TUMK-ELM: A Fast Unsupervised Heterogeneous Data Learning Approach

Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information fr...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 35305 - 35315
Main Authors Xiang, Lingyun, Zhao, Guohan, Li, Qian, Hao, Wei, Li, Feng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2847037

Cover

Abstract Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information from heterogeneous data. However, most of them are with huge time consumption, which obstructs their further application in the big data analytics scenarios, where an enormous amount of heterogeneous data are provided but real-time learning are strongly demanded. In this paper, we address this problem by proposing a fast unsupervised heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel extreme learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple sources and learns the heterogeneous data representation with closed-form solutions, which enables its extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low computational complexity at each stage, and the iteration of its two stages can be converged within finite steps. As experimentally demonstrated on 13 real-life data sets, TUMK-ELM gains a large efficiency improvement compared with three state-of-the-art unsupervised heterogeneous data learning methods (up to 140 000 times) while it achieves a comparable performance in terms of effectiveness.
AbstractList Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information from heterogeneous data. However, most of them are with huge time consumption, which obstructs their further application in the big data analytics scenarios, where an enormous amount of heterogeneous data are provided but real-time learning are strongly demanded. In this paper, we address this problem by proposing a fast unsupervised heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel extreme learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple sources and learns the heterogeneous data representation with closed-form solutions, which enables its extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low computational complexity at each stage, and the iteration of its two stages can be converged within finite steps. As experimentally demonstrated on 13 real-life data sets, TUMK-ELM gains a large efficiency improvement compared with three state-of-the-art unsupervised heterogeneous data learning methods (up to 140 000 times) while it achieves a comparable performance in terms of effectiveness.
Author Zhao, Guohan
Li, Qian
Li, Feng
Xiang, Lingyun
Hao, Wei
Author_xml – sequence: 1
  givenname: Lingyun
  surname: Xiang
  fullname: Xiang, Lingyun
  organization: Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha, China
– sequence: 2
  givenname: Guohan
  surname: Zhao
  fullname: Zhao, Guohan
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 3
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-9301-8765
  surname: Hao
  fullname: Hao, Wei
  email: haowei@csust.edu.cn
  organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 5
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha, China
BookMark eNqFkU1P3DAQhq2KSqXAL-ASqedsHX8kNrftdimoi3qAPVsTe3bJKrVT26Hi3zc0CFX0gC-2RvM8o3n9kRz54JGQ84ouqorqz8vVan17u2C0UgumREN5844cs6rWJZe8Pvrn_YGcpXSg01FTSTbH5Mvd9uZ7ud7cXBTL4hJSLrY-jQPGhy6hK64wYwx79BjGVHyFDMUGIfrO74vlMMQA9v6UvN9Bn_Ds-T4h28v13eqq3Pz4dr1abkorqMqlamrulJRCW-VqKxurHSLl0gpALQQKyzm0mjmgu0ZWrVZW6Z1EhrRFZvkJuZ69LsDBDLH7CfHRBOjM30KIewMxd7ZH01LuHFKGTGtBdaNbCbWtG1FXU0yOTi4xu0Y_wONv6PsXYUXNU6wGrMWUzFOs5jnWCfs0Y9Pmv0ZM2RzCGP20tWFCSqWEqNXUxecuG0NKEXf_uecve-3WryjbZchd8DlC17_Bns9sh4gv0xRXgnHO_wAZZaJW
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSYST_2019_2892002
crossref_primary_10_1177_1550147719852031
crossref_primary_10_32604_cmc_2021_013488
crossref_primary_10_32604_cmc_2021_014839
crossref_primary_10_1007_s12652_018_01171_4
crossref_primary_10_1155_2020_8811962
crossref_primary_10_3233_JIFS_169958
crossref_primary_10_1109_JIOT_2018_2872133
crossref_primary_10_1109_ACCESS_2018_2878273
crossref_primary_10_3390_su12041493
crossref_primary_10_1109_ACCESS_2019_2896781
crossref_primary_10_1177_1550147719899569
crossref_primary_10_1109_ACCESS_2020_3028740
crossref_primary_10_3934_mbe_2021429
crossref_primary_10_1186_s13640_020_00526_2
crossref_primary_10_1109_JBHI_2021_3099745
crossref_primary_10_1007_s11042_021_10774_7
crossref_primary_10_3390_en14071944
crossref_primary_10_1186_s13640_020_00542_2
crossref_primary_10_1002_cpe_5775
crossref_primary_10_1109_ACCESS_2019_2925916
crossref_primary_10_1109_ACCESS_2019_2911892
crossref_primary_10_1109_ACCESS_2020_2969276
crossref_primary_10_1186_s40537_019_0254_8
crossref_primary_10_1109_ACCESS_2018_2878147
crossref_primary_10_32604_iasc_2020_013382
crossref_primary_10_1002_spy2_331
crossref_primary_10_1007_s10489_019_01539_9
Cites_doi 10.1109/ICASSP.2016.7471631
10.1007/978-3-642-04617-9_19
10.1109/CICN.2014.220
10.1093/comjnl/bxt084
10.1016/j.neucom.2013.09.072
10.1137/1.9781611972788.74
10.1109/TKDE.2018.2791525
10.1109/TPAMI.2013.50
10.1109/TPAMI.2011.255
10.1109/ICPR.2016.7900009
10.5121/csit.2017.71015
10.1109/TSMCB.2012.2212243
10.1109/ICASSP.2013.6639343
10.1038/nature14539
10.1561/2000000039
10.1145/1014052.1014118
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2018.2847037
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 35315
ExternalDocumentID oai_doaj_org_article_b03dde02e29940979b5a6c67461201d0
10.1109/access.2018.2847037
10_1109_ACCESS_2018_2847037
8384233
Genre orig-research
GrantInformation_xml – fundername: Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems
  grantid: 2017TP1016
– fundername: National Natural Science Foundation of China
  grantid: 61202439
  funderid: 10.13039/501100001809
– fundername: Scientific Research Foundation of the Hunan Provincial Education Department of China
  grantid: 16A008
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-8763d85549c8d6c57c9dee035c4ae944e4c33ab92da0f751b98c89f5e2e0be2c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:34 EDT 2025
Sun Sep 07 10:54:53 EDT 2025
Sun Jun 29 12:32:39 EDT 2025
Wed Oct 01 02:57:49 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Aug 27 02:48:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-8763d85549c8d6c57c9dee035c4ae944e4c33ab92da0f751b98c89f5e2e0be2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9301-8765
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8384233
PQID 2455884468
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2455884468
doaj_primary_oai_doaj_org_article_b03dde02e29940979b5a6c67461201d0
crossref_citationtrail_10_1109_ACCESS_2018_2847037
unpaywall_primary_10_1109_access_2018_2847037
crossref_primary_10_1109_ACCESS_2018_2847037
ieee_primary_8384233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
zhu (ref9) 2014; 2015
ref14
kumar (ref6) 2012
ref31
bojanowski (ref3) 2017
ref33
ref32
ref2
ref1
ref17
ref16
ref18
radford (ref26) 2015
du (ref10) 2015
xu (ref29) 2013
bache (ref35) 2017
gönen (ref5) 2011; 12
arjovsky (ref27) 2017
ref22
liu (ref8) 2014
lee (ref15) 2009
borg (ref36) 2005
li (ref12) 2016
goodfellow (ref25) 2014
ref28
pu (ref21) 2016
ref7
xie (ref23) 2016
yu (ref30) 2012; 34
ref4
gönen (ref11) 2014; 1
deng (ref19) 2010
chandar (ref20) 2014
yang (ref24) 2017
References_xml – year: 2005
  ident: ref36
  publication-title: Modern Multidimensional Scaling Theory and Applications
– ident: ref22
  doi: 10.1109/ICASSP.2016.7471631
– ident: ref32
  doi: 10.1007/978-3-642-04617-9_19
– ident: ref34
  doi: 10.1109/CICN.2014.220
– start-page: 3476
  year: 2015
  ident: ref10
  article-title: Robust multiple kernel K-means using $\ell _{2,1}$ -norm
  publication-title: Proc Int Conf Artif Intell
– ident: ref1
  doi: 10.1093/comjnl/bxt084
– volume: 1
  start-page: 1305
  year: 2014
  ident: ref11
  article-title: Localized data fusion for kernel K-means clustering with application to cancer biology
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– year: 2017
  ident: ref35
  publication-title: UCI Machine Learning Respository
– start-page: 1096
  year: 2009
  ident: ref15
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Proc 22nd Int Conf Neural Inf Process Syst
– start-page: 2360
  year: 2016
  ident: ref21
  article-title: Variational autoencoder for deep learning of images, labels and captions
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– start-page: 3861
  year: 2017
  ident: ref24
  article-title: Towards K-means-friendly spaces: Simultaneous deep learning and clustering
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref31
  doi: 10.1016/j.neucom.2013.09.072
– ident: ref28
  doi: 10.1137/1.9781611972788.74
– ident: ref2
  doi: 10.1109/TKDE.2018.2791525
– volume: 2015
  year: 2014
  ident: ref9
  article-title: Distance based multiple kernel ELM: A fast multiple kernel learning approach
  publication-title: Math Problems Eng
– ident: ref18
  doi: 10.1109/TPAMI.2013.50
– volume: 34
  start-page: 1031
  year: 2012
  ident: ref30
  article-title: Optimized data fusion for kernel K-means clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.255
– ident: ref4
  doi: 10.1109/ICPR.2016.7900009
– start-page: 1295
  year: 2012
  ident: ref6
  article-title: A binary classification framework for two-stage multiple kernel learning
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref33
  doi: 10.5121/csit.2017.71015
– start-page: 1975
  year: 2014
  ident: ref8
  article-title: Sample-adaptive multiple kernel learning
  publication-title: Proc AAAI
– year: 2017
  ident: ref3
  publication-title: Unsupervised learning by predicting noise
– year: 2013
  ident: ref29
  publication-title: A Survey on Multi-view Learning
– ident: ref7
  doi: 10.1109/TSMCB.2012.2212243
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref5
  article-title: Multiple kernel learning algorithms
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/ICASSP.2013.6639343
– ident: ref14
  doi: 10.1038/nature14539
– start-page: 478
  year: 2016
  ident: ref23
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc 33rd Int Conf Mach Learn
– start-page: 1692
  year: 2010
  ident: ref19
  article-title: Binary coding of speech spectrograms using a deep auto-encoder
  publication-title: Proc 11th Annu Conf Int Speech Commun Assoc
– ident: ref17
  doi: 10.1561/2000000039
– start-page: 2672
  year: 2014
  ident: ref25
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref26
  publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR
– start-page: 1853
  year: 2014
  ident: ref20
  article-title: An autoencoder approach to learning bilingual word representations
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1704
  year: 2016
  ident: ref12
  article-title: Multiple kernel clustering with local kernel alignment maximization
  publication-title: Proc 25th Int Conf Artif Intell
– start-page: 214
  year: 2017
  ident: ref27
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref13
  doi: 10.1145/1014052.1014118
SSID ssj0000816957
Score 2.3484945
Snippet Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35305
SubjectTerms Algorithms
Artificial neural networks
Big Data
clustering
Data mining
extreme learning machine
heterogeneous data
Iterative methods
Kernel
Machine learning
multiple kernel learning
Task analysis
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLi0HRLsgUqDygWNTHD8Sm9uysFqVbk-7EjfLr3BZhRWbVdV_X09iVkFIcOk1cqzxzPjzTDL-BqGLwngeqHN5XVGX87qwufURDGOqUJXEOO8E3Eae_y5nS_7zXtwPWn1BTVhPD9wr7tISFncgoSHiJnAzKStM6cqKx6OZFL7L1olUg2Sqw2BZlEpUiWaoIOpyPJnEFUEtl_wBkEyg8_ngKOoY-1OLlRfR5sdtszZ__5jVanDwTA_RQYoY8biX9DP6EJovaH_AIzhC14vl_C6__TW_wmM8NZsWL5vNdg0wsAkez6Dk5TF6SohpPr4xrcGJVvUBjxOn-BFaTm8Xk1memiPkjhPZAooxDzVmyklfOlE55UMgTDhuguI8cMeYsYp6Q-pKFFZJJ1UtAg3ERuuwY7TXPDbhBGFl68BL-IFoYzxVU1NEC4pSUcOcr5TLEH3Wk3aJORwaWKx0l0EQpXvlalCuTsrN0PfdS-ueOOPt4ddggN1QYL3uHkRf0MkX9Hu-kKERmG83iWQyRossQ2fP5tRph2405QLu6MZ1ZyjfmfiVqKZrW_lC1K__Q9RT9Anm7D_mnKG99mkbzmN409pvnSf_A2Sc8IA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAO5VEQaQvKgSNZnPiRuLd06WoFbMWhkcrJ8is9sMquSCIEv76exF3tglTBMZEd2TPj8ed45huE3qXKUpcZk9R5ZhJapzrR1jtDf1TIOVbGGgbZyMtLvqjop2t2HXi2IRdm9_4-xeKDGsoGQghWMQVPikn-EB1w5oH3BB1Ul1_Lb1A-LuUiIcNF5Mk9Pff2noGiP9RU2YOXj_pmo379VKvVzk4zfzqmcLcDQSEEmHyf9p2emt9_0Df-4ySeocOAOONyNJHn6IFrXqAnOzyER-j8qlp-Ti6-LM_iMp6rtourpu034EZaZ-MFhMysvaW5dd_GH1Wn4kDLehOXgZP8JarmF1ezRRKKKySG4qIDL0gsxKgJU1huWG6EdQ4TZqhyglJHDSFKi8wqXOcs1aIwhaiZyxzWXrvkFZo068a9RrHQtaMcLiC1x2N1plJvAYyLTBFjc2EilN2JXZrAPA4FMFZyOIFgIcvZzJubBAHJIKAIvd922ozEG_c3Pwd9bpsCa_bwwutBhkUoNSbem-PM-T0YeL6EZoobnlMP83BqcYSOwBq2HylI4dEmidDpnXXIsMJbmVEGOb5-3hFKthbz11BH1e8N9fg_25-gx_A4_vc5RZPuR-_eeCTU6bdhBdwC9hX9-g
  priority: 102
  providerName: Unpaywall
Title TUMK-ELM: A Fast Unsupervised Heterogeneous Data Learning Approach
URI https://ieeexplore.ieee.org/document/8384233
https://www.proquest.com/docview/2455884468
https://doi.org/10.1109/access.2018.2847037
https://doaj.org/article/b03dde02e29940979b5a6c67461201d0
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QA9tEBBhJZVDhybrZPYSdxbunS1Arbi0EjlFPmVHlhlVyRRBb8eT-KNtoAQtyiyE9sznhmPZ74BeB8KTU2kVFClkQpoFcpAaisM7VEhTYhQWjHMRl7eJIuCfrxjd3twPubCGGP64DMzxcf-Ll-vVYeusosszqz2j_dhP82SIVdr9KdgAQnOUgcsFBJ-kc9mdg4YvZVNUQgTrHW-o3x6jH5XVOWRffm0qzfix4NYrXZUzfwYlttBDhEm36ZdK6fq52_4jf87i-dw5GxOPx-Y5AXsmfolHO4gEZ7A1W2x_BRcf15e-rk_F03rF3XTbVCQNEb7CwyaWVteM-uu8T-IVvgOmPXezx0q-Sso5te3s0XgyisEipKsRTkYa4xS4yrTiWKp4toYEjNFheGUGqriWEgeaUGqlIWSZyrjFTORIdLSN34NB_W6Nm_A57IyNMErSGktsioSoeUBlvBIxEqnXHkQbde9VA57HEtgrMr-DEJ4ORCrRGKVjlgenI-dNgP0xr-bXyFBx6aIm92_sItfum1YShJbeU4iY7UwIn1xyUSikpRaQ4-EmnhwggQbP-Jo5cHZlj1Kt8ebMqIMs3ztvD0IRpb5Y6iiL3z5aKhv__6XU3iGrQYHzxkctN87886aPK2c9K6CSc_xE3hS3HzJv_4CO8j9sA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ty2HhwGtBBBbIgeOm6yR2EnPrlq0K2-yplfZm-RUOVGlFEiH49XgSN-oCQtyiyE48nvHM2J75BuB9LA21idZRlSc6olWsImWcMnRbhTwjUhvNMBu5vMkWa_r5lt0ewfmYC2Ot7YPP7AQf-7t8s9UdHpVdFGnhrH96D-4zSikbsrXGExUsIcFZ7qGFYsIvprOZowLjt4oJqmGC1c4PzE-P0u_LqtzxME-6eid_fJebzYGxmT-Gcj_MIcbk66Rr1UT__A3B8X_peAKPvNcZTgcxeQpHtn4GDw-wCE_hcrUur6OrZfkhnIZz2bThum66HaqSxppwgWEzWydtdts14UfZytBDs34Jpx6X_Dms51er2SLyBRYiTUnRoiZMDcapcV2YTLNcc2MtSZmm0nJKLdVpKhVPjCRVzmLFC13witnEEuU4nL6A43pb25cQclVZmuElpHI-WZXI2EkBy3giU21yrgNI9vMutEcfxyIYG9HvQggXA7MEMkt4ZgVwPnbaDeAb_25-iQwdmyJydv_CTb7wC1EokjqNThLr7DBifXHFZKaznDpXj8SGBHCKDBs_4nkVwNlePIRf5Y1IKMM8X0d3ANEoMn8MVfalL-8M9dXf__IOTharcimWn26uX8MD7DEc95zBcfuts2-cA9Sqt73c_wK6a_5Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAO5VEQaQvKgSNZnPiRuLd06WoFbMWhkcrJ8is9sMquSCIEv76exF3tglTBMZEd2TPj8ed45huE3qXKUpcZk9R5ZhJapzrR1jtDf1TIOVbGGgbZyMtLvqjop2t2HXi2IRdm9_4-xeKDGsoGQghWMQVPikn-EB1w5oH3BB1Ul1_Lb1A-LuUiIcNF5Mk9Pff2noGiP9RU2YOXj_pmo379VKvVzk4zfzqmcLcDQSEEmHyf9p2emt9_0Df-4ySeocOAOONyNJHn6IFrXqAnOzyER-j8qlp-Ti6-LM_iMp6rtourpu034EZaZ-MFhMysvaW5dd_GH1Wn4kDLehOXgZP8JarmF1ezRRKKKySG4qIDL0gsxKgJU1huWG6EdQ4TZqhyglJHDSFKi8wqXOcs1aIwhaiZyxzWXrvkFZo068a9RrHQtaMcLiC1x2N1plJvAYyLTBFjc2EilN2JXZrAPA4FMFZyOIFgIcvZzJubBAHJIKAIvd922ozEG_c3Pwd9bpsCa_bwwutBhkUoNSbem-PM-T0YeL6EZoobnlMP83BqcYSOwBq2HylI4dEmidDpnXXIsMJbmVEGOb5-3hFKthbz11BH1e8N9fg_25-gx_A4_vc5RZPuR-_eeCTU6bdhBdwC9hX9-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TUMK-ELM%3A+A+Fast+Unsupervised+Heterogeneous+Data+Learning+Approach&rft.jtitle=IEEE+access&rft.au=Xiang%2C+Lingyun&rft.au=Zhao%2C+Guohan&rft.au=Li%2C+Qian&rft.au=Hao%2C+Wei&rft.date=2018-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=35305&rft.epage=35315&rft_id=info:doi/10.1109%2FACCESS.2018.2847037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2847037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon