A Negative Selection Algorithm-Based Identification Framework for Distribution Network Faults With High Resistance

Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based ide...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 109363 - 109374
Main Authors Song, Xiaohui, Gao, Fei, Chen, Zhenning, Liu, Wenjing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2933566

Cover

Abstract Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based identification framework is proposed to detect the distribution network faults with high resistance. The Hilbert-Huang transform (HHT) analysis method is used to distinguish the faults from normal state. The sum of the first two order intrinsic mode function (IMF) components of zero sequence voltage within a cycle after fault is taken as the extracted characteristic of high resistance faults. An improved negative selection method is proposed to increase detection rate and realize the classification of abnormal states, so that normal training samples and a few fault samples can generate enough detector sets with higher coverage of non-self set area. Based on a 10 kV distribution network, the performance of the proposed identification framework is evaluated. The simulation results show that, compared with the wavelet analysis and the neural network algorithm, the proposed algorithm can effectively identify the high resistance faults in distribution network with small samples.
AbstractList Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based identification framework is proposed to detect the distribution network faults with high resistance. The Hilbert-Huang transform (HHT) analysis method is used to distinguish the faults from normal state. The sum of the first two order intrinsic mode function (IMF) components of zero sequence voltage within a cycle after fault is taken as the extracted characteristic of high resistance faults. An improved negative selection method is proposed to increase detection rate and realize the classification of abnormal states, so that normal training samples and a few fault samples can generate enough detector sets with higher coverage of non-self set area. Based on a 10 kV distribution network, the performance of the proposed identification framework is evaluated. The simulation results show that, compared with the wavelet analysis and the neural network algorithm, the proposed algorithm can effectively identify the high resistance faults in distribution network with small samples.
Author Song, Xiaohui
Gao, Fei
Chen, Zhenning
Liu, Wenjing
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Song
  fullname: Song, Xiaohui
  organization: China Electric Power Research Institute, State Grid Corporation of China, Beijing, China
– sequence: 2
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: China Electric Power Research Institute, State Grid Corporation of China, Beijing, China
– sequence: 3
  givenname: Zhenning
  orcidid: 0000-0003-1221-237X
  surname: Chen
  fullname: Chen, Zhenning
  email: chzhn1997@163.com
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Wenjing
  surname: Liu
  fullname: Liu, Wenjing
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
BookMark eNptkVFP2zAQxyPEpDHGJ-Al0p7T2bHj2I9dR0clxCQK2qPlOOfiksad7YD49jMJqqYKv_h0d7__nf3_kp32rocsu8RohjES3-eLxdV6PSsRFrNSEFIxdpKdlZiJglSEnf4Xf84uQtiidHhKVfVZ5uf5LWxUtM-Qr6EDHa3r83m3cd7Gx13xQwVo81ULfbTGajWWl17t4MX5p9w4n_-0IXrbDGPpFuJYWKqhiyH_k0Tya7t5zO8gpD7Va_iafTKqC3Dxfp9nD8ur-8V1cfP712oxvyk0RTwWnNamJIRTwWqOTFkBNQZBYxqOkGnqttTaMExoA4gyxanWgBllIECzJqHn2WrSbZ3ayr23O-VfpVNWjgnnN1L5aHUHsi0NV0aQGhFNOeLpGFGnmFVg6honLTppDf1evb6orjsIYiTfbJAqzQ9Bvtkg321I2LcJ23v3d4AQ5dYNvk-vliWtqkrQElepS0xd2rsQPBipbRx_Onplu8OEyejjCeSIPd7rY-pyoiwAHAhe87QQJ_8ABGG1sQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1051_e3sconf_202128801100
crossref_primary_10_1080_23311916_2020_1747373
crossref_primary_10_1109_TSG_2021_3129315
crossref_primary_10_1109_TPWRD_2021_3095228
crossref_primary_10_3390_s23218948
crossref_primary_10_3390_electronics12194066
crossref_primary_10_1109_TAI_2021_3114661
crossref_primary_10_1109_ACCESS_2020_2978659
crossref_primary_10_1177_0958305X241276829
crossref_primary_10_1109_ACCESS_2020_2976875
crossref_primary_10_2139_ssrn_4164377
crossref_primary_10_1080_23311916_2020_1770916
crossref_primary_10_1016_j_asoc_2024_111339
crossref_primary_10_1155_2022_5360302
crossref_primary_10_1016_j_knosys_2023_110892
crossref_primary_10_1166_jno_2022_3195
crossref_primary_10_1109_ACCESS_2021_3055236
crossref_primary_10_1016_j_epsr_2021_107676
Cites_doi 10.1109/TPWRD.2010.2050218
10.1109/TPWRD.2018.2808428
10.1016/j.segan.2016.11.002
10.1016/j.epsr.2013.12.010
10.1109/TPWRD.2016.2548942
10.1016/j.ijepes.2019.04.050
10.1109/CICED.2018.8592100
10.1109/RISP.1994.296580
10.1016/j.ins.2008.12.015
10.1109/TPWRD.2004.837836
10.1109/TPWRD.2005.844307
10.1016/j.ijepes.2009.01.005
10.1109/TPWRD.2006.874581
10.1109/TIA.2015.2434993
10.1109/TPWRD.2005.852367
10.1109/TPWRD.2019.2901634
10.1016/j.epsr.2011.01.022
10.1109/CCDC.2018.8408033
10.1109/TPWRD.2007.911125
10.1016/j.epsr.2017.08.039
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2933566
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 109374
ExternalDocumentID oai_doaj_org_article_d2f8af93703c4808888f973c465ef771
10.1109/access.2019.2933566
10_1109_ACCESS_2019_2933566
8789428
Genre orig-research
GrantInformation_xml – fundername: State Grid Corporation of China
  grantid: PDB17201800215
  funderid: 10.13039/501100010880
– fundername: Research on Immune Mechanism and Model of Self-healing Oriented Smart Distribution Network
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-847f2338496780f25e4ff0ebfb800fb7d2ccf6134be046a84cce1646e9ec6bf23
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:02 EDT 2025
Wed Oct 01 15:37:16 EDT 2025
Mon Jun 30 06:02:29 EDT 2025
Wed Oct 01 03:22:36 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-847f2338496780f25e4ff0ebfb800fb7d2ccf6134be046a84cce1646e9ec6bf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1221-237X
OpenAccessLink https://doaj.org/article/d2f8af93703c4808888f973c465ef771
PQID 2455594215
PQPubID 4845423
PageCount 12
ParticipantIDs unpaywall_primary_10_1109_access_2019_2933566
crossref_citationtrail_10_1109_ACCESS_2019_2933566
ieee_primary_8789428
proquest_journals_2455594215
doaj_primary_oai_doaj_org_article_d2f8af93703c4808888f973c465ef771
crossref_primary_10_1109_ACCESS_2019_2933566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
sirojan (ref18) 0
ref10
ref2
ref1
ref17
(ref22) 2008
zhou (ref14) 2009; 179
ref23
li (ref7) 2014; 42
ref25
ref20
ref21
wu (ref24) 2016; 27
ref8
ref9
ref4
sheng (ref16) 2019; 39
ref3
sergio (ref19) 2018; 154
ref6
ref5
References_xml – volume: 39
  start-page: 17
  year: 2019
  ident: ref16
  article-title: Detection method of high impedance grounding fault based on differential current of zero-sequence current projection and neutral point current in low-resistance grounding system
  publication-title: Elect Power Automat Equip
– start-page: 2
  year: 2008
  ident: ref22
  publication-title: DL/T559-2007 220 kV-750 kV Power Grid Relay Protection Device Operation Setting Regulation Replaces DL/T 559-1994
– volume: 42
  start-page: 44
  year: 2014
  ident: ref7
  article-title: A new method and simulation for arcing high-impedance-grounding fault line selection in resonant grounded system
  publication-title: Power Syst Protection Control
– ident: ref8
  doi: 10.1109/TPWRD.2010.2050218
– ident: ref17
  doi: 10.1109/TPWRD.2018.2808428
– ident: ref21
  doi: 10.1016/j.segan.2016.11.002
– ident: ref25
  doi: 10.1016/j.epsr.2013.12.010
– volume: 27
  start-page: 479
  year: 2016
  ident: ref24
  article-title: Fault diagnosis method for wind turbine vibration based on improved negative selection algorithm
  publication-title: Chinese Journal of Mechanical Engineering
– ident: ref1
  doi: 10.1109/TPWRD.2016.2548942
– ident: ref15
  doi: 10.1016/j.ijepes.2019.04.050
– ident: ref4
  doi: 10.1109/CICED.2018.8592100
– ident: ref23
  doi: 10.1109/RISP.1994.296580
– volume: 179
  start-page: 1390
  year: 2009
  ident: ref14
  article-title: V-detector: An efficient negative selection algorithm with 'probably adequate' detector coverage
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2008.12.015
– ident: ref9
  doi: 10.1109/TPWRD.2004.837836
– ident: ref13
  doi: 10.1109/TPWRD.2005.844307
– year: 0
  ident: ref18
  article-title: Sustainable deep learning at grid edge for real-time high impedance fault detection
  publication-title: IEEE Trans Sustain Comput
– ident: ref11
  doi: 10.1016/j.ijepes.2009.01.005
– ident: ref5
  doi: 10.1109/TPWRD.2006.874581
– ident: ref2
  doi: 10.1109/TIA.2015.2434993
– ident: ref10
  doi: 10.1109/TPWRD.2005.852367
– ident: ref20
  doi: 10.1109/TPWRD.2019.2901634
– ident: ref6
  doi: 10.1016/j.epsr.2011.01.022
– ident: ref3
  doi: 10.1109/CCDC.2018.8408033
– ident: ref12
  doi: 10.1109/TPWRD.2007.911125
– volume: 154
  start-page: 474
  year: 2018
  ident: ref19
  article-title: High impedance fault detection in power distribution systems using wavelet transform and evolving neural network
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2017.08.039
SSID ssj0000816957
Score 2.2934558
Snippet Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109363
SubjectTerms Algorithms
Classification algorithms
Fault classification
Fault detection
Fault diagnosis
Feature extraction
HHT
High impedance
High resistance
high resistance fault identification
Hilbert transformation
Impedance
improved negative selection algorithm
Neural networks
Power lines
Resistance
Signal processing algorithms
small samples
Transforms
Wavelet analysis
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library (LUT)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHvgoiUJAPHJutN3ES-7hdWFVI7QGo6M2KnXGpCLvVbiIEv56x4w0tIMQtihzH0Rtn3tjjNwCvp9JhJWqZoqPpJlzFU4lNkZaGezU1Qr3xO7qnZ-XJuXh3UVzswOF4FgYRQ_IZTvxl2MtvVrb3S2VHspKK6PIu7FayHM5qjespvoCEKqooLDTl6mg2n9M3-OwtNSGnlhdBCfGX8wka_bGoyi1-eadfXtffv9Vte8PVLB7A6XaQQ4bJl0nfmYn98Zt-4_9-xUO4Hzknmw1G8gh2cPkY7t1QItyH9Yyd4WUQAWcfQmkcwovN2svV-qr7_DU9JmfXsOFUr4vLfGyxTexixHzZGy_BG6tnUWchu5wt6r7tNuwTdcJ8Sgl7jxvPWMnUnsD54u3H-UkayzGkVnDZpeTHXEYRrVDk4LjLChTOcTTOEOl0pmoyax2xA2GQgu5aCmvRq5ehQlsaevQp7C1XS3wGLM9yM1W2bGqK5yhmkjY3AnleY0EESGQJZFuctI1a5b5kRqtDzMKVHsDVHlwdwU3gcHzoepDq-HfzY28AY1Ovsx1uEFg6TlvdZE7Wjigcz62Q9EeW0qmKrssCXVVNE9j3AI-dRGwTONiak47_hI3OREHhmyCOlUA6mtgfQ61DocxbQ33-97e8gLu-1bAgdAB73brHl0SROvMqzI2fEE0NAQ
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagOyAODBiIwEA-cMSpkziJc8w6qgmJCgEV42TFzvOYCF3VpgL26_fsuGUDCQluVuRYjr7nvO_Zz98j5GUiLZSikQwsLjdhS84ktDkrNHdqaoh66050386Kk7l4c5qfhg03fxcGAHzyGcSu6c_yz6H7UY6L1ImnVWPpFNV5MuaylBWS53jZ2ttkr8iRi4_I3nz2rv7sKsolRcUyfzb5LAhrjhtfg9Dlc1Uxurks99qIv9yRV-0PZVZuMM47m8Wy-fm96bprzme6T9R22kPOydd40-vYXP6m6Pj_33Wf3Au8lNaDIT0gt2DxkNy9plZ4QFY1ncGZFwqnH3z5HMSU1t3Zxeq8__KNHaFDbOlw89eGrUA63SZ_UWTH9NjJ9IYKWziYz0Cn02bT9Wv6CQehLu2Evoe1Y7Vojo_IfPr64-SEhZINzAgue4a-zqYY9YoKnSC3aQ7CWg7aaiSmVpdtaoxFBiE0YGDeSIGIOIUzqMAUGl99TEaLiwU8ITRLM51UpmgbjPkwrpIm0wJ41kCOJEmkEUm3yCkT9MxdWY1O-biGV6qeTNCIlYNbBbgj8mr30nKQ8_h79yNnEruuTovbP0D4VFjaqk2tbCzSPJ4ZIfGvLaWtSmwXOdiyTCJy4CDfDRLwjcjh1sBU-G-sVSpyDPEE8rCIsJ3R_THVwZBvTPXpP_Y_JKN-tYHnSKl6_SKsmyvw6xsM
  priority: 102
  providerName: Unpaywall
Title A Negative Selection Algorithm-Based Identification Framework for Distribution Network Faults With High Resistance
URI https://ieeexplore.ieee.org/document/8789428
https://www.proquest.com/docview/2455594215
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08789428.pdf
https://doaj.org/article/d2f8af93703c4808888f973c465ef771
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQeygcqtKCSD9WPnAk1Os4iX1Mt11VSKwQsKKcLNsZl0PYVt1dVf33HTveZatKcOEWRfFo4hln5jnjN4S8H0oPtTAyB4_LTfia5RLaMq8sC2xqaPU2_NH9PKkup-LTVXm10eor1IT19MD9xJ223EvjMYiywgmJa0JKr2q8rkrwdTw9zplUG2AqfoPlsFJlnWiGhkydNqMRvlGo5VIfMcQVZeRF_BOKImN_arHyJNvcWc5uzcO96bqNwDPeI7spY6RNr-lr8gJm--TVBo_gAblr6ASuI4U3_RYb2-Bs06a7vkHo_-t3foahqqX9mVyfNunoeFWWRTFvpeeBQDf1vkJhsTacjs2yW8zpDxRCQ0EI_QrzkG-io7wh0_HF99Flnpop5E4wucgxCnmOeFQoDE_M8xKE9wyst5gyelu33DmPsV1YQMhspHAOAvcYKHCVxaFvydbsZgbvCC14YYfKVa1BNIaIR7rCCmCFgRLTF8Ezwlfzql1iGg8NLzodEQdTujeGDsbQyRgZ-bAedNsTbfz98bNgsPWjgSU73kDf0cl39L98JyMHwdxrIbKWCuFYRo5X5tdpRc81FyWCL4EZUkbytUs8U9XENpdPVD38H6oekZdBZr_5c0y2FndLOMF0aGEH0fMH8eTigGxPJ1-an4_-awVQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4zA48GsgAgN84Lh0aWI3zrErVAXWHmATu1mx8zwQoZ3aRAj-ep4dN2yAELcoih1H33Pe9-zn7wG8HEqLOS9ljJamG7d5EkusRDzSiVNTI9Qrt6M7X4xmZ_ztuTjfgcP-LAwi-uQzHLhLv5dfrUzrlsqOZC4Loss34KbgnIvutFa_ouJKSBQiD9JCw6Q4Gk8m9BUuf6sYkFvLhNdC_OV-vEp_KKtyjWHutcvL8vu3sq6vOJvpXZhvh9nlmHwZtI0emB-_KTj-73fcgzuBdbJxZyb3YQeXD-D2FS3CfViP2QIvvAw4--CL4xBibFxfrNafm09f42NydxXrzvXasNDHptvULkbcl71yIryhfhZ15vPL2bRs62bDPlInzCWVsPe4cZyVjO0hnE1fn05mcSjIEBueyCYmT2ZTiml5QS4usalAbm2C2mqinVbnVWqMJX7ANVLYXUpuDDr9MizQjDQ1fQS7y9USHwPL0kwPCzOqSoroKGqSJtMck6xEQRSIpxGkW5yUCWrlrmhGrXzUkhSqA1c5cFUAN4LDvtFlJ9bx78ePnQH0jzqlbX-DwFJh4qoqtbK0ROKSzHBJ_2QpbZHT9UigzfNhBPsO4L6TgG0EB1tzUuGvsFEpFxTAcWJZEcS9if0x1NKXyrw21Cd_f8sL2Judzk_UyZvFu6dwy7XolocOYLdZt_iMCFOjn_t58hNBZhBO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagOyAODBiIwEA-cMSpkziJc8w6qgmJCgEV42TFzvOYCF3VpgL26_fsuGUDCQluVuRYjr7nvO_Zz98j5GUiLZSikQwsLjdhS84ktDkrNHdqaoh66050386Kk7l4c5qfhg03fxcGAHzyGcSu6c_yz6H7UY6L1ImnVWPpFNV5MuaylBWS53jZ2ttkr8iRi4_I3nz2rv7sKsolRcUyfzb5LAhrjhtfg9Dlc1Uxurks99qIv9yRV-0PZVZuMM47m8Wy-fm96bprzme6T9R22kPOydd40-vYXP6m6Pj_33Wf3Au8lNaDIT0gt2DxkNy9plZ4QFY1ncGZFwqnH3z5HMSU1t3Zxeq8__KNHaFDbOlw89eGrUA63SZ_UWTH9NjJ9IYKWziYz0Cn02bT9Wv6CQehLu2Evoe1Y7Vojo_IfPr64-SEhZINzAgue4a-zqYY9YoKnSC3aQ7CWg7aaiSmVpdtaoxFBiE0YGDeSIGIOIUzqMAUGl99TEaLiwU8ITRLM51UpmgbjPkwrpIm0wJ41kCOJEmkEUm3yCkT9MxdWY1O-biGV6qeTNCIlYNbBbgj8mr30nKQ8_h79yNnEruuTovbP0D4VFjaqk2tbCzSPJ4ZIfGvLaWtSmwXOdiyTCJy4CDfDRLwjcjh1sBU-G-sVSpyDPEE8rCIsJ3R_THVwZBvTPXpP_Y_JKN-tYHnSKl6_SKsmyvw6xsM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Negative+Selection+Algorithm-Based+Identification+Framework+for+Distribution+Network+Faults+With+High+Resistance&rft.jtitle=IEEE+access&rft.au=Song%2C+Xiaohui&rft.au=Gao%2C+Fei&rft.au=Chen%2C+Zhenning&rft.au=Liu%2C+Wenjing&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=109363&rft.epage=109374&rft_id=info:doi/10.1109%2FACCESS.2019.2933566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2933566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon