Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms

Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drough...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 29; pp. 39139 - 39158
Main Authors Malik, Anurag, Tikhamarine, Yazid, Sammen, Saad Shauket, Abba, Sani Isah, Shahid, Shamsuddin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-021-13445-0

Cover

Abstract Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535–0.965, MAE = 0.363–0.622, NSE = 0.558–0.860, COC = 0.760–0.930, and WI = 0.862–0.959) outperformed the SVR-PSO model (RMSE = 0.546–0.967, MAE = 0.372–0.625, NSE = 0.556–0.855, COC = 0.758–0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
AbstractList Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535–0.965, MAE = 0.363–0.622, NSE = 0.558–0.860, COC = 0.760–0.930, and WI = 0.862–0.959) outperformed the SVR-PSO model (RMSE = 0.546–0.967, MAE = 0.372–0.625, NSE = 0.556–0.855, COC = 0.758–0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
Author Abba, Sani Isah
Sammen, Saad Shauket
Shahid, Shamsuddin
Malik, Anurag
Tikhamarine, Yazid
Author_xml – sequence: 1
  givenname: Anurag
  orcidid: 0000-0002-0298-5777
  surname: Malik
  fullname: Malik, Anurag
  email: anuragmalik_swce2014@rediffmail.com
  organization: Punjab Agricultural University, Regional Research Station
– sequence: 2
  givenname: Yazid
  surname: Tikhamarine
  fullname: Tikhamarine, Yazid
  organization: Southern Public Works Laboratory (LTPS), Tamanrasset Antenna 11000, Department of Science and Technology, University of Tamanrasset
– sequence: 3
  givenname: Saad Shauket
  surname: Sammen
  fullname: Sammen, Saad Shauket
  organization: Department of Civil Engineering, College of Engineering, Diyala University
– sequence: 4
  givenname: Sani Isah
  surname: Abba
  fullname: Abba, Sani Isah
  organization: Faculty of Engineering, Department of Civil Engineering, Baze University
– sequence: 5
  givenname: Shamsuddin
  surname: Shahid
  fullname: Shahid, Shamsuddin
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33751346$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZp_0APRdBLL270Zck6ltBmC4ENND0bWR57FWzLleSE7a-Pspu0kENyEoyed2ak5wQdTX4ChD5S8pUSos4ipbyUBWG0oFyIsiBv0IpKKgoltD5CK6KF2F8do5MYbwhhRDP1Dh1zrspclyt0dxWgdTY5P2Hf4RES-OAH3ztrBtwGv_TbhJsdXqKberzdNcG1OC7z7EPCt2CTDzhAHyDGfY85udH9hRbfubTF6_UmQyEuEV_92mAz9D7k-hjfo7edGSJ8eDxP0e8f36_P18Xl5uLn-bfLwgpSpaLSQhnBDQNjaNMabTprWxBlQ0tKieWMKSZYR5SWjHEK3FKghpeCVW0lW36Kvhz6zsH_WSCmenTRwjCYCfwSaya55FpIzV5HSyJ4mYfojH5-ht74JUz5IZkqhZRKVTxTnx6ppRmhrefgRhN29dPvZ4AdABt8jAG6fwgl9YPi-qC4zorrveKa5FD1LGRdMg8CUzBueDnKD9GY50w9hP9rv5C6B13Juqg
CitedBy_id crossref_primary_10_1016_j_matpr_2022_04_594
crossref_primary_10_1016_j_cherd_2023_09_027
crossref_primary_10_1021_acsmaterialslett_2c00734
crossref_primary_10_2166_ws_2021_430
crossref_primary_10_1007_s13201_023_02001_5
crossref_primary_10_1016_j_jhydrol_2024_132225
crossref_primary_10_1155_2022_1921378
crossref_primary_10_3390_su14094889
crossref_primary_10_1088_1755_1315_1084_1_012054
crossref_primary_10_1007_s11356_022_21119_8
crossref_primary_10_1080_19942060_2022_2027273
crossref_primary_10_1007_s00704_021_03825_4
crossref_primary_10_1155_2023_8260317
crossref_primary_10_1061_JHYEFF_HEENG_5920
crossref_primary_10_1111_risa_14179
crossref_primary_10_3390_w15111993
crossref_primary_10_1007_s11356_024_34500_6
crossref_primary_10_3390_hydrology9070115
crossref_primary_10_3390_life13010079
crossref_primary_10_2166_ws_2021_161
crossref_primary_10_1007_s11356_022_20837_3
crossref_primary_10_1007_s13201_025_02377_6
crossref_primary_10_1016_j_envsoft_2022_105425
crossref_primary_10_1016_j_kscej_2024_100025
crossref_primary_10_2166_wst_2023_162
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1007_s00704_023_04426_z
crossref_primary_10_3389_feart_2022_839527
crossref_primary_10_3390_w15193449
crossref_primary_10_1016_j_agwat_2023_108210
crossref_primary_10_1007_s00477_023_02548_4
crossref_primary_10_1016_j_compag_2022_106687
crossref_primary_10_1016_j_rineng_2023_101434
crossref_primary_10_1002_hyp_70031
crossref_primary_10_1109_ACCESS_2024_3409822
crossref_primary_10_1016_j_engappai_2023_106389
crossref_primary_10_1155_2024_6130634
crossref_primary_10_1109_ACCESS_2024_3487752
crossref_primary_10_1007_s11356_021_15221_6
crossref_primary_10_1007_s44211_024_00710_8
crossref_primary_10_1080_19942060_2021_1942990
crossref_primary_10_1109_JMASS_2023_3319579
crossref_primary_10_1002_hyp_14444
crossref_primary_10_1007_s11600_023_01058_9
crossref_primary_10_1007_s13349_022_00641_w
crossref_primary_10_2166_aqua_2023_204
crossref_primary_10_1080_19942060_2021_1966837
crossref_primary_10_1007_s11356_022_21596_x
crossref_primary_10_1016_j_scenv_2023_100011
crossref_primary_10_1016_j_engappai_2023_106550
crossref_primary_10_1016_j_mex_2024_102800
crossref_primary_10_1007_s11356_023_29522_5
crossref_primary_10_1016_j_asej_2022_101876
crossref_primary_10_1016_j_compag_2022_106925
crossref_primary_10_1007_s00477_022_02343_7
crossref_primary_10_1016_j_asej_2024_102686
crossref_primary_10_1016_j_psep_2024_02_041
crossref_primary_10_1371_journal_pone_0290891
crossref_primary_10_3390_w16020246
crossref_primary_10_3390_hydrology10030058
crossref_primary_10_1007_s00477_023_02597_9
crossref_primary_10_1007_s11356_022_22930_z
crossref_primary_10_1016_j_jhydrol_2023_130210
crossref_primary_10_1016_j_enconman_2024_118766
crossref_primary_10_1007_s12665_022_10269_0
crossref_primary_10_1016_j_dsm_2022_08_002
crossref_primary_10_1007_s42107_023_00746_7
crossref_primary_10_3390_en14165206
crossref_primary_10_3390_app14177813
crossref_primary_10_3390_pr9071166
crossref_primary_10_1007_s10661_024_13063_6
crossref_primary_10_1007_s11356_022_23786_z
crossref_primary_10_1016_j_chemosphere_2024_141329
crossref_primary_10_1007_s40996_022_00987_7
Cites_doi 10.1007/s11269-017-1890-4
10.1016/0022-1694(70)90255-6
10.1007/s11269-019-02408-3
10.13031/trans.58.10715
10.1007/s11269-006-9105-4
10.3390/rs12040709
10.1007/s00704-020-03283-4
10.1002/2014JD021471
10.1002/wcc.81
10.1080/03601234.2017.1283139
10.1007/s00382-015-2784-x
10.1007/s12517-019-4697-1
10.1029/2018GL081314
10.1007/s12517-019-4781-6
10.1016/S0022-1694(00)00336-X
10.1007/s12517-020-5239-6
10.1080/02626667.2019.1678750
10.1109/ICNN.1995.488968
10.1007/s00477-016-1265-z
10.1007/s11269-007-9228-2
10.1016/j.future.2019.02.028
10.1002/2016RG000549
10.3390/SU12104006
10.1002/joc.6307
10.1007/s00704-019-03080-8
10.1016/j.jhydrol.2020.125017
10.1080/10106049.2020.1753821
10.1007/s11269-019-02350-4
10.1007/s00704-015-1706-5
10.1016/j.atmosres.2018.08.020
10.1016/j.jhydrol.2019.124435
10.1016/j.atmosres.2020.105007
10.1371/journal.pone.0233280
10.1016/j.atmosres.2019.03.010
10.1016/j.compag.2018.07.013
10.1007/s11600-020-00419-y
10.1016/j.jhydrol.2012.09.003
10.3390/w11051096
10.1007/s00477-014-0930-3
10.1002/wrcr.20517
10.1002/joc.1498
10.1016/j.wace.2015.05.002
10.1007/s00477-010-0366-3
10.1007/s12517-019-4454-5
10.1016/j.advwatres.2020.103562
10.1016/j.jclepro.2019.01.158
10.1109/ACCESS.2020.2964584
10.3390/w9060384
10.1029/2000JD900719
10.1016/j.measurement.2019.107389
10.1016/j.atmosres.2014.10.016
10.1214/aoms/1177731638
10.2478/jwld-2013
10.1007/s11269-019-02472-9
10.3390/su10093043
10.1175/2011JAMC2664.1
10.1080/02723646.1981.10642213
10.1002/joc.3875
10.1007/s12517-020-05437-0
10.1007/s11356-020-08792-3
10.1016/j.envsoft.2006.05.013
10.1016/j.jhydrol.2019.123962
10.1016/j.jhydrol.2020.125133
10.1016/j.jhydrol.2009.08.021
10.1016/S0925-2312(01)00702-0
10.3390/rs12010106
10.1007/978-3-030-12127-3_10
10.1007/s00024-020-02570-5
10.1016/j.jhydrol.2017.04.017
10.1016/j.atmosres.2018.02.024
10.1155/2020/3807653
10.1007/s00704-019-02825-9
10.1016/j.scitotenv.2019.134230
10.1061/(asce)ir.1943-4774.0001471
10.1016/j.jhydrol.2019.124053
10.3390/w11040705
10.1080/09715010.2019.1620647
10.1007/s00477-015-1117-2
10.1016/j.atmosres.2016.10.004
10.1080/02626667.2019.1676428
10.1080/02626667.2015.1085990
10.1111/risa.12299
10.1145/1961189.1961199
10.1007/s00704-019-02905-w
10.1007/978-1-4757-2440-0
10.1007/s40808-018-0483-4
10.1007/s12665-020-08971-y
10.1016/j.asej.2015.11.005
10.1002/joc.2013
10.1007/s00366-019-00828-8
10.3390/su10030871
10.1016/j.jwpe.2019.101081
10.1007/s12040-019-1306-3
10.1016/B978-0-12-398296-4.00001-5
10.2166/hydro.2007.027
10.1080/19475705.2016.1250112
10.1093/biomet/65.2.297
10.1256/wea.87.03
10.3390/w9020105
10.1016/j.jhydrol.2014.06.012
10.1029/WR016i002p00289
10.1007/s11356-020-09876-w
10.1016/j.scitotenv.2019.01.431
10.13031/2013.23153
10.5194/hess-23-3081-2019
10.1061/(ASCE)0887-3801(2001)15:3(208
10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
10.3390/s19163590
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-021-13445-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ProQuest ABI/INFORM Complete
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 39158
ExternalDocumentID 33751346
10_1007_s11356_021_13445_0
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-8947a43a2eaa1bda9afccde45b15110c3227242f07962231e3c1e1a35428d86d3
IEDL.DBID BENPR
ISSN 0944-1344
1614-7499
IngestDate Fri Sep 05 11:33:03 EDT 2025
Thu Sep 04 17:48:41 EDT 2025
Tue Oct 07 06:32:29 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Oct 01 02:53:39 EDT 2025
Fri Feb 21 02:48:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords PACF
Effective drought index
Harris Hawks optimization
Uttarakhand
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8947a43a2eaa1bda9afccde45b15110c3227242f07962231e3c1e1a35428d86d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0298-5777
PMID 33751346
PQID 2554667783
PQPubID 54208
PageCount 20
ParticipantIDs proquest_miscellaneous_2636394692
proquest_miscellaneous_2504352319
proquest_journals_2554667783
pubmed_primary_33751346
crossref_primary_10_1007_s11356_021_13445_0
crossref_citationtrail_10_1007_s11356_021_13445_0
springer_journals_10_1007_s11356_021_13445_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MoriasiDNGitauMWPaiNDaggupatiPHydrologic and water quality models: performance measures and evaluation criteriaTrans ASABE2015581763178510.13031/trans.58.10715
AhmedKShahidSBinHSWangXJCharacterization of seasonal droughts in Balochistan Province, PakistanStoch Environ Res Risk Assess20163074776210.1007/s00477-015-1117-2
SulimanAHAAwchiTAAl-MolaMShahidSEvaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid IraqAtmos Res202024210500710.1016/j.atmosres.2020.105007
MoayediHGörMLyuZBuiDTHerding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficientMeasurement202015210738910.1016/j.measurement.2019.107389
BasisthaAAryaDSGoelNKSpatial distribution of rainfall in Indian Himalayas – a case study of Uttarakhand RegionWater Resour Manag2008221325134610.1007/s11269-007-9228-2
AhmedKShahidSNawazNImpacts of climate variability and change on seasonal drought characteristics of PakistanAtmos Res201821436437410.1016/j.atmosres.2018.08.020
KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J20167475610.1016/j.asej.2015.11.005
GuanYMohammadiBPhamQBAdarshSBalkhairKSRahmanKULinhNTTTriDQA novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm modelTheor Appl Climatol202014234936710.1007/s00704-020-03283-4
KouchiDHEsmailiKFaridhosseiniASanaeinejadSHKhaliliDAbbaspourKCSensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization AlgorithmsWater2017938410.3390/w9060384
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
Banerjee A, Chen R, Meadows ME et al (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand Himalaya using google earth engine. Remote Sens. https://doi.org/10.3390/rs12040709
DeoRCByunH-RAdamowskiJFBegumKApplication of effective drought index for quantification of meteorological drought events: a case study in AustraliaTheor Appl Climatol201712835937910.1007/s00704-015-1706-5
DibikeYBVelickovSSolomatineDAbbottMBModel induction with support vector machines: introduction and applicationsJ Comput Civ Eng20011520821610.1061/(ASCE)0887-3801(2001)15:3(208
ByunH-RWilhiteDAObjective quantification of drought severity and durationJ Clim1999122747275610.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
TsakirisGPangalouDVangelisHRegional drought assessment based on the Reconnaissance Drought Index (RDI)Water Resour Manag20072182183310.1007/s11269-006-9105-4
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948
TikhamarineYSouag-GamaneDAhmedANRainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimizationJ Hydrol202058912513310.1016/j.jhydrol.2020.125133
Sharafati A, Nabaei S, Shahid S (2019) Spatial assessment of meteorological drought features over different climate regions in Iran. Int J Climatol joc.6307. https://doi.org/10.1002/joc.6307
Shiru MS, Shahid S, Alias N, Chung ES (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustain. https://doi.org/10.3390/su10030871
KisiODocheshmeh GorgijAZounemat-KermaniMMahdavi-MeymandAKimSDrought forecasting using novel heuristic methods in a semi-arid environmentJ Hydrol201957812405310.1016/j.jhydrol.2019.124053
MalikAKumarASpatio-temporal trend analysis of rainfall using parametric and non-parametric tests: case study in Uttarakhand, IndiaTheor Appl Climatol202014018320710.1007/s00704-019-03080-8
ChangC-CLinC-JLIBSVMACM Trans Intell Syst Technol2011212710.1145/1961189.1961199
MehdizadehSAhmadiFDanandeh MehrASafariMJSDrought modeling using classic time series and hybrid wavelet-gene expression programming modelsJ Hydrol202058712501710.1016/j.jhydrol.2020.125017
MoayediHOsouliANguyenHRashidASAA novel Harris hawks’ optimization and k-fold cross-validation predicting slope stabilityEng Comput20193736937910.1007/s00366-019-00828-8
ParkHKimKLeeDKPrediction of severe drought area based on random forest: using satellite image and topography dataWater20191170510.3390/w11040705
DeoRCŞahinMApplication of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern AustraliaAtmos Res201515351252510.1016/j.atmosres.2014.10.016
TikhamarineYSouag-GamaneDKisiOA new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)Arab J Geosci20191212010.1007/s12517-019-4697-1
Mathivha F, Sigauke C, Chikoore H, Odiyo J (2020) Short-term and medium-term drought forecasting using generalized additive models. Sustain. https://doi.org/10.3390/SU12104006
CostacheRPhamQBSharifiELinhNTTAbbaSIVojtekMVojtekováJNhiPTTKhoiDNFlash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniquesRemote Sens20191210610.3390/rs12010106
MalikAKumarAGuhathakurtaPKisiOSpatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance testArab J Geosci20191232810.1007/s12517-019-4454-5
HaoZSinghVPXiaYSeasonal drought prediction: advances, challenges, and future prospectsRev Geophys20185610814110.1002/2016RG000549
AliMDeoRCDownsNJMaraseniTMulti-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecastingComput Electron Agric201815214916510.1016/j.compag.2018.07.013
ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962
Fadaee M, Mahdavi-Meymand A, Zounemat-Kermani M (2020) Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2020.1753821
AndersonRLDistribution of the serial correlation coefficientAnn Math Stat19421311310.1214/aoms/1177731638
DracupJALeeKSPaulsonEGOn the statistical characteristics of drought eventsWater Resour Res19801628929610.1029/WR016i002p00289
XiangBLinSJZhaoMJohnsonNCYangXJiangXSubseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL ModelGeophys Res Lett20194641642510.1029/2018GL081314
Byun HR, Kim DW (2010) Comparing the effective drought index and the standardized precipitation index. Options Méditerranéennes Séries A Mediterr Semin 85–89
Danandeh MehrAKahyaEÖzgerMA gene–wavelet model for long lead time drought forecastingJ Hydrol201451769169910.1016/j.jhydrol.2014.06.012
MoriasiDNArnoldJGLiewMWVModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE20075088590010.13031/2013.23153
Qutbudin I, Shiru MS, Sharafati A, Ahmed K, al-Ansari N, Yaseen ZM, Shahid S, Wang X (2019) Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water (Switzerland). https://doi.org/10.3390/w11051096
DasPNagannaSRDekaPCPushparajJHybrid wavelet packet machine learning approaches for drought modelingEnviron Earth Sci20207922110.1007/s12665-020-08971-y
KimDWByunHRChoiKSBinOSA spatiotemporal analysis of historical droughts in KoreaJ Appl Meteorol Climatol2011501895191210.1175/2011JAMC2664.1
TikhamarineYMalikASouag-GamaneDKisiOArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res20202730001300191:CAS:528:DC%2BB3cXhtFKjsbjN10.1007/s11356-020-08792-3
DharONNandargiSRainfall distribution over the Arunachal Pradesh HimalayasWeather.20045915515710.1256/wea.87.03
BanadkookiFBEhteramMAhmedANTeoFYEbrahimiMFaiCMHuangYFel-ShafieASuspended sediment load prediction using artificial neural network and ant lion optimization algorithmEnviron Sci Pollut Res202027380943811610.1007/s11356-020-09876-w
LiuYHwangYImproving drought predictability in Arkansas using the ensemble PDSI forecast techniqueStoch Env Res Risk A20152979911:CAS:528:DC%2BC2MXhtlOitr7M10.1007/s00477-014-0930-3
GhimireSDeoRCDownsNJRajNGlobal solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland AustraliaJ Clean Prod201921628831010.1016/j.jclepro.2019.01.158
DoganSBerktayASinghVPComparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, TurkeyJ Hydrol2012470–47125526810.1016/j.jhydrol.2012.09.003
Sung JH, Chung ES, Shahid S (2018) Reliability-resiliency-vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustain. https://doi.org/10.3390/su10093043
Mirjalili S, Song Dong J, Lewis A, Sadiq AS (2020) Particle swarm optimization: theory, literature review, and application in airfoil design. In: Studies in computational intelligence
ZhangPGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing.20035015917510.1016/S0925-2312(01)00702-0
HongHPradhanBBuiDTXuCYoussefAMChenWComparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)Geomatics Nat Hazards Risk2017854456910.1080/19475705.2016.1250112
NandargiSGaurAMulyeSSHydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, IndiaHydrol Sci J2016612145216310.1080/02626667.2015.1085990
AshrafzadehAGhorbaniMABiazarSMYaseenZMEvaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithmHydrol Sci J2019641843185610.1080/02626667.2019.1676428
AdnanRMMalikAK
RC Deo (13445_CR31) 2015; 153
J Spinoni (13445_CR93) 2014; 34
13445_CR71
13445_CR73
JE Nash (13445_CR82) 1970; 10
A Ashrafzadeh (13445_CR13) 2020; 146
Y Tikhamarine (13445_CR97) 2019; 64
C-C Chang (13445_CR22) 2011; 2
P Majumder (13445_CR63) 2020; 34
S Dogan (13445_CR35) 2012; 470–471
MR Khaledian (13445_CR55) 2020; 68
ON Dhar (13445_CR33) 2004; 59
GM Ljung (13445_CR62) 1978; 65
H Hong (13445_CR50) 2017; 8
13445_CR69
S Ghimire (13445_CR43) 2019; 216
A Basistha (13445_CR16) 2008; 22
H Moayedi (13445_CR74) 2020; 152
R Zhang (13445_CR113) 2019; 665
N Khan (13445_CR56) 2020; 139
13445_CR1
DN Moriasi (13445_CR78) 2015; 58
RC Deo (13445_CR32) 2017; 31
13445_CR53
SM Biazar (13445_CR18) 2020; 177
Y Tikhamarine (13445_CR100) 2019; 12
P Horton (13445_CR51) 2018; 556
H-R Byun (13445_CR20) 1999; 12
MK Tiwari (13445_CR102) 2013; 49
VN Vapnik (13445_CR104) 1995
QB Pham (13445_CR85) 2019; 33
FB Banadkooki (13445_CR14) 2020; 27
D Han (13445_CR47) 2007; 9
M Mohsenipour (13445_CR76) 2018; 32
Y Tikhamarine (13445_CR98) 2020; 27
13445_CR46
13445_CR41
13445_CR44
RC Deo (13445_CR29) 2017; 128
A Danandeh Mehr (13445_CR27) 2014; 517
D-W Kim (13445_CR57) 2009; 378
A Dai (13445_CR25) 2011; 2
O Rahmati (13445_CR87) 2020; 699
P Aghelpour (13445_CR5) 2019; 138
H Moayedi (13445_CR75) 2019; 37
MS Shiru (13445_CR91) 2019; 223
YB Dibike (13445_CR34) 2001; 15
B Xiang (13445_CR107) 2019; 46
RC Deo (13445_CR30) 2017; 184
K Achour (13445_CR3) 2020; 129
A Malik (13445_CR68) 2019; 33
K Ahmed (13445_CR8) 2019; 23
G Tsakiris (13445_CR103) 2007; 21
A Belayneh (13445_CR17) 2013; 18
P Das (13445_CR28) 2020; 79
S Mehdizadeh (13445_CR70) 2020; 587
KE Taylor (13445_CR96) 2001; 106
K Ahmed (13445_CR6) 2016; 30
K Ahmed (13445_CR7) 2018; 214
Y Guan (13445_CR45) 2020; 142
13445_CR108
13445_CR109
G Elkiran (13445_CR40) 2019; 577
A Malik (13445_CR65) 2020; 13
P Roudier (13445_CR88) 2010; 30
A Abbasi (13445_CR2) 2019; 138
O Kisi (13445_CR59) 2019; 578
N Nabipour (13445_CR80) 2020; 8
DH Kouchi (13445_CR60) 2017; 9
13445_CR23
K Zarei (13445_CR111) 2017; 52
M Ali (13445_CR9) 2018; 152
A Ashrafzadeh (13445_CR12) 2019; 64
13445_CR21
R van Duinen (13445_CR38) 2015; 35
ÖF Durdu (13445_CR39) 2010; 24
PG Zhang (13445_CR112) 2003; 50
R Damania (13445_CR26) 2017
Z Hao (13445_CR48) 2018; 56
Y Tikhamarine (13445_CR99) 2020; 589
Y Liu (13445_CR61) 2015; 29
EM Douglas (13445_CR36) 2000; 240
DN Moriasi (13445_CR77) 2007; 50
H Park (13445_CR83) 2019; 11
13445_CR19
M Ali (13445_CR10) 2018; 207
13445_CR15
A Malik (13445_CR64) 2020; 140
CJ Willmott (13445_CR106) 1981; 2
M Khadr (13445_CR54) 2016; 7
VK Jain (13445_CR52) 2015; 8
13445_CR95
Y Tikhamarine (13445_CR101) 2020; 582
A Malik (13445_CR67) 2020; 15
13445_CR90
AA Heidari (13445_CR49) 2019; 97
S Nandargi (13445_CR81) 2016; 61
DW Kim (13445_CR58) 2011; 50
J Yu (13445_CR110) 2020; 2020
RA Fisher (13445_CR42) 1925
RM Adnan (13445_CR4) 2019; 12
RL Anderson (13445_CR11) 1942; 13
AHA Suliman (13445_CR94) 2020; 242
13445_CR89
JA Dracup (13445_CR37) 1980; 16
13445_CR86
R Costache (13445_CR24) 2019; 12
A Mishra (13445_CR72) 2014; 119
V Smakhtin (13445_CR92) 2007; 22
RK Vellore (13445_CR105) 2016; 46
M Paul (13445_CR84) 2018; 4
S Morid (13445_CR79) 2007; 27
A Malik (13445_CR66) 2019; 12
References_xml – reference: ChangC-CLinC-JLIBSVMACM Trans Intell Syst Technol2011212710.1145/1961189.1961199
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948
– reference: DurduÖFApplication of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western TurkeyStoch Env Res Risk A2010241145116210.1007/s00477-010-0366-3
– reference: LiuYHwangYImproving drought predictability in Arkansas using the ensemble PDSI forecast techniqueStoch Env Res Risk A20152979911:CAS:528:DC%2BC2MXhtlOitr7M10.1007/s00477-014-0930-3
– reference: MoriasiDNArnoldJGLiewMWVModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE20075088590010.13031/2013.23153
– reference: ByunH-RWilhiteDAObjective quantification of drought severity and durationJ Clim1999122747275610.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
– reference: DeoRCTiwariMKAdamowskiJFQuiltyJMForecasting effective drought index using a wavelet extreme learning machine (W-ELM) modelStoch Env Res Risk A2017311211124010.1007/s00477-016-1265-z
– reference: AshrafzadehAKişiOAghelpourPBiazarSMMasoulehMAComparative Study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in Northern IranJ Irrig Drain Eng20201460402001010.1061/(asce)ir.1943-4774.0001471
– reference: MoayediHGörMLyuZBuiDTHerding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficientMeasurement202015210738910.1016/j.measurement.2019.107389
– reference: MoriasiDNGitauMWPaiNDaggupatiPHydrologic and water quality models: performance measures and evaluation criteriaTrans ASABE2015581763178510.13031/trans.58.10715
– reference: DouglasEMVogelRMKrollCNTrends in floods and low flows in the United States: impact of spatial correlationJ Hydrol20002409010510.1016/S0022-1694(00)00336-X
– reference: PhamQBAbbaSIUsmanAGLinhNTTGuptaVMalikACostacheRVoNDTriDQPotential of hybrid data-intelligence algorithms for multi-station modelling of rainfallWater Resour Manag2019335067508710.1007/s11269-019-02408-3
– reference: SulimanAHAAwchiTAAl-MolaMShahidSEvaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid IraqAtmos Res202024210500710.1016/j.atmosres.2020.105007
– reference: Fadaee M, Mahdavi-Meymand A, Zounemat-Kermani M (2020) Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2020.1753821
– reference: SpinoniJNaumannGCarraoHBarbosaPVogtJWorld drought frequency, duration, and severity for 1951-2010Int J Climatol2014342792280410.1002/joc.3875
– reference: MalikAKumarASinghRPApplication of heuristic approaches for prediction of hydrological drought using multi-scalar streamflow drought indexWater Resour Manag2019333985400610.1007/s11269-019-02350-4
– reference: ShiruMSShahidSChungESAliasNChanging characteristics of meteorological droughts in Nigeria during 1901–2010Atmos Res2019223607310.1016/j.atmosres.2019.03.010
– reference: TaylorKESummarizing multiple aspects of model performance in a single diagramJ Geophys Res Atmos20011067183719210.1029/2000JD900719
– reference: JainVKPandeyRPJainMKByunH-RComparison of drought indices for appraisal of drought characteristics in the Ken River BasinWeather Clim Extrem2015811110.1016/j.wace.2015.05.002
– reference: BanadkookiFBEhteramMAhmedANTeoFYEbrahimiMFaiCMHuangYFel-ShafieASuspended sediment load prediction using artificial neural network and ant lion optimization algorithmEnviron Sci Pollut Res202027380943811610.1007/s11356-020-09876-w
– reference: TiwariMKAdamowskiJUrban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network modelsWater Resour Res2013496486650710.1002/wrcr.20517
– reference: NashJESutcliffeJVRiver flow forecasting through conceptual models part I — a discussion of principlesJ Hydrol19701028229010.1016/0022-1694(70)90255-6
– reference: Granata F, Papirio S, Esposito G, Gargano R, de Marinis G (2017) Machine learning algorithms for the forecasting of wastewater quality indicators. Water (Switzerland). https://doi.org/10.3390/w9020105
– reference: HortonPJaboyedoffMObledCUsing genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss AlpsJ Hydrol20185561220123110.1016/j.jhydrol.2017.04.017
– reference: van DuinenRFilatovaTGeurtsPvan der VeenAEmpirical analysis of farmers’ drought risk perception: objective factors, personal circumstances, and social influenceRisk Anal20153574175510.1111/risa.12299
– reference: PaulMNegahban-AzarMSensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, CaliforniaModel Earth Syst Environ201841509152510.1007/s40808-018-0483-4
– reference: NabipourNDehghaniMMosaviAShamshirbandSShort-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networksIEEE Access20208152101522210.1109/ACCESS.2020.2964584
– reference: AliMDeoRCDownsNJMaraseniTMulti-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecastingComput Electron Agric201815214916510.1016/j.compag.2018.07.013
– reference: KhaledianMRIsazadehMBiazarSMPhamQBSimulating Caspian Sea surface water level by artificial neural network and support vector machine modelsActa Geophys20206855356310.1007/s11600-020-00419-y
– reference: HaoZSinghVPXiaYSeasonal drought prediction: advances, challenges, and future prospectsRev Geophys20185610814110.1002/2016RG000549
– reference: TikhamarineYMalikAKumarASouag-GamaneDKisiOEstimation of monthly reference evapotranspiration using novel hybrid machine learning approachesHydrol Sci J2019641824184210.1080/02626667.2019.1678750
– reference: CostacheRPhamQBSharifiELinhNTTAbbaSIVojtekMVojtekováJNhiPTTKhoiDNFlash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniquesRemote Sens20191210610.3390/rs12010106
– reference: DeoRCByunH-RAdamowskiJFBegumKApplication of effective drought index for quantification of meteorological drought events: a case study in AustraliaTheor Appl Climatol201712835937910.1007/s00704-015-1706-5
– reference: HongHPradhanBBuiDTXuCYoussefAMChenWComparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)Geomatics Nat Hazards Risk2017854456910.1080/19475705.2016.1250112
– reference: WillmottCJOn the validation of modelsPhys Geogr1981218419410.1080/02723646.1981.10642213
– reference: TikhamarineYMalikASouag-GamaneDKisiOArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res20202730001300191:CAS:528:DC%2BB3cXhtFKjsbjN10.1007/s11356-020-08792-3
– reference: Byun HR, Kim DW (2010) Comparing the effective drought index and the standardized precipitation index. Options Méditerranéennes Séries A Mediterr Semin 85–89
– reference: Moayedi H, Bui DT, Kalantar B et al (2019a) Harris hawks optimization: a novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors (Switzerland). https://doi.org/10.3390/s19163590
– reference: BelaynehAAdamowskiJDrought forecasting using new machine learning methodsJ Water L Dev20131831210.2478/jwld-2013
– reference: DaiADrought under global warming: a reviewWiley Interdiscip Rev Clim Chang20112456510.1002/wcc.81
– reference: Mathivha F, Sigauke C, Chikoore H, Odiyo J (2020) Short-term and medium-term drought forecasting using generalized additive models. Sustain. https://doi.org/10.3390/SU12104006
– reference: MohsenipourMShahidSSungCEJunWXChanging pattern of droughts during cropping seasons of BangladeshWater Resour Manag2018321555156810.1007/s11269-017-1890-4
– reference: AndersonRLDistribution of the serial correlation coefficientAnn Math Stat19421311310.1214/aoms/1177731638
– reference: BiazarSMFardAFSinghVPDinpashohYMajnooni-HerisAEstimation of evaporation from saline-water with more efficient input variablesPure Appl Geophys20201775599561910.1007/s00024-020-02570-5
– reference: YuJKimCHRheeSBThe comparison of lately proposed Harris Hawks Optimization and Jaya Optimization in solving directional overcurrent relays coordination problemComplexity.202020201221:CAS:528:DC%2BB3cXitF2ms7bL10.1155/2020/3807653
– reference: KouchiDHEsmailiKFaridhosseiniASanaeinejadSHKhaliliDAbbaspourKCSensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization AlgorithmsWater2017938410.3390/w9060384
– reference: KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J20167475610.1016/j.asej.2015.11.005
– reference: Gunn S (1998) Support vector machiens for classification and regression. Image Speech Intell Syst Res Group, Univ Southapt
– reference: MoridSSmakhtinVBagherzadehKDrought forecasting using artificial neural networks and time series of drought indicesInt J Climatol2007272103211110.1002/joc.1498
– reference: TsakirisGPangalouDVangelisHRegional drought assessment based on the Reconnaissance Drought Index (RDI)Water Resour Manag20072182183310.1007/s11269-006-9105-4
– reference: MehdizadehSAhmadiFDanandeh MehrASafariMJSDrought modeling using classic time series and hybrid wavelet-gene expression programming modelsJ Hydrol202058712501710.1016/j.jhydrol.2020.125017
– reference: BasisthaAAryaDSGoelNKSpatial distribution of rainfall in Indian Himalayas – a case study of Uttarakhand RegionWater Resour Manag2008221325134610.1007/s11269-007-9228-2
– reference: DamaniaRDesbureauxSHylandMUncharted Waters2017WashingtonWorld Bank
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
– reference: ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962
– reference: SmakhtinVHughesDAutomated estimation and analyses of meteorological drought characteristics from monthly rainfall dataEnviron Model Softw20072288089010.1016/j.envsoft.2006.05.013
– reference: TikhamarineYSouag-GamaneDAhmedANRainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimizationJ Hydrol202058912513310.1016/j.jhydrol.2020.125133
– reference: Yang XS (2013) Optimization and metaheuristic algorithms in engineering. In: Metaheuristics in Water, Geotechnical and Transport Engineering
– reference: AbbasiAKhaliliKBehmaneshJShirzadADrought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia LakeTheor Appl Climatol201913855356710.1007/s00704-019-02825-9
– reference: DharONNandargiSRainfall distribution over the Arunachal Pradesh HimalayasWeather.20045915515710.1256/wea.87.03
– reference: KimDWByunHRChoiKSBinOSA spatiotemporal analysis of historical droughts in KoreaJ Appl Meteorol Climatol2011501895191210.1175/2011JAMC2664.1
– reference: DibikeYBVelickovSSolomatineDAbbottMBModel induction with support vector machines: introduction and applicationsJ Comput Civ Eng20011520821610.1061/(ASCE)0887-3801(2001)15:3(208
– reference: DoganSBerktayASinghVPComparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, TurkeyJ Hydrol2012470–47125526810.1016/j.jhydrol.2012.09.003
– reference: Sung JH, Chung ES, Shahid S (2018) Reliability-resiliency-vulnerability approach for drought analysis in South Korea using 28 GCMs. Sustain. https://doi.org/10.3390/su10093043
– reference: TikhamarineYSouag-GamaneDKisiOA new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)Arab J Geosci20191212010.1007/s12517-019-4697-1
– reference: XiangBLinSJZhaoMJohnsonNCYangXJiangXSubseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL ModelGeophys Res Lett20194641642510.1029/2018GL081314
– reference: Biazar SM, Rahmani V, Isazadeh M, Kisi O, Dinpashoh Y (2020b) New input selection procedure for machine learning methods in estimating daily global solar radiation. Arab J Geosci. https://doi.org/10.1007/s12517-020-05437-0
– reference: AliMDeoRCDownsNJMaraseniTAn ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation indexAtmos Res201820715518010.1016/j.atmosres.2018.02.024
– reference: DeoRCŞahinMApplication of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern AustraliaAtmos Res201515351252510.1016/j.atmosres.2014.10.016
– reference: Danandeh MehrAKahyaEÖzgerMA gene–wavelet model for long lead time drought forecastingJ Hydrol201451769169910.1016/j.jhydrol.2014.06.012
– reference: MalikAKumarASpatio-temporal trend analysis of rainfall using parametric and non-parametric tests: case study in Uttarakhand, IndiaTheor Appl Climatol202014018320710.1007/s00704-019-03080-8
– reference: ZhangRChenZ-YXuL-JOuC-QMeteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, ChinaSci Total Environ20196653383461:CAS:528:DC%2BC1MXjtVyjur4%3D10.1016/j.scitotenv.2019.01.431
– reference: Qutbudin I, Shiru MS, Sharafati A, Ahmed K, al-Ansari N, Yaseen ZM, Shahid S, Wang X (2019) Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water (Switzerland). https://doi.org/10.3390/w11051096
– reference: KhanNSachindraDAShahidSAhmedKShiruMSNawazNPrediction of droughts over Pakistan using machine learning algorithmsAdv Water Resour202013910356210.1016/j.advwatres.2020.103562
– reference: VelloreRKKaplanMLKrishnanRLewisJMSabadeSDeshpandeNSinghBBMadhuraRKRama RaoMVSMonsoon-extratropical circulation interactions in Himalayan extreme rainfallClim Dyn2016463517354610.1007/s00382-015-2784-x
– reference: GhimireSDeoRCDownsNJRajNGlobal solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland AustraliaJ Clean Prod201921628831010.1016/j.jclepro.2019.01.158
– reference: ZareiKAtabatiMAhmadiMShuffling cross–validation–bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatographyJ Environ Sci Heal Part B2017523463521:CAS:528:DC%2BC2sXjt1KnsLg%3D10.1080/03601234.2017.1283139
– reference: MajumderPEldhoTIArtificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediationWater Resour Manag20203476378310.1007/s11269-019-02472-9
– reference: MoayediHOsouliANguyenHRashidASAA novel Harris hawks’ optimization and k-fold cross-validation predicting slope stabilityEng Comput20193736937910.1007/s00366-019-00828-8
– reference: DracupJALeeKSPaulsonEGOn the statistical characteristics of drought eventsWater Resour Res19801628929610.1029/WR016i002p00289
– reference: AhmedKShahidSBinHSWangXJCharacterization of seasonal droughts in Balochistan Province, PakistanStoch Environ Res Risk Assess20163074776210.1007/s00477-015-1117-2
– reference: GuanYMohammadiBPhamQBAdarshSBalkhairKSRahmanKULinhNTTTriDQA novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm modelTheor Appl Climatol202014234936710.1007/s00704-020-03283-4
– reference: Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic droughts. Hydrol Pap Color State Univ Fort Collins, Color USA 23
– reference: LjungGMBoxGEPOn a measure of lack of fit in time series modelsBiometrika19786529730310.1093/biomet/65.2.297
– reference: KisiODocheshmeh GorgijAZounemat-KermaniMMahdavi-MeymandAKimSDrought forecasting using novel heuristic methods in a semi-arid environmentJ Hydrol201957812405310.1016/j.jhydrol.2019.124053
– reference: DeoRCKisiOSinghVPDrought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree modelAtmos Res201718414917510.1016/j.atmosres.2016.10.004
– reference: AchourKMeddiMZeroualABouabdelliSMaccioniPMoramarcoTSpatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation indexJ Earth Syst Sci20201294210.1007/s12040-019-1306-3
– reference: MishraALiuSCChanges in precipitation pattern and risk of drought over India in the context of global warmingJ Geophys Res20141197833784110.1002/2014JD021471
– reference: Banerjee A, Chen R, Meadows ME et al (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand Himalaya using google earth engine. Remote Sens. https://doi.org/10.3390/rs12040709
– reference: AghelpourPMohammadiBBiazarSMLong-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FATheor Appl Climatol20191381471148010.1007/s00704-019-02905-w
– reference: ParkHKimKLeeDKPrediction of severe drought area based on random forest: using satellite image and topography dataWater20191170510.3390/w11040705
– reference: VapnikVNThe nature of statistical learning theory1995New YorkSpringer31410.1007/978-1-4757-2440-0
– reference: NandargiSGaurAMulyeSSHydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, IndiaHydrol Sci J2016612145216310.1080/02626667.2015.1085990
– reference: RahmatiOFalahFDayalKSDeoRCMohammadiFBiggsTMoghaddamDDNaghibiSABuiDTMachine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland AustraliaSci Total Environ20206991342301:CAS:528:DC%2BC1MXhslOlu7%2FI10.1016/j.scitotenv.2019.134230
– reference: RoudierPMaheGStudy of water stress and droughts with indicators using daily data on the Bani river (Niger basin, Mali)Int J Climatol2010301689170510.1002/joc.2013
– reference: HanDChanLZhuNFlood forecasting using support vector machinesJ Hydroinf2007926727610.2166/hydro.2007.027
– reference: Abba SI, Pham QB, Usman AG et al (2020) Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101081
– reference: AdnanRMMalikAKumarAParmarKSKisiOPan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputsArab J Geosci20191260610.1007/s12517-019-4781-6
– reference: TikhamarineYSouag-GamaneDNajah AhmedAKisiOel-ShafieAImproving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithmJ Hydrol202058212443510.1016/j.jhydrol.2019.124435
– reference: Shiru MS, Shahid S, Alias N, Chung ES (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustain. https://doi.org/10.3390/su10030871
– reference: Mirjalili S, Song Dong J, Lewis A, Sadiq AS (2020) Particle swarm optimization: theory, literature review, and application in airfoil design. In: Studies in computational intelligence
– reference: MalikAKumarAGuhathakurtaPKisiOSpatial-temporal trend analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance testArab J Geosci20191232810.1007/s12517-019-4454-5
– reference: ZhangPGTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing.20035015917510.1016/S0925-2312(01)00702-0
– reference: DasPNagannaSRDekaPCPushparajJHybrid wavelet packet machine learning approaches for drought modelingEnviron Earth Sci20207922110.1007/s12665-020-08971-y
– reference: MalikAKumarASalihSQKimSKimNWYaseenZMSinghVPDrought index prediction using advanced fuzzy logic model: regional case study over Kumaon in IndiaPLoS One202015e02332801:CAS:528:DC%2BB3cXhtFGks7bK10.1371/journal.pone.0233280
– reference: Sharafati A, Nabaei S, Shahid S (2019) Spatial assessment of meteorological drought features over different climate regions in Iran. Int J Climatol joc.6307. https://doi.org/10.1002/joc.6307
– reference: Chavadekar AU, Kashid SS (2019) Meteorological drought prediction of marathwada subdivision based on hydro-climatic inputs using genetic programming. ISH J Hydraul Eng. https://doi.org/10.1080/09715010.2019.1620647
– reference: AhmedKShahidSNawazNImpacts of climate variability and change on seasonal drought characteristics of PakistanAtmos Res201821436437410.1016/j.atmosres.2018.08.020
– reference: AshrafzadehAGhorbaniMABiazarSMYaseenZMEvaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithmHydrol Sci J2019641843185610.1080/02626667.2019.1676428
– reference: FisherRAStatistical methods for research workers1925EdinburghUK Oliver Boyd43
– reference: MalikAKumarAMeteorological drought prediction using heuristic approaches based on effective drought index: a case study in UttarakhandArab J Geosci20201311710.1007/s12517-020-5239-6
– reference: AhmedKShahidSWangXNawazNKhanNSpatiotemporal changes in aridity of Pakistan during 1901-2016Hydrol Earth Syst Sci2019233081309610.5194/hess-23-3081-2019
– reference: KimD-WByunH-RChoiK-SEvaluation, modification, and application of the Effective Drought Index to 200-year drought climatology of Seoul, KoreaJ Hydrol200937811210.1016/j.jhydrol.2009.08.021
– volume: 32
  start-page: 1555
  year: 2018
  ident: 13445_CR76
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1890-4
– volume: 10
  start-page: 282
  year: 1970
  ident: 13445_CR82
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
– volume: 33
  start-page: 5067
  year: 2019
  ident: 13445_CR85
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02408-3
– volume: 58
  start-page: 1763
  year: 2015
  ident: 13445_CR78
  publication-title: Trans ASABE
  doi: 10.13031/trans.58.10715
– volume: 21
  start-page: 821
  year: 2007
  ident: 13445_CR103
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9105-4
– ident: 13445_CR15
  doi: 10.3390/rs12040709
– volume: 142
  start-page: 349
  year: 2020
  ident: 13445_CR45
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-020-03283-4
– volume: 119
  start-page: 7833
  year: 2014
  ident: 13445_CR72
  publication-title: J Geophys Res
  doi: 10.1002/2014JD021471
– volume: 2
  start-page: 45
  year: 2011
  ident: 13445_CR25
  publication-title: Wiley Interdiscip Rev Clim Chang
  doi: 10.1002/wcc.81
– volume: 52
  start-page: 346
  year: 2017
  ident: 13445_CR111
  publication-title: J Environ Sci Heal Part B
  doi: 10.1080/03601234.2017.1283139
– volume: 46
  start-page: 3517
  year: 2016
  ident: 13445_CR105
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2784-x
– volume: 12
  start-page: 1
  year: 2019
  ident: 13445_CR100
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4697-1
– volume: 46
  start-page: 416
  year: 2019
  ident: 13445_CR107
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL081314
– volume: 12
  start-page: 606
  year: 2019
  ident: 13445_CR4
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4781-6
– volume: 240
  start-page: 90
  year: 2000
  ident: 13445_CR36
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00336-X
– volume: 13
  start-page: 1
  year: 2020
  ident: 13445_CR65
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5239-6
– volume: 64
  start-page: 1824
  year: 2019
  ident: 13445_CR97
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1678750
– ident: 13445_CR53
  doi: 10.1109/ICNN.1995.488968
– volume: 31
  start-page: 1211
  year: 2017
  ident: 13445_CR32
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-016-1265-z
– volume: 22
  start-page: 1325
  year: 2008
  ident: 13445_CR16
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-007-9228-2
– ident: 13445_CR21
– volume: 97
  start-page: 849
  year: 2019
  ident: 13445_CR49
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 56
  start-page: 108
  year: 2018
  ident: 13445_CR48
  publication-title: Rev Geophys
  doi: 10.1002/2016RG000549
– ident: 13445_CR69
  doi: 10.3390/SU12104006
– ident: 13445_CR89
  doi: 10.1002/joc.6307
– volume: 140
  start-page: 183
  year: 2020
  ident: 13445_CR64
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-019-03080-8
– volume: 587
  start-page: 125017
  year: 2020
  ident: 13445_CR70
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125017
– ident: 13445_CR41
  doi: 10.1080/10106049.2020.1753821
– volume: 33
  start-page: 3985
  year: 2019
  ident: 13445_CR68
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02350-4
– volume: 128
  start-page: 359
  year: 2017
  ident: 13445_CR29
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-015-1706-5
– volume: 214
  start-page: 364
  year: 2018
  ident: 13445_CR7
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2018.08.020
– volume: 582
  start-page: 124435
  year: 2020
  ident: 13445_CR101
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124435
– volume: 242
  start-page: 105007
  year: 2020
  ident: 13445_CR94
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2020.105007
– volume: 15
  start-page: e0233280
  year: 2020
  ident: 13445_CR67
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0233280
– volume: 223
  start-page: 60
  year: 2019
  ident: 13445_CR91
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2019.03.010
– volume: 152
  start-page: 149
  year: 2018
  ident: 13445_CR9
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.07.013
– volume: 68
  start-page: 553
  year: 2020
  ident: 13445_CR55
  publication-title: Acta Geophys
  doi: 10.1007/s11600-020-00419-y
– volume: 470–471
  start-page: 255
  year: 2012
  ident: 13445_CR35
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.09.003
– ident: 13445_CR86
  doi: 10.3390/w11051096
– volume: 29
  start-page: 79
  year: 2015
  ident: 13445_CR61
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-014-0930-3
– volume: 49
  start-page: 6486
  year: 2013
  ident: 13445_CR102
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20517
– volume: 27
  start-page: 2103
  year: 2007
  ident: 13445_CR79
  publication-title: Int J Climatol
  doi: 10.1002/joc.1498
– volume: 8
  start-page: 1
  year: 2015
  ident: 13445_CR52
  publication-title: Weather Clim Extrem
  doi: 10.1016/j.wace.2015.05.002
– volume: 24
  start-page: 1145
  year: 2010
  ident: 13445_CR39
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-010-0366-3
– volume: 12
  start-page: 328
  year: 2019
  ident: 13445_CR66
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4454-5
– volume: 139
  start-page: 103562
  year: 2020
  ident: 13445_CR56
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2020.103562
– volume: 216
  start-page: 288
  year: 2019
  ident: 13445_CR43
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.158
– volume: 8
  start-page: 15210
  year: 2020
  ident: 13445_CR80
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964584
– volume: 9
  start-page: 384
  year: 2017
  ident: 13445_CR60
  publication-title: Water
  doi: 10.3390/w9060384
– volume: 106
  start-page: 7183
  year: 2001
  ident: 13445_CR96
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2000JD900719
– volume: 152
  start-page: 107389
  year: 2020
  ident: 13445_CR74
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107389
– volume: 153
  start-page: 512
  year: 2015
  ident: 13445_CR31
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2014.10.016
– volume: 13
  start-page: 1
  year: 1942
  ident: 13445_CR11
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731638
– volume: 18
  start-page: 3
  year: 2013
  ident: 13445_CR17
  publication-title: J Water L Dev
  doi: 10.2478/jwld-2013
– volume: 34
  start-page: 763
  year: 2020
  ident: 13445_CR63
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02472-9
– ident: 13445_CR95
  doi: 10.3390/su10093043
– volume: 50
  start-page: 1895
  year: 2011
  ident: 13445_CR58
  publication-title: J Appl Meteorol Climatol
  doi: 10.1175/2011JAMC2664.1
– volume: 2
  start-page: 184
  year: 1981
  ident: 13445_CR106
  publication-title: Phys Geogr
  doi: 10.1080/02723646.1981.10642213
– ident: 13445_CR109
– volume: 34
  start-page: 2792
  year: 2014
  ident: 13445_CR93
  publication-title: Int J Climatol
  doi: 10.1002/joc.3875
– ident: 13445_CR19
  doi: 10.1007/s12517-020-05437-0
– volume: 27
  start-page: 30001
  year: 2020
  ident: 13445_CR98
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08792-3
– volume: 22
  start-page: 880
  year: 2007
  ident: 13445_CR92
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2006.05.013
– volume: 577
  start-page: 123962
  year: 2019
  ident: 13445_CR40
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 589
  start-page: 125133
  year: 2020
  ident: 13445_CR99
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125133
– volume: 378
  start-page: 1
  year: 2009
  ident: 13445_CR57
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.08.021
– volume: 50
  start-page: 159
  year: 2003
  ident: 13445_CR112
  publication-title: Neurocomputing.
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 12
  start-page: 106
  year: 2019
  ident: 13445_CR24
  publication-title: Remote Sens
  doi: 10.3390/rs12010106
– start-page: 43
  volume-title: Statistical methods for research workers
  year: 1925
  ident: 13445_CR42
– ident: 13445_CR71
  doi: 10.1007/978-3-030-12127-3_10
– ident: 13445_CR46
– volume: 177
  start-page: 5599
  year: 2020
  ident: 13445_CR18
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-020-02570-5
– volume: 556
  start-page: 1220
  year: 2018
  ident: 13445_CR51
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.04.017
– volume: 207
  start-page: 155
  year: 2018
  ident: 13445_CR10
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2018.02.024
– volume: 2020
  start-page: 1
  year: 2020
  ident: 13445_CR110
  publication-title: Complexity.
  doi: 10.1155/2020/3807653
– volume-title: Uncharted Waters
  year: 2017
  ident: 13445_CR26
– volume: 138
  start-page: 553
  year: 2019
  ident: 13445_CR2
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-019-02825-9
– volume: 699
  start-page: 134230
  year: 2020
  ident: 13445_CR87
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134230
– volume: 146
  start-page: 04020010
  year: 2020
  ident: 13445_CR13
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(asce)ir.1943-4774.0001471
– volume: 578
  start-page: 124053
  year: 2019
  ident: 13445_CR59
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124053
– volume: 11
  start-page: 705
  year: 2019
  ident: 13445_CR83
  publication-title: Water
  doi: 10.3390/w11040705
– ident: 13445_CR23
  doi: 10.1080/09715010.2019.1620647
– volume: 30
  start-page: 747
  year: 2016
  ident: 13445_CR6
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-015-1117-2
– volume: 184
  start-page: 149
  year: 2017
  ident: 13445_CR30
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2016.10.004
– volume: 64
  start-page: 1843
  year: 2019
  ident: 13445_CR12
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1676428
– volume: 61
  start-page: 2145
  year: 2016
  ident: 13445_CR81
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2015.1085990
– volume: 35
  start-page: 741
  year: 2015
  ident: 13445_CR38
  publication-title: Risk Anal
  doi: 10.1111/risa.12299
– volume: 2
  start-page: 1
  year: 2011
  ident: 13445_CR22
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 138
  start-page: 1471
  year: 2019
  ident: 13445_CR5
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-019-02905-w
– start-page: 314
  volume-title: The nature of statistical learning theory
  year: 1995
  ident: 13445_CR104
  doi: 10.1007/978-1-4757-2440-0
– volume: 4
  start-page: 1509
  year: 2018
  ident: 13445_CR84
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-018-0483-4
– volume: 79
  start-page: 221
  year: 2020
  ident: 13445_CR28
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-020-08971-y
– volume: 7
  start-page: 47
  year: 2016
  ident: 13445_CR54
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.11.005
– volume: 30
  start-page: 1689
  year: 2010
  ident: 13445_CR88
  publication-title: Int J Climatol
  doi: 10.1002/joc.2013
– volume: 37
  start-page: 369
  year: 2019
  ident: 13445_CR75
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00828-8
– ident: 13445_CR90
  doi: 10.3390/su10030871
– ident: 13445_CR1
  doi: 10.1016/j.jwpe.2019.101081
– volume: 129
  start-page: 42
  year: 2020
  ident: 13445_CR3
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-019-1306-3
– ident: 13445_CR108
  doi: 10.1016/B978-0-12-398296-4.00001-5
– volume: 9
  start-page: 267
  year: 2007
  ident: 13445_CR47
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2007.027
– volume: 8
  start-page: 544
  year: 2017
  ident: 13445_CR50
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2016.1250112
– volume: 65
  start-page: 297
  year: 1978
  ident: 13445_CR62
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 59
  start-page: 155
  year: 2004
  ident: 13445_CR33
  publication-title: Weather.
  doi: 10.1256/wea.87.03
– ident: 13445_CR44
  doi: 10.3390/w9020105
– volume: 517
  start-page: 691
  year: 2014
  ident: 13445_CR27
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.06.012
– volume: 16
  start-page: 289
  year: 1980
  ident: 13445_CR37
  publication-title: Water Resour Res
  doi: 10.1029/WR016i002p00289
– volume: 27
  start-page: 38094
  year: 2020
  ident: 13445_CR14
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09876-w
– volume: 665
  start-page: 338
  year: 2019
  ident: 13445_CR113
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.01.431
– volume: 50
  start-page: 885
  year: 2007
  ident: 13445_CR77
  publication-title: Trans ASABE
  doi: 10.13031/2013.23153
– volume: 23
  start-page: 3081
  year: 2019
  ident: 13445_CR8
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-23-3081-2019
– volume: 15
  start-page: 208
  year: 2001
  ident: 13445_CR34
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208
– volume: 12
  start-page: 2747
  year: 1999
  ident: 13445_CR20
  publication-title: J Clim
  doi: 10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
– ident: 13445_CR73
  doi: 10.3390/s19163590
SSID ssj0020927
Score 2.580277
Snippet Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39139
SubjectTerms Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
autocorrelation
Autocorrelation functions
Crop damage
Drought
Drought index
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental monitoring
Environmental science
hawks
India
Inspection
Natural disasters
Optimization
Particle swarm optimization
prediction
Prediction models
Rain
Rainfall
regression analysis
Regression models
Research Article
Root-mean-square errors
Statistical analysis
Support vector machines
Waste Water Technology
Water damage
Water Management
Water Pollution Control
Water resources
Water resources management
Water scarcity
water shortages
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBele-lL6bZ-uGuHCntrBZYl2dZjKA2hsKawBvpmZFlJC00c7KQl--t3J9sJox_QV-ssZN-d7ifdFyG_TAIYGMwcc6EyTMoiZkYqxVQxtmDwwSL63KrfN_FgJK_v1X2bFFZ30e6dS9Lv1JtkNy4UBsxyxmECxeCg_kVhOS-Q4lHUWx-zQt00atVSeso2VebtOf43R68w5iv_qDc7_T2y2-JF2msY_JVsudk3cnC1SU-DwVY_6-_k5bZCxwv-bFqO6RQQcVl12xstfEueBc1XFMPdJ_RhhflatF7OEYXTZ3-DTys3aYJjYQ7YUKaPf11B8b6WDgZDimEcy5re_hlS8zQpK3g-rffJqH91dzlgbWsFZmWYLliqZWKkMJEzhueF0WZsbeGkygEB8NCCmidgvMdhomMAENwJyx03QsFppUjjQhyQ7Vk5c0eEaq2cNjhkI6lsZJxxNk3h5BXbXEodEN794cy2dcex_cVTtqmYjFzJgCuZ50oWBuR8_c68qbrxIfVJx7is1cA6izD8DqvjiYCcrYdBd9AhYmauXCJNCGgRPk9_QBMLAHEy1lFADhuhWC9JiETBGuKAXHRSslnA--s9_hz5D7ITocT6qMMTsr2olu4UkNAi_-kF_x-fIv5p
  priority: 102
  providerName: Springer Nature
Title Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms
URI https://link.springer.com/article/10.1007/s11356-021-13445-0
https://www.ncbi.nlm.nih.gov/pubmed/33751346
https://www.proquest.com/docview/2554667783
https://www.proquest.com/docview/2504352319
https://www.proquest.com/docview/2636394692
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsvCAaDwKiMxBtYxImdxA8IlamjAtFVQKXyFLmO2yGtTWlS0PjructHq2miL3mIneiSO9_97PsCeGVixMBo5rjzleFSZhE3UimusrlFg48Wscqt-jKKhhP5aaqmRzBqc2EorLLViZWiznJLZ-RvAwqnompn4fv1L05do8i72rbQME1rhexdVWLsGLoBVcbqQPfDYDT-utuC-bpu4qql5ALJaNJo6mQ6ESoKyBXViOL-bVN1B3_e8Z1WJuniAdxvsCTr18x_CEdudQKng33qGg42a7d4BH_GG3LKECNYPmdLRMv5plV9LKva9ZRsdsMoFH7Brm4ol4sV2zUhdPa7Ot1nG7eoA2fxHahslj__uozRWS4bDi8ZhXhsCzb-dsnM9QL_Xnm1LB7D5GLw_XzIm7YL3Eo_KXmiZWxkaAJnjJhlRpu5tZmTaoboQPgWVUCMhn3uxzpCcCFcaIUTJlS4k8mSKAtPobPKV-4pMK2V04aGbCCVDYwzziYJ7soiO5NSeyDaP5zapiY5tca4TvfVlIkrKXIlrbiS-h683j2zrityHJx91jIubVZnke5lyYOXu2FcV-QsMSuXb2mOj0gSP08fmBOFCPBkpAMPntRCsSMpDGOFNEQevGmlZE_A_-l9dpje53AvIAmtIhDPoFNutu4FoqJy1oPjeBrjNTkXPej2P_74POg14o93J0H_H_mjDG0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4lUILWAkOEFE4kcSHxBCpVVKnxKt1FtwHO8WqbvZbrJUy4_iNzKTx65Qxd56tmONM-OZz54XwFsTIwZGM-e7QBlfyiLyjVTKV8XAosFHi9jkVh0eRemZ_HauztfgT58LQ2GVvU5sFHVRWnoj_8gpnIqqnYnPkyufukaRd7VvodGKxb6bX-OVrfq09xX5-47z3Z3T7dTvugr4VgZJ7SdaxkYKw50xYV4YbQbWFk6qHI1fGFiU8Bjt1iCIdYS2M3TChi40QiFQL5KoELjuHbgrBY9JESTbi5ASHui2RayW0g9xk12STpuqFwpF4b5hM6L84F9DeAPd3vDMNgZv9yE86JAq-9KK1iNYc-PHsLGzTIzDwU4zVE_g-mRKLh9iMysHbIRYvJz2ipUVTTOgmuVzRoH2Q3Yxp0wxVs0mhP_Zr8Z3wKZu2Ibl4hqoykY_f7uC0UsxS9NjRgEks4qdfD9m5nKIvKkvRtVTOLuV378B6-Ny7J4D01o5bWjIcqksN844myR454tsLqX2IOz_cGa7iufUeOMyW9ZqJq5kyJWs4UoWePB-8c2krfexcvZWz7isO_tVtpRUD94shvHUkivGjF05ozkB4lTcnl4xJxIIH2WkuQfPWqFYkCRErJCGyIMPvZQsCfg_vS9W0_sa7qWnhwfZwd7R_ibc5yStTazjFqzX05l7ifirzl81Qs_gx22fsr-hBT2D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISFeEF-DsAFGgieIlsR2Ej8ghNiqjsFWCSb1LTiO0yGtTdekTOVP46_jLh-N0ETf9mzHOufOd2ff7-4AXusIfWA0c671pHaFyEJXCyldmeUGDT5axDq36utJODwTn8dyvAV_ulwYglV2OrFW1Flh6I18PyA4FVU74_t5C4sYHQw-zC9d6iBFkdaunUYjIsd2dYXXt_L90QHy-k0QDA6_fxq6bYcB1wgvrtxYiUgLrgOrtZ9mWuncmMwKmaIh9D2D0h6hDcu9SIVoR33LjW99zSU67VkcZhzXvQW3I84VwQmjcX_Z81TTLlYJ4fq44TZhp0nb87kk6K9fj0jX-9coXvN0r0Vpa-M3uA_3Wq-VfWzE7AFs2dlD2Dnsk-RwsNUS5SO4Gi0o_EMsZ0XOpuiXF4tOybKsbgxUsXTFCHQ_Yecryhpj5XJOdwH2q44jsIWdNBBdXAPV2vTnb5sxejVmw-EpIzDJsmSjb6dMX0yQN9X5tHwMZzfy-3dge1bM7FNgSkmrNA2ZQEgTaKutiWO8_4UmFUI54Hd_ODFt9XNqwnGR9HWbiSsJciWpuZJ4DrxdfzNvan9snL3XMS5p9UCZ9FLrwKv1MJ5gCsvomS2WNMdDnxW3pzbMCTm6kiJUgQNPGqFYk8R5JJGG0IF3nZT0BPyf3meb6X0Jd_B8JV-OTo534W5AwlrDHvdgu1os7XN0xar0RS3zDH7c9CH7CwVFQfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+meteorological+drought+by+using+hybrid+support+vector+regression+optimized+with+HHO+versus+PSO+algorithms&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Malik%2C+Anurag&rft.au=Tikhamarine%2C+Yazid&rft.au=Sammen%2C+Saad+Shauket&rft.au=Abba%2C+Sani+Isah&rft.date=2021-08-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=28&rft.issue=29&rft.spage=39139&rft_id=info:doi/10.1007%2Fs11356-021-13445-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon