Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms
Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drough...
        Saved in:
      
    
          | Published in | Environmental science and pollution research international Vol. 28; no. 29; pp. 39139 - 39158 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.08.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0944-1344 1614-7499 1614-7499  | 
| DOI | 10.1007/s11356-021-13445-0 | 
Cover
| Abstract | Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535–0.965, MAE = 0.363–0.622, NSE = 0.558–0.860, COC = 0.760–0.930, and WI = 0.862–0.959) outperformed the SVR-PSO model (RMSE = 0.546–0.967, MAE = 0.372–0.625, NSE = 0.556–0.855, COC = 0.758–0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area. | 
    
|---|---|
| AbstractList | Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area. Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535–0.965, MAE = 0.363–0.622, NSE = 0.558–0.860, COC = 0.760–0.930, and WI = 0.862–0.959) outperformed the SVR-PSO model (RMSE = 0.546–0.967, MAE = 0.372–0.625, NSE = 0.556–0.855, COC = 0.758–0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.  | 
    
| Author | Abba, Sani Isah Sammen, Saad Shauket Shahid, Shamsuddin Malik, Anurag Tikhamarine, Yazid  | 
    
| Author_xml | – sequence: 1 givenname: Anurag orcidid: 0000-0002-0298-5777 surname: Malik fullname: Malik, Anurag email: anuragmalik_swce2014@rediffmail.com organization: Punjab Agricultural University, Regional Research Station – sequence: 2 givenname: Yazid surname: Tikhamarine fullname: Tikhamarine, Yazid organization: Southern Public Works Laboratory (LTPS), Tamanrasset Antenna 11000, Department of Science and Technology, University of Tamanrasset – sequence: 3 givenname: Saad Shauket surname: Sammen fullname: Sammen, Saad Shauket organization: Department of Civil Engineering, College of Engineering, Diyala University – sequence: 4 givenname: Sani Isah surname: Abba fullname: Abba, Sani Isah organization: Faculty of Engineering, Department of Civil Engineering, Baze University – sequence: 5 givenname: Shamsuddin surname: Shahid fullname: Shahid, Shamsuddin organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM)  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33751346$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU1r3DAQhkVJaTZp_0APRdBLL270Zck6ltBmC4ENND0bWR57FWzLleSE7a-Pspu0kENyEoyed2ak5wQdTX4ChD5S8pUSos4ipbyUBWG0oFyIsiBv0IpKKgoltD5CK6KF2F8do5MYbwhhRDP1Dh1zrspclyt0dxWgdTY5P2Hf4RES-OAH3ztrBtwGv_TbhJsdXqKberzdNcG1OC7z7EPCt2CTDzhAHyDGfY85udH9hRbfubTF6_UmQyEuEV_92mAz9D7k-hjfo7edGSJ8eDxP0e8f36_P18Xl5uLn-bfLwgpSpaLSQhnBDQNjaNMabTprWxBlQ0tKieWMKSZYR5SWjHEK3FKghpeCVW0lW36Kvhz6zsH_WSCmenTRwjCYCfwSaya55FpIzV5HSyJ4mYfojH5-ht74JUz5IZkqhZRKVTxTnx6ppRmhrefgRhN29dPvZ4AdABt8jAG6fwgl9YPi-qC4zorrveKa5FD1LGRdMg8CUzBueDnKD9GY50w9hP9rv5C6B13Juqg | 
    
| CitedBy_id | crossref_primary_10_1016_j_matpr_2022_04_594 crossref_primary_10_1016_j_cherd_2023_09_027 crossref_primary_10_1021_acsmaterialslett_2c00734 crossref_primary_10_2166_ws_2021_430 crossref_primary_10_1007_s13201_023_02001_5 crossref_primary_10_1016_j_jhydrol_2024_132225 crossref_primary_10_1155_2022_1921378 crossref_primary_10_3390_su14094889 crossref_primary_10_1088_1755_1315_1084_1_012054 crossref_primary_10_1007_s11356_022_21119_8 crossref_primary_10_1080_19942060_2022_2027273 crossref_primary_10_1007_s00704_021_03825_4 crossref_primary_10_1155_2023_8260317 crossref_primary_10_1061_JHYEFF_HEENG_5920 crossref_primary_10_1111_risa_14179 crossref_primary_10_3390_w15111993 crossref_primary_10_1007_s11356_024_34500_6 crossref_primary_10_3390_hydrology9070115 crossref_primary_10_3390_life13010079 crossref_primary_10_2166_ws_2021_161 crossref_primary_10_1007_s11356_022_20837_3 crossref_primary_10_1007_s13201_025_02377_6 crossref_primary_10_1016_j_envsoft_2022_105425 crossref_primary_10_1016_j_kscej_2024_100025 crossref_primary_10_2166_wst_2023_162 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1007_s00704_023_04426_z crossref_primary_10_3389_feart_2022_839527 crossref_primary_10_3390_w15193449 crossref_primary_10_1016_j_agwat_2023_108210 crossref_primary_10_1007_s00477_023_02548_4 crossref_primary_10_1016_j_compag_2022_106687 crossref_primary_10_1016_j_rineng_2023_101434 crossref_primary_10_1002_hyp_70031 crossref_primary_10_1109_ACCESS_2024_3409822 crossref_primary_10_1016_j_engappai_2023_106389 crossref_primary_10_1155_2024_6130634 crossref_primary_10_1109_ACCESS_2024_3487752 crossref_primary_10_1007_s11356_021_15221_6 crossref_primary_10_1007_s44211_024_00710_8 crossref_primary_10_1080_19942060_2021_1942990 crossref_primary_10_1109_JMASS_2023_3319579 crossref_primary_10_1002_hyp_14444 crossref_primary_10_1007_s11600_023_01058_9 crossref_primary_10_1007_s13349_022_00641_w crossref_primary_10_2166_aqua_2023_204 crossref_primary_10_1080_19942060_2021_1966837 crossref_primary_10_1007_s11356_022_21596_x crossref_primary_10_1016_j_scenv_2023_100011 crossref_primary_10_1016_j_engappai_2023_106550 crossref_primary_10_1016_j_mex_2024_102800 crossref_primary_10_1007_s11356_023_29522_5 crossref_primary_10_1016_j_asej_2022_101876 crossref_primary_10_1016_j_compag_2022_106925 crossref_primary_10_1007_s00477_022_02343_7 crossref_primary_10_1016_j_asej_2024_102686 crossref_primary_10_1016_j_psep_2024_02_041 crossref_primary_10_1371_journal_pone_0290891 crossref_primary_10_3390_w16020246 crossref_primary_10_3390_hydrology10030058 crossref_primary_10_1007_s00477_023_02597_9 crossref_primary_10_1007_s11356_022_22930_z crossref_primary_10_1016_j_jhydrol_2023_130210 crossref_primary_10_1016_j_enconman_2024_118766 crossref_primary_10_1007_s12665_022_10269_0 crossref_primary_10_1016_j_dsm_2022_08_002 crossref_primary_10_1007_s42107_023_00746_7 crossref_primary_10_3390_en14165206 crossref_primary_10_3390_app14177813 crossref_primary_10_3390_pr9071166 crossref_primary_10_1007_s10661_024_13063_6 crossref_primary_10_1007_s11356_022_23786_z crossref_primary_10_1016_j_chemosphere_2024_141329 crossref_primary_10_1007_s40996_022_00987_7  | 
    
| Cites_doi | 10.1007/s11269-017-1890-4 10.1016/0022-1694(70)90255-6 10.1007/s11269-019-02408-3 10.13031/trans.58.10715 10.1007/s11269-006-9105-4 10.3390/rs12040709 10.1007/s00704-020-03283-4 10.1002/2014JD021471 10.1002/wcc.81 10.1080/03601234.2017.1283139 10.1007/s00382-015-2784-x 10.1007/s12517-019-4697-1 10.1029/2018GL081314 10.1007/s12517-019-4781-6 10.1016/S0022-1694(00)00336-X 10.1007/s12517-020-5239-6 10.1080/02626667.2019.1678750 10.1109/ICNN.1995.488968 10.1007/s00477-016-1265-z 10.1007/s11269-007-9228-2 10.1016/j.future.2019.02.028 10.1002/2016RG000549 10.3390/SU12104006 10.1002/joc.6307 10.1007/s00704-019-03080-8 10.1016/j.jhydrol.2020.125017 10.1080/10106049.2020.1753821 10.1007/s11269-019-02350-4 10.1007/s00704-015-1706-5 10.1016/j.atmosres.2018.08.020 10.1016/j.jhydrol.2019.124435 10.1016/j.atmosres.2020.105007 10.1371/journal.pone.0233280 10.1016/j.atmosres.2019.03.010 10.1016/j.compag.2018.07.013 10.1007/s11600-020-00419-y 10.1016/j.jhydrol.2012.09.003 10.3390/w11051096 10.1007/s00477-014-0930-3 10.1002/wrcr.20517 10.1002/joc.1498 10.1016/j.wace.2015.05.002 10.1007/s00477-010-0366-3 10.1007/s12517-019-4454-5 10.1016/j.advwatres.2020.103562 10.1016/j.jclepro.2019.01.158 10.1109/ACCESS.2020.2964584 10.3390/w9060384 10.1029/2000JD900719 10.1016/j.measurement.2019.107389 10.1016/j.atmosres.2014.10.016 10.1214/aoms/1177731638 10.2478/jwld-2013 10.1007/s11269-019-02472-9 10.3390/su10093043 10.1175/2011JAMC2664.1 10.1080/02723646.1981.10642213 10.1002/joc.3875 10.1007/s12517-020-05437-0 10.1007/s11356-020-08792-3 10.1016/j.envsoft.2006.05.013 10.1016/j.jhydrol.2019.123962 10.1016/j.jhydrol.2020.125133 10.1016/j.jhydrol.2009.08.021 10.1016/S0925-2312(01)00702-0 10.3390/rs12010106 10.1007/978-3-030-12127-3_10 10.1007/s00024-020-02570-5 10.1016/j.jhydrol.2017.04.017 10.1016/j.atmosres.2018.02.024 10.1155/2020/3807653 10.1007/s00704-019-02825-9 10.1016/j.scitotenv.2019.134230 10.1061/(asce)ir.1943-4774.0001471 10.1016/j.jhydrol.2019.124053 10.3390/w11040705 10.1080/09715010.2019.1620647 10.1007/s00477-015-1117-2 10.1016/j.atmosres.2016.10.004 10.1080/02626667.2019.1676428 10.1080/02626667.2015.1085990 10.1111/risa.12299 10.1145/1961189.1961199 10.1007/s00704-019-02905-w 10.1007/978-1-4757-2440-0 10.1007/s40808-018-0483-4 10.1007/s12665-020-08971-y 10.1016/j.asej.2015.11.005 10.1002/joc.2013 10.1007/s00366-019-00828-8 10.3390/su10030871 10.1016/j.jwpe.2019.101081 10.1007/s12040-019-1306-3 10.1016/B978-0-12-398296-4.00001-5 10.2166/hydro.2007.027 10.1080/19475705.2016.1250112 10.1093/biomet/65.2.297 10.1256/wea.87.03 10.3390/w9020105 10.1016/j.jhydrol.2014.06.012 10.1029/WR016i002p00289 10.1007/s11356-020-09876-w 10.1016/j.scitotenv.2019.01.431 10.13031/2013.23153 10.5194/hess-23-3081-2019 10.1061/(ASCE)0887-3801(2001)15:3(208 10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2 10.3390/s19163590  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.  | 
    
| DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6  | 
    
| DOI | 10.1007/s11356-021-13445-0 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ProQuest ABI/INFORM Complete ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 1614-7499 | 
    
| EndPage | 39158 | 
    
| ExternalDocumentID | 33751346 10_1007_s11356_021_13445_0  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c408t-8947a43a2eaa1bda9afccde45b15110c3227242f07962231e3c1e1a35428d86d3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0944-1344 1614-7499  | 
    
| IngestDate | Fri Sep 05 11:33:03 EDT 2025 Thu Sep 04 17:48:41 EDT 2025 Tue Oct 07 06:32:29 EDT 2025 Wed Feb 19 02:28:48 EST 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Oct 01 02:53:39 EDT 2025 Fri Feb 21 02:48:12 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 29 | 
    
| Keywords | PACF Effective drought index Harris Hawks optimization Uttarakhand Particle swarm optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-8947a43a2eaa1bda9afccde45b15110c3227242f07962231e3c1e1a35428d86d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0298-5777 | 
    
| PMID | 33751346 | 
    
| PQID | 2554667783 | 
    
| PQPubID | 54208 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | proquest_miscellaneous_2636394692 proquest_miscellaneous_2504352319 proquest_journals_2554667783 pubmed_primary_33751346 crossref_primary_10_1007_s11356_021_13445_0 crossref_citationtrail_10_1007_s11356_021_13445_0 springer_journals_10_1007_s11356_021_13445_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-08-01 | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Environmental science and pollution research international | 
    
| PublicationTitleAbbrev | Environ Sci Pollut Res | 
    
| PublicationTitleAlternate | Environ Sci Pollut Res Int | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | MoriasiDNGitauMWPaiNDaggupatiPHydrologic and water quality models: performance measures and evaluation criteriaTrans ASABE2015581763178510.13031/trans.58.10715 AhmedKShahidSBinHSWangXJCharacterization of seasonal droughts in Balochistan Province, PakistanStoch Environ Res Risk Assess20163074776210.1007/s00477-015-1117-2 SulimanAHAAwchiTAAl-MolaMShahidSEvaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid IraqAtmos Res202024210500710.1016/j.atmosres.2020.105007 MoayediHGörMLyuZBuiDTHerding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficientMeasurement202015210738910.1016/j.measurement.2019.107389 BasisthaAAryaDSGoelNKSpatial distribution of rainfall in Indian Himalayas – a case study of Uttarakhand RegionWater Resour Manag2008221325134610.1007/s11269-007-9228-2 AhmedKShahidSNawazNImpacts of climate variability and change on seasonal drought characteristics of PakistanAtmos Res201821436437410.1016/j.atmosres.2018.08.020 KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J20167475610.1016/j.asej.2015.11.005 GuanYMohammadiBPhamQBAdarshSBalkhairKSRahmanKULinhNTTTriDQA novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm modelTheor Appl Climatol202014234936710.1007/s00704-020-03283-4 KouchiDHEsmailiKFaridhosseiniASanaeinejadSHKhaliliDAbbaspourKCSensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization AlgorithmsWater2017938410.3390/w9060384 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 Banerjee A, Chen R, Meadows ME et al (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand Himalaya using google earth engine. Remote Sens. https://doi.org/10.3390/rs12040709 DeoRCByunH-RAdamowskiJFBegumKApplication of effective drought index for quantification of meteorological drought events: a case study in AustraliaTheor Appl Climatol201712835937910.1007/s00704-015-1706-5 DibikeYBVelickovSSolomatineDAbbottMBModel induction with support vector machines: introduction and applicationsJ Comput Civ Eng20011520821610.1061/(ASCE)0887-3801(2001)15:3(208 ByunH-RWilhiteDAObjective quantification of drought severity and durationJ Clim1999122747275610.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2 TsakirisGPangalouDVangelisHRegional drought assessment based on the Reconnaissance Drought Index (RDI)Water Resour Manag20072182183310.1007/s11269-006-9105-4 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948 TikhamarineYSouag-GamaneDAhmedANRainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimizationJ Hydrol202058912513310.1016/j.jhydrol.2020.125133 Sharafati A, Nabaei S, Shahid S (2019) Spatial assessment of meteorological drought features over different climate regions in Iran. Int J Climatol joc.6307. https://doi.org/10.1002/joc.6307 Shiru MS, Shahid S, Alias N, Chung ES (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustain. https://doi.org/10.3390/su10030871 KisiODocheshmeh GorgijAZounemat-KermaniMMahdavi-MeymandAKimSDrought forecasting using novel heuristic methods in a semi-arid environmentJ Hydrol201957812405310.1016/j.jhydrol.2019.124053 MalikAKumarASpatio-temporal trend analysis of rainfall using parametric and non-parametric tests: case study in Uttarakhand, IndiaTheor Appl Climatol202014018320710.1007/s00704-019-03080-8 ChangC-CLinC-JLIBSVMACM Trans Intell Syst Technol2011212710.1145/1961189.1961199 MehdizadehSAhmadiFDanandeh MehrASafariMJSDrought modeling using classic time series and hybrid wavelet-gene expression programming modelsJ Hydrol202058712501710.1016/j.jhydrol.2020.125017 MoayediHOsouliANguyenHRashidASAA novel Harris hawks’ optimization and k-fold cross-validation predicting slope stabilityEng Comput20193736937910.1007/s00366-019-00828-8 ParkHKimKLeeDKPrediction of severe drought area based on random forest: using satellite image and topography dataWater20191170510.3390/w11040705 DeoRCŞahinMApplication of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern AustraliaAtmos Res201515351252510.1016/j.atmosres.2014.10.016 TikhamarineYSouag-GamaneDKisiOA new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)Arab J Geosci20191212010.1007/s12517-019-4697-1 Mathivha F, Sigauke C, Chikoore H, Odiyo J (2020) Short-term and medium-term drought forecasting using generalized additive models. Sustain. https://doi.org/10.3390/SU12104006 CostacheRPhamQBSharifiELinhNTTAbbaSIVojtekMVojtekováJNhiPTTKhoiDNFlash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniquesRemote Sens20191210610.3390/rs12010106 MalikAKumarAGuhathakurtaPKisiOSpatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance testArab J Geosci20191232810.1007/s12517-019-4454-5 HaoZSinghVPXiaYSeasonal drought prediction: advances, challenges, and future prospectsRev Geophys20185610814110.1002/2016RG000549 AliMDeoRCDownsNJMaraseniTMulti-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecastingComput Electron Agric201815214916510.1016/j.compag.2018.07.013 ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962 Fadaee M, Mahdavi-Meymand A, Zounemat-Kermani M (2020) Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2020.1753821 AndersonRLDistribution of the serial correlation coefficientAnn Math Stat19421311310.1214/aoms/1177731638 DracupJALeeKSPaulsonEGOn the statistical characteristics of drought eventsWater Resour Res19801628929610.1029/WR016i002p00289 XiangBLinSJZhaoMJohnsonNCYangXJiangXSubseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL ModelGeophys Res Lett20194641642510.1029/2018GL081314 Byun HR, Kim DW (2010) Comparing the effective drought index and the standardized precipitation index. Options Méditerranéennes Séries A Mediterr Semin 85–89 Danandeh MehrAKahyaEÖzgerMA gene–wavelet model for long lead time drought forecastingJ Hydrol201451769169910.1016/j.jhydrol.2014.06.012 MoriasiDNArnoldJGLiewMWVModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE20075088590010.13031/2013.23153 Qutbudin I, Shiru MS, Sharafati A, Ahmed K, al-Ansari N, Yaseen ZM, Shahid S, Wang X (2019) Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water (Switzerland). https://doi.org/10.3390/w11051096 DasPNagannaSRDekaPCPushparajJHybrid wavelet packet machine learning approaches for drought modelingEnviron Earth Sci20207922110.1007/s12665-020-08971-y KimDWByunHRChoiKSBinOSA spatiotemporal analysis of historical droughts in KoreaJ Appl Meteorol Climatol2011501895191210.1175/2011JAMC2664.1 TikhamarineYMalikASouag-GamaneDKisiOArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res20202730001300191:CAS:528:DC%2BB3cXhtFKjsbjN10.1007/s11356-020-08792-3 DharONNandargiSRainfall distribution over the Arunachal Pradesh HimalayasWeather.20045915515710.1256/wea.87.03 BanadkookiFBEhteramMAhmedANTeoFYEbrahimiMFaiCMHuangYFel-ShafieASuspended sediment load prediction using artificial neural network and ant lion optimization algorithmEnviron Sci Pollut Res202027380943811610.1007/s11356-020-09876-w LiuYHwangYImproving drought predictability in Arkansas using the ensemble PDSI forecast techniqueStoch Env Res Risk A20152979911:CAS:528:DC%2BC2MXhtlOitr7M10.1007/s00477-014-0930-3 GhimireSDeoRCDownsNJRajNGlobal solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland AustraliaJ Clean Prod201921628831010.1016/j.jclepro.2019.01.158 DoganSBerktayASinghVPComparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, TurkeyJ Hydrol2012470–47125526810.1016/j.jhydrol.2012.09.003 Sung JH, Chung ES, Shahid S (2018) Reliability-resiliency-vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustain. https://doi.org/10.3390/su10093043 Mirjalili S, Song Dong J, Lewis A, Sadiq AS (2020) Particle swarm optimization: theory, literature review, and application in airfoil design. In: Studies in computational intelligence ZhangPGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing.20035015917510.1016/S0925-2312(01)00702-0 HongHPradhanBBuiDTXuCYoussefAMChenWComparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)Geomatics Nat Hazards Risk2017854456910.1080/19475705.2016.1250112 NandargiSGaurAMulyeSSHydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, IndiaHydrol Sci J2016612145216310.1080/02626667.2015.1085990 AshrafzadehAGhorbaniMABiazarSMYaseenZMEvaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithmHydrol Sci J2019641843185610.1080/02626667.2019.1676428 AdnanRMMalikAK RC Deo (13445_CR31) 2015; 153 J Spinoni (13445_CR93) 2014; 34 13445_CR71 13445_CR73 JE Nash (13445_CR82) 1970; 10 A Ashrafzadeh (13445_CR13) 2020; 146 Y Tikhamarine (13445_CR97) 2019; 64 C-C Chang (13445_CR22) 2011; 2 P Majumder (13445_CR63) 2020; 34 S Dogan (13445_CR35) 2012; 470–471 MR Khaledian (13445_CR55) 2020; 68 ON Dhar (13445_CR33) 2004; 59 GM Ljung (13445_CR62) 1978; 65 H Hong (13445_CR50) 2017; 8 13445_CR69 S Ghimire (13445_CR43) 2019; 216 A Basistha (13445_CR16) 2008; 22 H Moayedi (13445_CR74) 2020; 152 R Zhang (13445_CR113) 2019; 665 N Khan (13445_CR56) 2020; 139 13445_CR1 DN Moriasi (13445_CR78) 2015; 58 RC Deo (13445_CR32) 2017; 31 13445_CR53 SM Biazar (13445_CR18) 2020; 177 Y Tikhamarine (13445_CR100) 2019; 12 P Horton (13445_CR51) 2018; 556 H-R Byun (13445_CR20) 1999; 12 MK Tiwari (13445_CR102) 2013; 49 VN Vapnik (13445_CR104) 1995 QB Pham (13445_CR85) 2019; 33 FB Banadkooki (13445_CR14) 2020; 27 D Han (13445_CR47) 2007; 9 M Mohsenipour (13445_CR76) 2018; 32 Y Tikhamarine (13445_CR98) 2020; 27 13445_CR46 13445_CR41 13445_CR44 RC Deo (13445_CR29) 2017; 128 A Danandeh Mehr (13445_CR27) 2014; 517 D-W Kim (13445_CR57) 2009; 378 A Dai (13445_CR25) 2011; 2 O Rahmati (13445_CR87) 2020; 699 P Aghelpour (13445_CR5) 2019; 138 H Moayedi (13445_CR75) 2019; 37 MS Shiru (13445_CR91) 2019; 223 YB Dibike (13445_CR34) 2001; 15 B Xiang (13445_CR107) 2019; 46 RC Deo (13445_CR30) 2017; 184 K Achour (13445_CR3) 2020; 129 A Malik (13445_CR68) 2019; 33 K Ahmed (13445_CR8) 2019; 23 G Tsakiris (13445_CR103) 2007; 21 A Belayneh (13445_CR17) 2013; 18 P Das (13445_CR28) 2020; 79 S Mehdizadeh (13445_CR70) 2020; 587 KE Taylor (13445_CR96) 2001; 106 K Ahmed (13445_CR6) 2016; 30 K Ahmed (13445_CR7) 2018; 214 Y Guan (13445_CR45) 2020; 142 13445_CR108 13445_CR109 G Elkiran (13445_CR40) 2019; 577 A Malik (13445_CR65) 2020; 13 P Roudier (13445_CR88) 2010; 30 A Abbasi (13445_CR2) 2019; 138 O Kisi (13445_CR59) 2019; 578 N Nabipour (13445_CR80) 2020; 8 DH Kouchi (13445_CR60) 2017; 9 13445_CR23 K Zarei (13445_CR111) 2017; 52 M Ali (13445_CR9) 2018; 152 A Ashrafzadeh (13445_CR12) 2019; 64 13445_CR21 R van Duinen (13445_CR38) 2015; 35 ÖF Durdu (13445_CR39) 2010; 24 PG Zhang (13445_CR112) 2003; 50 R Damania (13445_CR26) 2017 Z Hao (13445_CR48) 2018; 56 Y Tikhamarine (13445_CR99) 2020; 589 Y Liu (13445_CR61) 2015; 29 EM Douglas (13445_CR36) 2000; 240 DN Moriasi (13445_CR77) 2007; 50 H Park (13445_CR83) 2019; 11 13445_CR19 M Ali (13445_CR10) 2018; 207 13445_CR15 A Malik (13445_CR64) 2020; 140 CJ Willmott (13445_CR106) 1981; 2 M Khadr (13445_CR54) 2016; 7 VK Jain (13445_CR52) 2015; 8 13445_CR95 Y Tikhamarine (13445_CR101) 2020; 582 A Malik (13445_CR67) 2020; 15 13445_CR90 AA Heidari (13445_CR49) 2019; 97 S Nandargi (13445_CR81) 2016; 61 DW Kim (13445_CR58) 2011; 50 J Yu (13445_CR110) 2020; 2020 RA Fisher (13445_CR42) 1925 RM Adnan (13445_CR4) 2019; 12 RL Anderson (13445_CR11) 1942; 13 AHA Suliman (13445_CR94) 2020; 242 13445_CR89 JA Dracup (13445_CR37) 1980; 16 13445_CR86 R Costache (13445_CR24) 2019; 12 A Mishra (13445_CR72) 2014; 119 V Smakhtin (13445_CR92) 2007; 22 RK Vellore (13445_CR105) 2016; 46 M Paul (13445_CR84) 2018; 4 S Morid (13445_CR79) 2007; 27 A Malik (13445_CR66) 2019; 12  | 
    
| References_xml | – reference: ChangC-CLinC-JLIBSVMACM Trans Intell Syst Technol2011212710.1145/1961189.1961199 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948 – reference: DurduÖFApplication of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western TurkeyStoch Env Res Risk A2010241145116210.1007/s00477-010-0366-3 – reference: LiuYHwangYImproving drought predictability in Arkansas using the ensemble PDSI forecast techniqueStoch Env Res Risk A20152979911:CAS:528:DC%2BC2MXhtlOitr7M10.1007/s00477-014-0930-3 – reference: MoriasiDNArnoldJGLiewMWVModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE20075088590010.13031/2013.23153 – reference: ByunH-RWilhiteDAObjective quantification of drought severity and durationJ Clim1999122747275610.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2 – reference: DeoRCTiwariMKAdamowskiJFQuiltyJMForecasting effective drought index using a wavelet extreme learning machine (W-ELM) modelStoch Env Res Risk A2017311211124010.1007/s00477-016-1265-z – reference: AshrafzadehAKişiOAghelpourPBiazarSMMasoulehMAComparative Study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in Northern IranJ Irrig Drain Eng20201460402001010.1061/(asce)ir.1943-4774.0001471 – reference: MoayediHGörMLyuZBuiDTHerding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficientMeasurement202015210738910.1016/j.measurement.2019.107389 – reference: MoriasiDNGitauMWPaiNDaggupatiPHydrologic and water quality models: performance measures and evaluation criteriaTrans ASABE2015581763178510.13031/trans.58.10715 – reference: DouglasEMVogelRMKrollCNTrends in floods and low flows in the United States: impact of spatial correlationJ Hydrol20002409010510.1016/S0022-1694(00)00336-X – reference: PhamQBAbbaSIUsmanAGLinhNTTGuptaVMalikACostacheRVoNDTriDQPotential of hybrid data-intelligence algorithms for multi-station modelling of rainfallWater Resour Manag2019335067508710.1007/s11269-019-02408-3 – reference: SulimanAHAAwchiTAAl-MolaMShahidSEvaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid IraqAtmos Res202024210500710.1016/j.atmosres.2020.105007 – reference: Fadaee M, Mahdavi-Meymand A, Zounemat-Kermani M (2020) Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2020.1753821 – reference: SpinoniJNaumannGCarraoHBarbosaPVogtJWorld drought frequency, duration, and severity for 1951-2010Int J Climatol2014342792280410.1002/joc.3875 – reference: MalikAKumarASinghRPApplication of heuristic approaches for prediction of hydrological drought using multi-scalar streamflow drought indexWater Resour Manag2019333985400610.1007/s11269-019-02350-4 – reference: ShiruMSShahidSChungESAliasNChanging characteristics of meteorological droughts in Nigeria during 1901–2010Atmos Res2019223607310.1016/j.atmosres.2019.03.010 – reference: TaylorKESummarizing multiple aspects of model performance in a single diagramJ Geophys Res Atmos20011067183719210.1029/2000JD900719 – reference: JainVKPandeyRPJainMKByunH-RComparison of drought indices for appraisal of drought characteristics in the Ken River BasinWeather Clim Extrem2015811110.1016/j.wace.2015.05.002 – reference: BanadkookiFBEhteramMAhmedANTeoFYEbrahimiMFaiCMHuangYFel-ShafieASuspended sediment load prediction using artificial neural network and ant lion optimization algorithmEnviron Sci Pollut Res202027380943811610.1007/s11356-020-09876-w – reference: TiwariMKAdamowskiJUrban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network modelsWater Resour Res2013496486650710.1002/wrcr.20517 – reference: NashJESutcliffeJVRiver flow forecasting through conceptual models part I — a discussion of principlesJ Hydrol19701028229010.1016/0022-1694(70)90255-6 – reference: Granata F, Papirio S, Esposito G, Gargano R, de Marinis G (2017) Machine learning algorithms for the forecasting of wastewater quality indicators. Water (Switzerland). https://doi.org/10.3390/w9020105 – reference: HortonPJaboyedoffMObledCUsing genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss AlpsJ Hydrol20185561220123110.1016/j.jhydrol.2017.04.017 – reference: van DuinenRFilatovaTGeurtsPvan der VeenAEmpirical analysis of farmers’ drought risk perception: objective factors, personal circumstances, and social influenceRisk Anal20153574175510.1111/risa.12299 – reference: PaulMNegahban-AzarMSensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, CaliforniaModel Earth Syst Environ201841509152510.1007/s40808-018-0483-4 – reference: NabipourNDehghaniMMosaviAShamshirbandSShort-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networksIEEE Access20208152101522210.1109/ACCESS.2020.2964584 – reference: AliMDeoRCDownsNJMaraseniTMulti-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecastingComput Electron Agric201815214916510.1016/j.compag.2018.07.013 – reference: KhaledianMRIsazadehMBiazarSMPhamQBSimulating Caspian Sea surface water level by artificial neural network and support vector machine modelsActa Geophys20206855356310.1007/s11600-020-00419-y – reference: HaoZSinghVPXiaYSeasonal drought prediction: advances, challenges, and future prospectsRev Geophys20185610814110.1002/2016RG000549 – reference: TikhamarineYMalikAKumarASouag-GamaneDKisiOEstimation of monthly reference evapotranspiration using novel hybrid machine learning approachesHydrol Sci J2019641824184210.1080/02626667.2019.1678750 – reference: CostacheRPhamQBSharifiELinhNTTAbbaSIVojtekMVojtekováJNhiPTTKhoiDNFlash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniquesRemote Sens20191210610.3390/rs12010106 – reference: DeoRCByunH-RAdamowskiJFBegumKApplication of effective drought index for quantification of meteorological drought events: a case study in AustraliaTheor Appl Climatol201712835937910.1007/s00704-015-1706-5 – reference: HongHPradhanBBuiDTXuCYoussefAMChenWComparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)Geomatics Nat Hazards Risk2017854456910.1080/19475705.2016.1250112 – reference: WillmottCJOn the validation of modelsPhys Geogr1981218419410.1080/02723646.1981.10642213 – reference: TikhamarineYMalikASouag-GamaneDKisiOArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res20202730001300191:CAS:528:DC%2BB3cXhtFKjsbjN10.1007/s11356-020-08792-3 – reference: Byun HR, Kim DW (2010) Comparing the effective drought index and the standardized precipitation index. Options Méditerranéennes Séries A Mediterr Semin 85–89 – reference: Moayedi H, Bui DT, Kalantar B et al (2019a) Harris hawks optimization: a novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors (Switzerland). https://doi.org/10.3390/s19163590 – reference: BelaynehAAdamowskiJDrought forecasting using new machine learning methodsJ Water L Dev20131831210.2478/jwld-2013 – reference: DaiADrought under global warming: a reviewWiley Interdiscip Rev Clim Chang20112456510.1002/wcc.81 – reference: Mathivha F, Sigauke C, Chikoore H, Odiyo J (2020) Short-term and medium-term drought forecasting using generalized additive models. Sustain. https://doi.org/10.3390/SU12104006 – reference: MohsenipourMShahidSSungCEJunWXChanging pattern of droughts during cropping seasons of BangladeshWater Resour Manag2018321555156810.1007/s11269-017-1890-4 – reference: AndersonRLDistribution of the serial correlation coefficientAnn Math Stat19421311310.1214/aoms/1177731638 – reference: BiazarSMFardAFSinghVPDinpashohYMajnooni-HerisAEstimation of evaporation from saline-water with more efficient input variablesPure Appl Geophys20201775599561910.1007/s00024-020-02570-5 – reference: YuJKimCHRheeSBThe comparison of lately proposed Harris Hawks Optimization and Jaya Optimization in solving directional overcurrent relays coordination problemComplexity.202020201221:CAS:528:DC%2BB3cXitF2ms7bL10.1155/2020/3807653 – reference: KouchiDHEsmailiKFaridhosseiniASanaeinejadSHKhaliliDAbbaspourKCSensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization AlgorithmsWater2017938410.3390/w9060384 – reference: KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J20167475610.1016/j.asej.2015.11.005 – reference: Gunn S (1998) Support vector machiens for classification and regression. Image Speech Intell Syst Res Group, Univ Southapt – reference: MoridSSmakhtinVBagherzadehKDrought forecasting using artificial neural networks and time series of drought indicesInt J Climatol2007272103211110.1002/joc.1498 – reference: TsakirisGPangalouDVangelisHRegional drought assessment based on the Reconnaissance Drought Index (RDI)Water Resour Manag20072182183310.1007/s11269-006-9105-4 – reference: MehdizadehSAhmadiFDanandeh MehrASafariMJSDrought modeling using classic time series and hybrid wavelet-gene expression programming modelsJ Hydrol202058712501710.1016/j.jhydrol.2020.125017 – reference: BasisthaAAryaDSGoelNKSpatial distribution of rainfall in Indian Himalayas – a case study of Uttarakhand RegionWater Resour Manag2008221325134610.1007/s11269-007-9228-2 – reference: DamaniaRDesbureauxSHylandMUncharted Waters2017WashingtonWorld Bank – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 – reference: ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962 – reference: SmakhtinVHughesDAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataEnviron Model Softw20072288089010.1016/j.envsoft.2006.05.013 – reference: TikhamarineYSouag-GamaneDAhmedANRainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimizationJ Hydrol202058912513310.1016/j.jhydrol.2020.125133 – reference: Yang XS (2013) Optimization and metaheuristic algorithms in engineering. In: Metaheuristics in Water, Geotechnical and Transport Engineering – reference: AbbasiAKhaliliKBehmaneshJShirzadADrought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia LakeTheor Appl Climatol201913855356710.1007/s00704-019-02825-9 – reference: DharONNandargiSRainfall distribution over the Arunachal Pradesh HimalayasWeather.20045915515710.1256/wea.87.03 – reference: KimDWByunHRChoiKSBinOSA spatiotemporal analysis of historical droughts in KoreaJ Appl Meteorol Climatol2011501895191210.1175/2011JAMC2664.1 – reference: DibikeYBVelickovSSolomatineDAbbottMBModel induction with support vector machines: introduction and applicationsJ Comput Civ Eng20011520821610.1061/(ASCE)0887-3801(2001)15:3(208 – reference: DoganSBerktayASinghVPComparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, TurkeyJ Hydrol2012470–47125526810.1016/j.jhydrol.2012.09.003 – reference: Sung JH, Chung ES, Shahid S (2018) Reliability-resiliency-vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustain. https://doi.org/10.3390/su10093043 – reference: TikhamarineYSouag-GamaneDKisiOA new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)Arab J Geosci20191212010.1007/s12517-019-4697-1 – reference: XiangBLinSJZhaoMJohnsonNCYangXJiangXSubseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL ModelGeophys Res Lett20194641642510.1029/2018GL081314 – reference: Biazar SM, Rahmani V, Isazadeh M, Kisi O, Dinpashoh Y (2020b) New input selection procedure for machine learning methods in estimating daily global solar radiation. Arab J Geosci. https://doi.org/10.1007/s12517-020-05437-0 – reference: AliMDeoRCDownsNJMaraseniTAn ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation indexAtmos Res201820715518010.1016/j.atmosres.2018.02.024 – reference: DeoRCŞahinMApplication of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern AustraliaAtmos Res201515351252510.1016/j.atmosres.2014.10.016 – reference: Danandeh MehrAKahyaEÖzgerMA gene–wavelet model for long lead time drought forecastingJ Hydrol201451769169910.1016/j.jhydrol.2014.06.012 – reference: MalikAKumarASpatio-temporal trend analysis of rainfall using parametric and non-parametric tests: case study in Uttarakhand, IndiaTheor Appl Climatol202014018320710.1007/s00704-019-03080-8 – reference: ZhangRChenZ-YXuL-JOuC-QMeteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, ChinaSci Total Environ20196653383461:CAS:528:DC%2BC1MXjtVyjur4%3D10.1016/j.scitotenv.2019.01.431 – reference: Qutbudin I, Shiru MS, Sharafati A, Ahmed K, al-Ansari N, Yaseen ZM, Shahid S, Wang X (2019) Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water (Switzerland). https://doi.org/10.3390/w11051096 – reference: KhanNSachindraDAShahidSAhmedKShiruMSNawazNPrediction of droughts over Pakistan using machine learning algorithmsAdv Water Resour202013910356210.1016/j.advwatres.2020.103562 – reference: VelloreRKKaplanMLKrishnanRLewisJMSabadeSDeshpandeNSinghBBMadhuraRKRama RaoMVSMonsoon-extratropical circulation interactions in Himalayan extreme rainfallClim Dyn2016463517354610.1007/s00382-015-2784-x – reference: GhimireSDeoRCDownsNJRajNGlobal solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland AustraliaJ Clean Prod201921628831010.1016/j.jclepro.2019.01.158 – reference: ZareiKAtabatiMAhmadiMShuffling cross–validation–bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatographyJ Environ Sci Heal Part B2017523463521:CAS:528:DC%2BC2sXjt1KnsLg%3D10.1080/03601234.2017.1283139 – reference: MajumderPEldhoTIArtificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediationWater Resour Manag20203476378310.1007/s11269-019-02472-9 – reference: MoayediHOsouliANguyenHRashidASAA novel Harris hawks’ optimization and k-fold cross-validation predicting slope stabilityEng Comput20193736937910.1007/s00366-019-00828-8 – reference: DracupJALeeKSPaulsonEGOn the statistical characteristics of drought eventsWater Resour Res19801628929610.1029/WR016i002p00289 – reference: AhmedKShahidSBinHSWangXJCharacterization of seasonal droughts in Balochistan Province, PakistanStoch Environ Res Risk Assess20163074776210.1007/s00477-015-1117-2 – reference: GuanYMohammadiBPhamQBAdarshSBalkhairKSRahmanKULinhNTTTriDQA novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm modelTheor Appl Climatol202014234936710.1007/s00704-020-03283-4 – reference: Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic droughts. Hydrol Pap Color State Univ Fort Collins, Color USA 23 – reference: LjungGMBoxGEPOn a measure of lack of fit in time series modelsBiometrika19786529730310.1093/biomet/65.2.297 – reference: KisiODocheshmeh GorgijAZounemat-KermaniMMahdavi-MeymandAKimSDrought forecasting using novel heuristic methods in a semi-arid environmentJ Hydrol201957812405310.1016/j.jhydrol.2019.124053 – reference: DeoRCKisiOSinghVPDrought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree modelAtmos Res201718414917510.1016/j.atmosres.2016.10.004 – reference: AchourKMeddiMZeroualABouabdelliSMaccioniPMoramarcoTSpatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation indexJ Earth Syst Sci20201294210.1007/s12040-019-1306-3 – reference: MishraALiuSCChanges in precipitation pattern and risk of drought over India in the context of global warmingJ Geophys Res20141197833784110.1002/2014JD021471 – reference: Banerjee A, Chen R, Meadows ME et al (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand Himalaya using google earth engine. Remote Sens. https://doi.org/10.3390/rs12040709 – reference: AghelpourPMohammadiBBiazarSMLong-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FATheor Appl Climatol20191381471148010.1007/s00704-019-02905-w – reference: ParkHKimKLeeDKPrediction of severe drought area based on random forest: using satellite image and topography dataWater20191170510.3390/w11040705 – reference: VapnikVNThe nature of statistical learning theory1995New YorkSpringer31410.1007/978-1-4757-2440-0 – reference: NandargiSGaurAMulyeSSHydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, IndiaHydrol Sci J2016612145216310.1080/02626667.2015.1085990 – reference: RahmatiOFalahFDayalKSDeoRCMohammadiFBiggsTMoghaddamDDNaghibiSABuiDTMachine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland AustraliaSci Total Environ20206991342301:CAS:528:DC%2BC1MXhslOlu7%2FI10.1016/j.scitotenv.2019.134230 – reference: RoudierPMaheGStudy of water stress and droughts with indicators using daily data on the Bani river (Niger basin, Mali)Int J Climatol2010301689170510.1002/joc.2013 – reference: HanDChanLZhuNFlood forecasting using support vector machinesJ Hydroinf2007926727610.2166/hydro.2007.027 – reference: Abba SI, Pham QB, Usman AG et al (2020) Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101081 – reference: AdnanRMMalikAKumarAParmarKSKisiOPan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputsArab J Geosci20191260610.1007/s12517-019-4781-6 – reference: TikhamarineYSouag-GamaneDNajah AhmedAKisiOel-ShafieAImproving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithmJ Hydrol202058212443510.1016/j.jhydrol.2019.124435 – reference: Shiru MS, Shahid S, Alias N, Chung ES (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustain. https://doi.org/10.3390/su10030871 – reference: Mirjalili S, Song Dong J, Lewis A, Sadiq AS (2020) Particle swarm optimization: theory, literature review, and application in airfoil design. In: Studies in computational intelligence – reference: MalikAKumarAGuhathakurtaPKisiOSpatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance testArab J Geosci20191232810.1007/s12517-019-4454-5 – reference: ZhangPGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing.20035015917510.1016/S0925-2312(01)00702-0 – reference: DasPNagannaSRDekaPCPushparajJHybrid wavelet packet machine learning approaches for drought modelingEnviron Earth Sci20207922110.1007/s12665-020-08971-y – reference: MalikAKumarASalihSQKimSKimNWYaseenZMSinghVPDrought index prediction using advanced fuzzy logic model: regional case study over Kumaon in IndiaPLoS One202015e02332801:CAS:528:DC%2BB3cXhtFGks7bK10.1371/journal.pone.0233280 – reference: Sharafati A, Nabaei S, Shahid S (2019) Spatial assessment of meteorological drought features over different climate regions in Iran. Int J Climatol joc.6307. https://doi.org/10.1002/joc.6307 – reference: Chavadekar AU, Kashid SS (2019) Meteorological drought prediction of marathwada subdivision based on hydro-climatic inputs using genetic programming. ISH J Hydraul Eng. https://doi.org/10.1080/09715010.2019.1620647 – reference: AhmedKShahidSNawazNImpacts of climate variability and change on seasonal drought characteristics of PakistanAtmos Res201821436437410.1016/j.atmosres.2018.08.020 – reference: AshrafzadehAGhorbaniMABiazarSMYaseenZMEvaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithmHydrol Sci J2019641843185610.1080/02626667.2019.1676428 – reference: FisherRAStatistical methods for research workers1925EdinburghUK Oliver Boyd43 – reference: MalikAKumarAMeteorological drought prediction using heuristic approaches based on effective drought index: a case study in UttarakhandArab J Geosci20201311710.1007/s12517-020-5239-6 – reference: AhmedKShahidSWangXNawazNKhanNSpatiotemporal changes in aridity of Pakistan during 1901-2016Hydrol Earth Syst Sci2019233081309610.5194/hess-23-3081-2019 – reference: KimD-WByunH-RChoiK-SEvaluation, modification, and application of the Effective Drought Index to 200-year drought climatology of Seoul, KoreaJ Hydrol200937811210.1016/j.jhydrol.2009.08.021 – volume: 32 start-page: 1555 year: 2018 ident: 13445_CR76 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1890-4 – volume: 10 start-page: 282 year: 1970 ident: 13445_CR82 publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 – volume: 33 start-page: 5067 year: 2019 ident: 13445_CR85 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02408-3 – volume: 58 start-page: 1763 year: 2015 ident: 13445_CR78 publication-title: Trans ASABE doi: 10.13031/trans.58.10715 – volume: 21 start-page: 821 year: 2007 ident: 13445_CR103 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9105-4 – ident: 13445_CR15 doi: 10.3390/rs12040709 – volume: 142 start-page: 349 year: 2020 ident: 13445_CR45 publication-title: Theor Appl Climatol doi: 10.1007/s00704-020-03283-4 – volume: 119 start-page: 7833 year: 2014 ident: 13445_CR72 publication-title: J Geophys Res doi: 10.1002/2014JD021471 – volume: 2 start-page: 45 year: 2011 ident: 13445_CR25 publication-title: Wiley Interdiscip Rev Clim Chang doi: 10.1002/wcc.81 – volume: 52 start-page: 346 year: 2017 ident: 13445_CR111 publication-title: J Environ Sci Heal Part B doi: 10.1080/03601234.2017.1283139 – volume: 46 start-page: 3517 year: 2016 ident: 13445_CR105 publication-title: Clim Dyn doi: 10.1007/s00382-015-2784-x – volume: 12 start-page: 1 year: 2019 ident: 13445_CR100 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4697-1 – volume: 46 start-page: 416 year: 2019 ident: 13445_CR107 publication-title: Geophys Res Lett doi: 10.1029/2018GL081314 – volume: 12 start-page: 606 year: 2019 ident: 13445_CR4 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4781-6 – volume: 240 start-page: 90 year: 2000 ident: 13445_CR36 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00336-X – volume: 13 start-page: 1 year: 2020 ident: 13445_CR65 publication-title: Arab J Geosci doi: 10.1007/s12517-020-5239-6 – volume: 64 start-page: 1824 year: 2019 ident: 13445_CR97 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1678750 – ident: 13445_CR53 doi: 10.1109/ICNN.1995.488968 – volume: 31 start-page: 1211 year: 2017 ident: 13445_CR32 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-016-1265-z – volume: 22 start-page: 1325 year: 2008 ident: 13445_CR16 publication-title: Water Resour Manag doi: 10.1007/s11269-007-9228-2 – ident: 13445_CR21 – volume: 97 start-page: 849 year: 2019 ident: 13445_CR49 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 56 start-page: 108 year: 2018 ident: 13445_CR48 publication-title: Rev Geophys doi: 10.1002/2016RG000549 – ident: 13445_CR69 doi: 10.3390/SU12104006 – ident: 13445_CR89 doi: 10.1002/joc.6307 – volume: 140 start-page: 183 year: 2020 ident: 13445_CR64 publication-title: Theor Appl Climatol doi: 10.1007/s00704-019-03080-8 – volume: 587 start-page: 125017 year: 2020 ident: 13445_CR70 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125017 – ident: 13445_CR41 doi: 10.1080/10106049.2020.1753821 – volume: 33 start-page: 3985 year: 2019 ident: 13445_CR68 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02350-4 – volume: 128 start-page: 359 year: 2017 ident: 13445_CR29 publication-title: Theor Appl Climatol doi: 10.1007/s00704-015-1706-5 – volume: 214 start-page: 364 year: 2018 ident: 13445_CR7 publication-title: Atmos Res doi: 10.1016/j.atmosres.2018.08.020 – volume: 582 start-page: 124435 year: 2020 ident: 13445_CR101 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124435 – volume: 242 start-page: 105007 year: 2020 ident: 13445_CR94 publication-title: Atmos Res doi: 10.1016/j.atmosres.2020.105007 – volume: 15 start-page: e0233280 year: 2020 ident: 13445_CR67 publication-title: PLoS One doi: 10.1371/journal.pone.0233280 – volume: 223 start-page: 60 year: 2019 ident: 13445_CR91 publication-title: Atmos Res doi: 10.1016/j.atmosres.2019.03.010 – volume: 152 start-page: 149 year: 2018 ident: 13445_CR9 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.07.013 – volume: 68 start-page: 553 year: 2020 ident: 13445_CR55 publication-title: Acta Geophys doi: 10.1007/s11600-020-00419-y – volume: 470–471 start-page: 255 year: 2012 ident: 13445_CR35 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.09.003 – ident: 13445_CR86 doi: 10.3390/w11051096 – volume: 29 start-page: 79 year: 2015 ident: 13445_CR61 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-014-0930-3 – volume: 49 start-page: 6486 year: 2013 ident: 13445_CR102 publication-title: Water Resour Res doi: 10.1002/wrcr.20517 – volume: 27 start-page: 2103 year: 2007 ident: 13445_CR79 publication-title: Int J Climatol doi: 10.1002/joc.1498 – volume: 8 start-page: 1 year: 2015 ident: 13445_CR52 publication-title: Weather Clim Extrem doi: 10.1016/j.wace.2015.05.002 – volume: 24 start-page: 1145 year: 2010 ident: 13445_CR39 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-010-0366-3 – volume: 12 start-page: 328 year: 2019 ident: 13445_CR66 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4454-5 – volume: 139 start-page: 103562 year: 2020 ident: 13445_CR56 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2020.103562 – volume: 216 start-page: 288 year: 2019 ident: 13445_CR43 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.158 – volume: 8 start-page: 15210 year: 2020 ident: 13445_CR80 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964584 – volume: 9 start-page: 384 year: 2017 ident: 13445_CR60 publication-title: Water doi: 10.3390/w9060384 – volume: 106 start-page: 7183 year: 2001 ident: 13445_CR96 publication-title: J Geophys Res Atmos doi: 10.1029/2000JD900719 – volume: 152 start-page: 107389 year: 2020 ident: 13445_CR74 publication-title: Measurement doi: 10.1016/j.measurement.2019.107389 – volume: 153 start-page: 512 year: 2015 ident: 13445_CR31 publication-title: Atmos Res doi: 10.1016/j.atmosres.2014.10.016 – volume: 13 start-page: 1 year: 1942 ident: 13445_CR11 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731638 – volume: 18 start-page: 3 year: 2013 ident: 13445_CR17 publication-title: J Water L Dev doi: 10.2478/jwld-2013 – volume: 34 start-page: 763 year: 2020 ident: 13445_CR63 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02472-9 – ident: 13445_CR95 doi: 10.3390/su10093043 – volume: 50 start-page: 1895 year: 2011 ident: 13445_CR58 publication-title: J Appl Meteorol Climatol doi: 10.1175/2011JAMC2664.1 – volume: 2 start-page: 184 year: 1981 ident: 13445_CR106 publication-title: Phys Geogr doi: 10.1080/02723646.1981.10642213 – ident: 13445_CR109 – volume: 34 start-page: 2792 year: 2014 ident: 13445_CR93 publication-title: Int J Climatol doi: 10.1002/joc.3875 – ident: 13445_CR19 doi: 10.1007/s12517-020-05437-0 – volume: 27 start-page: 30001 year: 2020 ident: 13445_CR98 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08792-3 – volume: 22 start-page: 880 year: 2007 ident: 13445_CR92 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2006.05.013 – volume: 577 start-page: 123962 year: 2019 ident: 13445_CR40 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123962 – volume: 589 start-page: 125133 year: 2020 ident: 13445_CR99 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125133 – volume: 378 start-page: 1 year: 2009 ident: 13445_CR57 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.08.021 – volume: 50 start-page: 159 year: 2003 ident: 13445_CR112 publication-title: Neurocomputing. doi: 10.1016/S0925-2312(01)00702-0 – volume: 12 start-page: 106 year: 2019 ident: 13445_CR24 publication-title: Remote Sens doi: 10.3390/rs12010106 – start-page: 43 volume-title: Statistical methods for research workers year: 1925 ident: 13445_CR42 – ident: 13445_CR71 doi: 10.1007/978-3-030-12127-3_10 – ident: 13445_CR46 – volume: 177 start-page: 5599 year: 2020 ident: 13445_CR18 publication-title: Pure Appl Geophys doi: 10.1007/s00024-020-02570-5 – volume: 556 start-page: 1220 year: 2018 ident: 13445_CR51 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.04.017 – volume: 207 start-page: 155 year: 2018 ident: 13445_CR10 publication-title: Atmos Res doi: 10.1016/j.atmosres.2018.02.024 – volume: 2020 start-page: 1 year: 2020 ident: 13445_CR110 publication-title: Complexity. doi: 10.1155/2020/3807653 – volume-title: Uncharted Waters year: 2017 ident: 13445_CR26 – volume: 138 start-page: 553 year: 2019 ident: 13445_CR2 publication-title: Theor Appl Climatol doi: 10.1007/s00704-019-02825-9 – volume: 699 start-page: 134230 year: 2020 ident: 13445_CR87 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134230 – volume: 146 start-page: 04020010 year: 2020 ident: 13445_CR13 publication-title: J Irrig Drain Eng doi: 10.1061/(asce)ir.1943-4774.0001471 – volume: 578 start-page: 124053 year: 2019 ident: 13445_CR59 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124053 – volume: 11 start-page: 705 year: 2019 ident: 13445_CR83 publication-title: Water doi: 10.3390/w11040705 – ident: 13445_CR23 doi: 10.1080/09715010.2019.1620647 – volume: 30 start-page: 747 year: 2016 ident: 13445_CR6 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-015-1117-2 – volume: 184 start-page: 149 year: 2017 ident: 13445_CR30 publication-title: Atmos Res doi: 10.1016/j.atmosres.2016.10.004 – volume: 64 start-page: 1843 year: 2019 ident: 13445_CR12 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1676428 – volume: 61 start-page: 2145 year: 2016 ident: 13445_CR81 publication-title: Hydrol Sci J doi: 10.1080/02626667.2015.1085990 – volume: 35 start-page: 741 year: 2015 ident: 13445_CR38 publication-title: Risk Anal doi: 10.1111/risa.12299 – volume: 2 start-page: 1 year: 2011 ident: 13445_CR22 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 138 start-page: 1471 year: 2019 ident: 13445_CR5 publication-title: Theor Appl Climatol doi: 10.1007/s00704-019-02905-w – start-page: 314 volume-title: The nature of statistical learning theory year: 1995 ident: 13445_CR104 doi: 10.1007/978-1-4757-2440-0 – volume: 4 start-page: 1509 year: 2018 ident: 13445_CR84 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-018-0483-4 – volume: 79 start-page: 221 year: 2020 ident: 13445_CR28 publication-title: Environ Earth Sci doi: 10.1007/s12665-020-08971-y – volume: 7 start-page: 47 year: 2016 ident: 13445_CR54 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2015.11.005 – volume: 30 start-page: 1689 year: 2010 ident: 13445_CR88 publication-title: Int J Climatol doi: 10.1002/joc.2013 – volume: 37 start-page: 369 year: 2019 ident: 13445_CR75 publication-title: Eng Comput doi: 10.1007/s00366-019-00828-8 – ident: 13445_CR90 doi: 10.3390/su10030871 – ident: 13445_CR1 doi: 10.1016/j.jwpe.2019.101081 – volume: 129 start-page: 42 year: 2020 ident: 13445_CR3 publication-title: J Earth Syst Sci doi: 10.1007/s12040-019-1306-3 – ident: 13445_CR108 doi: 10.1016/B978-0-12-398296-4.00001-5 – volume: 9 start-page: 267 year: 2007 ident: 13445_CR47 publication-title: J Hydroinf doi: 10.2166/hydro.2007.027 – volume: 8 start-page: 544 year: 2017 ident: 13445_CR50 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2016.1250112 – volume: 65 start-page: 297 year: 1978 ident: 13445_CR62 publication-title: Biometrika doi: 10.1093/biomet/65.2.297 – volume: 59 start-page: 155 year: 2004 ident: 13445_CR33 publication-title: Weather. doi: 10.1256/wea.87.03 – ident: 13445_CR44 doi: 10.3390/w9020105 – volume: 517 start-page: 691 year: 2014 ident: 13445_CR27 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.06.012 – volume: 16 start-page: 289 year: 1980 ident: 13445_CR37 publication-title: Water Resour Res doi: 10.1029/WR016i002p00289 – volume: 27 start-page: 38094 year: 2020 ident: 13445_CR14 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09876-w – volume: 665 start-page: 338 year: 2019 ident: 13445_CR113 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.431 – volume: 50 start-page: 885 year: 2007 ident: 13445_CR77 publication-title: Trans ASABE doi: 10.13031/2013.23153 – volume: 23 start-page: 3081 year: 2019 ident: 13445_CR8 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-23-3081-2019 – volume: 15 start-page: 208 year: 2001 ident: 13445_CR34 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2001)15:3(208 – volume: 12 start-page: 2747 year: 1999 ident: 13445_CR20 publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2 – ident: 13445_CR73 doi: 10.3390/s19163590  | 
    
| SSID | ssj0020927 | 
    
| Score | 2.580277 | 
    
| Snippet | Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 39139 | 
    
| SubjectTerms | Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution autocorrelation Autocorrelation functions Crop damage Drought Drought index Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental monitoring Environmental science hawks India Inspection Natural disasters Optimization Particle swarm optimization prediction Prediction models Rain Rainfall regression analysis Regression models Research Article Root-mean-square errors Statistical analysis Support vector machines Waste Water Technology Water damage Water Management Water Pollution Control Water resources Water resources management Water scarcity water shortages  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBele-lL6bZ-uGuHCntrBZYl2dZjKA2hsKawBvpmZFlJC00c7KQl--t3J9sJox_QV-ssZN-d7ifdFyG_TAIYGMwcc6EyTMoiZkYqxVQxtmDwwSL63KrfN_FgJK_v1X2bFFZ30e6dS9Lv1JtkNy4UBsxyxmECxeCg_kVhOS-Q4lHUWx-zQt00atVSeso2VebtOf43R68w5iv_qDc7_T2y2-JF2msY_JVsudk3cnC1SU-DwVY_6-_k5bZCxwv-bFqO6RQQcVl12xstfEueBc1XFMPdJ_RhhflatF7OEYXTZ3-DTys3aYJjYQ7YUKaPf11B8b6WDgZDimEcy5re_hlS8zQpK3g-rffJqH91dzlgbWsFZmWYLliqZWKkMJEzhueF0WZsbeGkygEB8NCCmidgvMdhomMAENwJyx03QsFppUjjQhyQ7Vk5c0eEaq2cNjhkI6lsZJxxNk3h5BXbXEodEN794cy2dcex_cVTtqmYjFzJgCuZ50oWBuR8_c68qbrxIfVJx7is1cA6izD8DqvjiYCcrYdBd9AhYmauXCJNCGgRPk9_QBMLAHEy1lFADhuhWC9JiETBGuKAXHRSslnA--s9_hz5D7ITocT6qMMTsr2olu4UkNAi_-kF_x-fIv5p priority: 102 providerName: Springer Nature  | 
    
| Title | Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s11356-021-13445-0 https://www.ncbi.nlm.nih.gov/pubmed/33751346 https://www.proquest.com/docview/2554667783 https://www.proquest.com/docview/2504352319 https://www.proquest.com/docview/2636394692  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsvCAaDwKiMxBtYxImdxA8IlamjAtFVQKXyFLmO2yGtTWlS0PjructHq2miL3mIneiSO9_97PsCeGVixMBo5rjzleFSZhE3UimusrlFg48Wscqt-jKKhhP5aaqmRzBqc2EorLLViZWiznJLZ-RvAwqnompn4fv1L05do8i72rbQME1rhexdVWLsGLoBVcbqQPfDYDT-utuC-bpu4qql5ALJaNJo6mQ6ESoKyBXViOL-bVN1B3_e8Z1WJuniAdxvsCTr18x_CEdudQKng33qGg42a7d4BH_GG3LKECNYPmdLRMv5plV9LKva9ZRsdsMoFH7Brm4ol4sV2zUhdPa7Ot1nG7eoA2fxHahslj__uozRWS4bDi8ZhXhsCzb-dsnM9QL_Xnm1LB7D5GLw_XzIm7YL3Eo_KXmiZWxkaAJnjJhlRpu5tZmTaoboQPgWVUCMhn3uxzpCcCFcaIUTJlS4k8mSKAtPobPKV-4pMK2V04aGbCCVDYwzziYJ7soiO5NSeyDaP5zapiY5tca4TvfVlIkrKXIlrbiS-h683j2zrityHJx91jIubVZnke5lyYOXu2FcV-QsMSuXb2mOj0gSP08fmBOFCPBkpAMPntRCsSMpDGOFNEQevGmlZE_A_-l9dpje53AvIAmtIhDPoFNutu4FoqJy1oPjeBrjNTkXPej2P_74POg14o93J0H_H_mjDG0 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4lUILWAkOEFE4kcSHxBCpVVKnxKt1FtwHO8WqbvZbrJUy4_iNzKTx65Qxd56tmONM-OZz54XwFsTIwZGM-e7QBlfyiLyjVTKV8XAosFHi9jkVh0eRemZ_HauztfgT58LQ2GVvU5sFHVRWnoj_8gpnIqqnYnPkyufukaRd7VvodGKxb6bX-OVrfq09xX5-47z3Z3T7dTvugr4VgZJ7SdaxkYKw50xYV4YbQbWFk6qHI1fGFiU8Bjt1iCIdYS2M3TChi40QiFQL5KoELjuHbgrBY9JESTbi5ASHui2RayW0g9xk12STpuqFwpF4b5hM6L84F9DeAPd3vDMNgZv9yE86JAq-9KK1iNYc-PHsLGzTIzDwU4zVE_g-mRKLh9iMysHbIRYvJz2ipUVTTOgmuVzRoH2Q3Yxp0wxVs0mhP_Zr8Z3wKZu2Ibl4hqoykY_f7uC0UsxS9NjRgEks4qdfD9m5nKIvKkvRtVTOLuV378B6-Ny7J4D01o5bWjIcqksN844myR454tsLqX2IOz_cGa7iufUeOMyW9ZqJq5kyJWs4UoWePB-8c2krfexcvZWz7isO_tVtpRUD94shvHUkivGjF05ozkB4lTcnl4xJxIIH2WkuQfPWqFYkCRErJCGyIMPvZQsCfg_vS9W0_sa7qWnhwfZwd7R_ibc5yStTazjFqzX05l7ifirzl81Qs_gx22fsr-hBT2D | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISFeEF-DsAFGgieIlsR2Ej8ghNiqjsFWCSb1LTiO0yGtTdekTOVP46_jLh-N0ETf9mzHOufOd2ff7-4AXusIfWA0c671pHaFyEJXCyldmeUGDT5axDq36utJODwTn8dyvAV_ulwYglV2OrFW1Flh6I18PyA4FVU74_t5C4sYHQw-zC9d6iBFkdaunUYjIsd2dYXXt_L90QHy-k0QDA6_fxq6bYcB1wgvrtxYiUgLrgOrtZ9mWuncmMwKmaIh9D2D0h6hDcu9SIVoR33LjW99zSU67VkcZhzXvQW3I84VwQmjcX_Z81TTLlYJ4fq44TZhp0nb87kk6K9fj0jX-9coXvN0r0Vpa-M3uA_3Wq-VfWzE7AFs2dlD2Dnsk-RwsNUS5SO4Gi0o_EMsZ0XOpuiXF4tOybKsbgxUsXTFCHQ_Yecryhpj5XJOdwH2q44jsIWdNBBdXAPV2vTnb5sxejVmw-EpIzDJsmSjb6dMX0yQN9X5tHwMZzfy-3dge1bM7FNgSkmrNA2ZQEgTaKutiWO8_4UmFUI54Hd_ODFt9XNqwnGR9HWbiSsJciWpuZJ4DrxdfzNvan9snL3XMS5p9UCZ9FLrwKv1MJ5gCsvomS2WNMdDnxW3pzbMCTm6kiJUgQNPGqFYk8R5JJGG0IF3nZT0BPyf3meb6X0Jd_B8JV-OTo534W5AwlrDHvdgu1os7XN0xar0RS3zDH7c9CH7CwVFQfI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+meteorological+drought+by+using+hybrid+support+vector+regression+optimized+with+HHO+versus+PSO+algorithms&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Malik%2C+Anurag&rft.au=Tikhamarine%2C+Yazid&rft.au=Sammen%2C+Saad+Shauket&rft.au=Abba%2C+Sani+Isah&rft.date=2021-08-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=28&rft.issue=29&rft.spage=39139&rft_id=info:doi/10.1007%2Fs11356-021-13445-0&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |