TUMK-ELM: A Fast Unsupervised Heterogeneous Data Learning Approach
Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information fr...
Saved in:
| Published in | IEEE access Vol. 6; pp. 35305 - 35315 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2018.2847037 |
Cover
| Abstract | Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information from heterogeneous data. However, most of them are with huge time consumption, which obstructs their further application in the big data analytics scenarios, where an enormous amount of heterogeneous data are provided but real-time learning are strongly demanded. In this paper, we address this problem by proposing a fast unsupervised heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel extreme learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple sources and learns the heterogeneous data representation with closed-form solutions, which enables its extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low computational complexity at each stage, and the iteration of its two stages can be converged within finite steps. As experimentally demonstrated on 13 real-life data sets, TUMK-ELM gains a large efficiency improvement compared with three state-of-the-art unsupervised heterogeneous data learning methods (up to 140 000 times) while it achieves a comparable performance in terms of effectiveness. |
|---|---|
| AbstractList | Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large amount of unlabeled heterogeneous data. Recently, many efforts of unsupervised learning have been done to effectively capture information from heterogeneous data. However, most of them are with huge time consumption, which obstructs their further application in the big data analytics scenarios, where an enormous amount of heterogeneous data are provided but real-time learning are strongly demanded. In this paper, we address this problem by proposing a fast unsupervised heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel extreme learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple sources and learns the heterogeneous data representation with closed-form solutions, which enables its extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low computational complexity at each stage, and the iteration of its two stages can be converged within finite steps. As experimentally demonstrated on 13 real-life data sets, TUMK-ELM gains a large efficiency improvement compared with three state-of-the-art unsupervised heterogeneous data learning methods (up to 140 000 times) while it achieves a comparable performance in terms of effectiveness. |
| Author | Zhao, Guohan Li, Qian Li, Feng Xiang, Lingyun Hao, Wei |
| Author_xml | – sequence: 1 givenname: Lingyun surname: Xiang fullname: Xiang, Lingyun organization: Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha, China – sequence: 2 givenname: Guohan surname: Zhao fullname: Zhao, Guohan organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 3 givenname: Qian surname: Li fullname: Li, Qian organization: Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 4 givenname: Wei orcidid: 0000-0002-9301-8765 surname: Hao fullname: Hao, Wei email: haowei@csust.edu.cn organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 5 givenname: Feng surname: Li fullname: Li, Feng organization: Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha, China |
| BookMark | eNqFkU1P3DAQhq2KSqXAL-ASqedsHX8kNrftdimoi3qAPVsTe3bJKrVT26Hi3zc0CFX0gC-2RvM8o3n9kRz54JGQ84ouqorqz8vVan17u2C0UgumREN5844cs6rWJZe8Pvrn_YGcpXSg01FTSTbH5Mvd9uZ7ud7cXBTL4hJSLrY-jQPGhy6hK64wYwx79BjGVHyFDMUGIfrO74vlMMQA9v6UvN9Bn_Ds-T4h28v13eqq3Pz4dr1abkorqMqlamrulJRCW-VqKxurHSLl0gpALQQKyzm0mjmgu0ZWrVZW6Z1EhrRFZvkJuZ69LsDBDLH7CfHRBOjM30KIewMxd7ZH01LuHFKGTGtBdaNbCbWtG1FXU0yOTi4xu0Y_wONv6PsXYUXNU6wGrMWUzFOs5jnWCfs0Y9Pmv0ZM2RzCGP20tWFCSqWEqNXUxecuG0NKEXf_uecve-3WryjbZchd8DlC17_Bns9sh4gv0xRXgnHO_wAZZaJW |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_JSYST_2019_2892002 crossref_primary_10_1177_1550147719852031 crossref_primary_10_32604_cmc_2021_013488 crossref_primary_10_32604_cmc_2021_014839 crossref_primary_10_1007_s12652_018_01171_4 crossref_primary_10_1155_2020_8811962 crossref_primary_10_3233_JIFS_169958 crossref_primary_10_1109_JIOT_2018_2872133 crossref_primary_10_1109_ACCESS_2018_2878273 crossref_primary_10_3390_su12041493 crossref_primary_10_1109_ACCESS_2019_2896781 crossref_primary_10_1177_1550147719899569 crossref_primary_10_1109_ACCESS_2020_3028740 crossref_primary_10_3934_mbe_2021429 crossref_primary_10_1186_s13640_020_00526_2 crossref_primary_10_1109_JBHI_2021_3099745 crossref_primary_10_1007_s11042_021_10774_7 crossref_primary_10_3390_en14071944 crossref_primary_10_1186_s13640_020_00542_2 crossref_primary_10_1002_cpe_5775 crossref_primary_10_1109_ACCESS_2019_2925916 crossref_primary_10_1109_ACCESS_2019_2911892 crossref_primary_10_1109_ACCESS_2020_2969276 crossref_primary_10_1186_s40537_019_0254_8 crossref_primary_10_1109_ACCESS_2018_2878147 crossref_primary_10_32604_iasc_2020_013382 crossref_primary_10_1002_spy2_331 crossref_primary_10_1007_s10489_019_01539_9 |
| Cites_doi | 10.1109/ICASSP.2016.7471631 10.1007/978-3-642-04617-9_19 10.1109/CICN.2014.220 10.1093/comjnl/bxt084 10.1016/j.neucom.2013.09.072 10.1137/1.9781611972788.74 10.1109/TKDE.2018.2791525 10.1109/TPAMI.2013.50 10.1109/TPAMI.2011.255 10.1109/ICPR.2016.7900009 10.5121/csit.2017.71015 10.1109/TSMCB.2012.2212243 10.1109/ICASSP.2013.6639343 10.1038/nature14539 10.1561/2000000039 10.1145/1014052.1014118 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2018.2847037 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 35315 |
| ExternalDocumentID | oai_doaj_org_article_b03dde02e29940979b5a6c67461201d0 10.1109/access.2018.2847037 10_1109_ACCESS_2018_2847037 8384233 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems grantid: 2017TP1016 – fundername: National Natural Science Foundation of China grantid: 61202439 funderid: 10.13039/501100001809 – fundername: Scientific Research Foundation of the Hunan Provincial Education Department of China grantid: 16A008 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-8763d85549c8d6c57c9dee035c4ae944e4c33ab92da0f751b98c89f5e2e0be2c3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:34 EDT 2025 Sun Sep 07 10:54:53 EDT 2025 Sun Jun 29 12:32:39 EDT 2025 Wed Oct 01 02:57:49 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Aug 27 02:48:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-8763d85549c8d6c57c9dee035c4ae944e4c33ab92da0f751b98c89f5e2e0be2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9301-8765 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8384233 |
| PQID | 2455884468 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2455884468 doaj_primary_oai_doaj_org_article_b03dde02e29940979b5a6c67461201d0 crossref_citationtrail_10_1109_ACCESS_2018_2847037 unpaywall_primary_10_1109_access_2018_2847037 crossref_primary_10_1109_ACCESS_2018_2847037 ieee_primary_8384233 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 zhu (ref9) 2014; 2015 ref14 kumar (ref6) 2012 ref31 bojanowski (ref3) 2017 ref33 ref32 ref2 ref1 ref17 ref16 ref18 radford (ref26) 2015 du (ref10) 2015 xu (ref29) 2013 bache (ref35) 2017 gönen (ref5) 2011; 12 arjovsky (ref27) 2017 ref22 liu (ref8) 2014 lee (ref15) 2009 borg (ref36) 2005 li (ref12) 2016 goodfellow (ref25) 2014 ref28 pu (ref21) 2016 ref7 xie (ref23) 2016 yu (ref30) 2012; 34 ref4 gönen (ref11) 2014; 1 deng (ref19) 2010 chandar (ref20) 2014 yang (ref24) 2017 |
| References_xml | – year: 2005 ident: ref36 publication-title: Modern Multidimensional Scaling Theory and Applications – ident: ref22 doi: 10.1109/ICASSP.2016.7471631 – ident: ref32 doi: 10.1007/978-3-642-04617-9_19 – ident: ref34 doi: 10.1109/CICN.2014.220 – start-page: 3476 year: 2015 ident: ref10 article-title: Robust multiple kernel K-means using $\ell _{2,1}$ -norm publication-title: Proc Int Conf Artif Intell – ident: ref1 doi: 10.1093/comjnl/bxt084 – volume: 1 start-page: 1305 year: 2014 ident: ref11 article-title: Localized data fusion for kernel K-means clustering with application to cancer biology publication-title: Proc 27th Int Conf Neural Inf Process Syst – year: 2017 ident: ref35 publication-title: UCI Machine Learning Respository – start-page: 1096 year: 2009 ident: ref15 article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks publication-title: Proc 22nd Int Conf Neural Inf Process Syst – start-page: 2360 year: 2016 ident: ref21 article-title: Variational autoencoder for deep learning of images, labels and captions publication-title: Proc 30th Int Conf Neural Inf Process Syst – start-page: 3861 year: 2017 ident: ref24 article-title: Towards K-means-friendly spaces: Simultaneous deep learning and clustering publication-title: Proc 34th Int Conf Mach Learn – ident: ref31 doi: 10.1016/j.neucom.2013.09.072 – ident: ref28 doi: 10.1137/1.9781611972788.74 – ident: ref2 doi: 10.1109/TKDE.2018.2791525 – volume: 2015 year: 2014 ident: ref9 article-title: Distance based multiple kernel ELM: A fast multiple kernel learning approach publication-title: Math Problems Eng – ident: ref18 doi: 10.1109/TPAMI.2013.50 – volume: 34 start-page: 1031 year: 2012 ident: ref30 article-title: Optimized data fusion for kernel K-means clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.255 – ident: ref4 doi: 10.1109/ICPR.2016.7900009 – start-page: 1295 year: 2012 ident: ref6 article-title: A binary classification framework for two-stage multiple kernel learning publication-title: Proc 29th Int Conf Mach Learn – ident: ref33 doi: 10.5121/csit.2017.71015 – start-page: 1975 year: 2014 ident: ref8 article-title: Sample-adaptive multiple kernel learning publication-title: Proc AAAI – year: 2017 ident: ref3 publication-title: Unsupervised learning by predicting noise – year: 2013 ident: ref29 publication-title: A Survey on Multi-view Learning – ident: ref7 doi: 10.1109/TSMCB.2012.2212243 – volume: 12 start-page: 2211 year: 2011 ident: ref5 article-title: Multiple kernel learning algorithms publication-title: J Mach Learn Res – ident: ref16 doi: 10.1109/ICASSP.2013.6639343 – ident: ref14 doi: 10.1038/nature14539 – start-page: 478 year: 2016 ident: ref23 article-title: Unsupervised deep embedding for clustering analysis publication-title: Proc 33rd Int Conf Mach Learn – start-page: 1692 year: 2010 ident: ref19 article-title: Binary coding of speech spectrograms using a deep auto-encoder publication-title: Proc 11th Annu Conf Int Speech Commun Assoc – ident: ref17 doi: 10.1561/2000000039 – start-page: 2672 year: 2014 ident: ref25 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref26 publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR – start-page: 1853 year: 2014 ident: ref20 article-title: An autoencoder approach to learning bilingual word representations publication-title: Proc Adv Neural Inf Process Syst – start-page: 1704 year: 2016 ident: ref12 article-title: Multiple kernel clustering with local kernel alignment maximization publication-title: Proc 25th Int Conf Artif Intell – start-page: 214 year: 2017 ident: ref27 article-title: Wasserstein generative adversarial networks publication-title: Proc Int Conf Mach Learn – ident: ref13 doi: 10.1145/1014052.1014118 |
| SSID | ssj0000816957 |
| Score | 2.3484945 |
| Snippet | Advanced unsupervised learning techniques are an emerging challenge in the big data era due to the increasing requirements of extracting knowledge from a large... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35305 |
| SubjectTerms | Algorithms Artificial neural networks Big Data clustering Data mining extreme learning machine heterogeneous data Iterative methods Kernel Machine learning multiple kernel learning Task analysis Unsupervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLi0HRLsgUqDygWNTHD8Sm9uysFqVbk-7EjfLr3BZhRWbVdV_X09iVkFIcOk1cqzxzPjzTDL-BqGLwngeqHN5XVGX87qwufURDGOqUJXEOO8E3Eae_y5nS_7zXtwPWn1BTVhPD9wr7tISFncgoSHiJnAzKStM6cqKx6OZFL7L1olUg2Sqw2BZlEpUiWaoIOpyPJnEFUEtl_wBkEyg8_ngKOoY-1OLlRfR5sdtszZ__5jVanDwTA_RQYoY8biX9DP6EJovaH_AIzhC14vl_C6__TW_wmM8NZsWL5vNdg0wsAkez6Dk5TF6SohpPr4xrcGJVvUBjxOn-BFaTm8Xk1memiPkjhPZAooxDzVmyklfOlE55UMgTDhuguI8cMeYsYp6Q-pKFFZJJ1UtAg3ERuuwY7TXPDbhBGFl68BL-IFoYzxVU1NEC4pSUcOcr5TLEH3Wk3aJORwaWKx0l0EQpXvlalCuTsrN0PfdS-ueOOPt4ddggN1QYL3uHkRf0MkX9Hu-kKERmG83iWQyRossQ2fP5tRph2405QLu6MZ1ZyjfmfiVqKZrW_lC1K__Q9RT9Anm7D_mnKG99mkbzmN409pvnSf_A2Sc8IA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAO5VEQaQvKgSNZnPiRuLd06WoFbMWhkcrJ8is9sMquSCIEv76exF3tglTBMZEd2TPj8ed45huE3qXKUpcZk9R5ZhJapzrR1jtDf1TIOVbGGgbZyMtLvqjop2t2HXi2IRdm9_4-xeKDGsoGQghWMQVPikn-EB1w5oH3BB1Ul1_Lb1A-LuUiIcNF5Mk9Pff2noGiP9RU2YOXj_pmo379VKvVzk4zfzqmcLcDQSEEmHyf9p2emt9_0Df-4ySeocOAOONyNJHn6IFrXqAnOzyER-j8qlp-Ti6-LM_iMp6rtourpu034EZaZ-MFhMysvaW5dd_GH1Wn4kDLehOXgZP8JarmF1ezRRKKKySG4qIDL0gsxKgJU1huWG6EdQ4TZqhyglJHDSFKi8wqXOcs1aIwhaiZyxzWXrvkFZo068a9RrHQtaMcLiC1x2N1plJvAYyLTBFjc2EilN2JXZrAPA4FMFZyOIFgIcvZzJubBAHJIKAIvd922ozEG_c3Pwd9bpsCa_bwwutBhkUoNSbem-PM-T0YeL6EZoobnlMP83BqcYSOwBq2HylI4dEmidDpnXXIsMJbmVEGOb5-3hFKthbz11BH1e8N9fg_25-gx_A4_vc5RZPuR-_eeCTU6bdhBdwC9hX9-g priority: 102 providerName: Unpaywall |
| Title | TUMK-ELM: A Fast Unsupervised Heterogeneous Data Learning Approach |
| URI | https://ieeexplore.ieee.org/document/8384233 https://www.proquest.com/docview/2455884468 https://doi.org/10.1109/access.2018.2847037 https://doaj.org/article/b03dde02e29940979b5a6c67461201d0 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QA9tEBBhJZVDhybrZPYSdxbunS1Arbi0EjlFPmVHlhlVyRRBb8eT-KNtoAQtyiyE9sznhmPZ74BeB8KTU2kVFClkQpoFcpAaisM7VEhTYhQWjHMRl7eJIuCfrxjd3twPubCGGP64DMzxcf-Ll-vVYeusosszqz2j_dhP82SIVdr9KdgAQnOUgcsFBJ-kc9mdg4YvZVNUQgTrHW-o3x6jH5XVOWRffm0qzfix4NYrXZUzfwYlttBDhEm36ZdK6fq52_4jf87i-dw5GxOPx-Y5AXsmfolHO4gEZ7A1W2x_BRcf15e-rk_F03rF3XTbVCQNEb7CwyaWVteM-uu8T-IVvgOmPXezx0q-Sso5te3s0XgyisEipKsRTkYa4xS4yrTiWKp4toYEjNFheGUGqriWEgeaUGqlIWSZyrjFTORIdLSN34NB_W6Nm_A57IyNMErSGktsioSoeUBlvBIxEqnXHkQbde9VA57HEtgrMr-DEJ4ORCrRGKVjlgenI-dNgP0xr-bXyFBx6aIm92_sItfum1YShJbeU4iY7UwIn1xyUSikpRaQ4-EmnhwggQbP-Jo5cHZlj1Kt8ebMqIMs3ztvD0IRpb5Y6iiL3z5aKhv__6XU3iGrQYHzxkctN87886aPK2c9K6CSc_xE3hS3HzJv_4CO8j9sA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ty2HhwGtBBBbIgeOm6yR2EnPrlq0K2-yplfZm-RUOVGlFEiH49XgSN-oCQtyiyE48nvHM2J75BuB9LA21idZRlSc6olWsImWcMnRbhTwjUhvNMBu5vMkWa_r5lt0ewfmYC2Ot7YPP7AQf-7t8s9UdHpVdFGnhrH96D-4zSikbsrXGExUsIcFZ7qGFYsIvprOZowLjt4oJqmGC1c4PzE-P0u_LqtzxME-6eid_fJebzYGxmT-Gcj_MIcbk66Rr1UT__A3B8X_peAKPvNcZTgcxeQpHtn4GDw-wCE_hcrUur6OrZfkhnIZz2bThum66HaqSxppwgWEzWydtdts14UfZytBDs34Jpx6X_Dms51er2SLyBRYiTUnRoiZMDcapcV2YTLNcc2MtSZmm0nJKLdVpKhVPjCRVzmLFC13witnEEuU4nL6A43pb25cQclVZmuElpHI-WZXI2EkBy3giU21yrgNI9vMutEcfxyIYG9HvQggXA7MEMkt4ZgVwPnbaDeAb_25-iQwdmyJydv_CTb7wC1EokjqNThLr7DBifXHFZKaznDpXj8SGBHCKDBs_4nkVwNlePIRf5Y1IKMM8X0d3ANEoMn8MVfalL-8M9dXf__IOTharcimWn26uX8MD7DEc95zBcfuts2-cA9Sqt73c_wK6a_5Y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAO5VEQaQvKgSNZnPiRuLd06WoFbMWhkcrJ8is9sMquSCIEv76exF3tglTBMZEd2TPj8ed45huE3qXKUpcZk9R5ZhJapzrR1jtDf1TIOVbGGgbZyMtLvqjop2t2HXi2IRdm9_4-xeKDGsoGQghWMQVPikn-EB1w5oH3BB1Ul1_Lb1A-LuUiIcNF5Mk9Pff2noGiP9RU2YOXj_pmo379VKvVzk4zfzqmcLcDQSEEmHyf9p2emt9_0Df-4ySeocOAOONyNJHn6IFrXqAnOzyER-j8qlp-Ti6-LM_iMp6rtourpu034EZaZ-MFhMysvaW5dd_GH1Wn4kDLehOXgZP8JarmF1ezRRKKKySG4qIDL0gsxKgJU1huWG6EdQ4TZqhyglJHDSFKi8wqXOcs1aIwhaiZyxzWXrvkFZo068a9RrHQtaMcLiC1x2N1plJvAYyLTBFjc2EilN2JXZrAPA4FMFZyOIFgIcvZzJubBAHJIKAIvd922ozEG_c3Pwd9bpsCa_bwwutBhkUoNSbem-PM-T0YeL6EZoobnlMP83BqcYSOwBq2HylI4dEmidDpnXXIsMJbmVEGOb5-3hFKthbz11BH1e8N9fg_25-gx_A4_vc5RZPuR-_eeCTU6bdhBdwC9hX9-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TUMK-ELM%3A+A+Fast+Unsupervised+Heterogeneous+Data+Learning+Approach&rft.jtitle=IEEE+access&rft.au=Xiang%2C+Lingyun&rft.au=Zhao%2C+Guohan&rft.au=Li%2C+Qian&rft.au=Hao%2C+Wei&rft.date=2018-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=6&rft.spage=35305&rft.epage=35315&rft_id=info:doi/10.1109%2FACCESS.2018.2847037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2018_2847037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |