9_h79YkHyLaqZ-YON8CZVezoFaXc8twR7WmONDNakVpLwq1jVlAHjex7AGwbid4eosMN3Ko4ilxXEJ4q4tl25BAlWwj-YWoP6xumHvxj_UM06K7W7jkEWF39IvaiX61-H14
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Data+Augmentation+Method+Borderline-SMOTE+on+Emotion+Recognition+of+EEG+Signals+Based+on+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Chen%2C+Yu&rft.au=Chang%2C+Rui&rft.au=Guo%2C+Jifeng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=47491&rft.epage=47502&rft_id=info:doi/10.1109%2FACCESS.2021.3068316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3068316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon