A Negative Selection Algorithm-Based Identification Framework for Distribution Network Faults With High Resistance
Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based ide...
Saved in:
| Published in | IEEE access Vol. 7; pp. 109363 - 109374 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2933566 |
Cover
| Abstract | Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based identification framework is proposed to detect the distribution network faults with high resistance. The Hilbert-Huang transform (HHT) analysis method is used to distinguish the faults from normal state. The sum of the first two order intrinsic mode function (IMF) components of zero sequence voltage within a cycle after fault is taken as the extracted characteristic of high resistance faults. An improved negative selection method is proposed to increase detection rate and realize the classification of abnormal states, so that normal training samples and a few fault samples can generate enough detector sets with higher coverage of non-self set area. Based on a 10 kV distribution network, the performance of the proposed identification framework is evaluated. The simulation results show that, compared with the wavelet analysis and the neural network algorithm, the proposed algorithm can effectively identify the high resistance faults in distribution network with small samples. |
|---|---|
| AbstractList | Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high resistance faults with the steady-state characteristics in distribution network. In this paper, a Negative Selection Algorithm (NSA) based identification framework is proposed to detect the distribution network faults with high resistance. The Hilbert-Huang transform (HHT) analysis method is used to distinguish the faults from normal state. The sum of the first two order intrinsic mode function (IMF) components of zero sequence voltage within a cycle after fault is taken as the extracted characteristic of high resistance faults. An improved negative selection method is proposed to increase detection rate and realize the classification of abnormal states, so that normal training samples and a few fault samples can generate enough detector sets with higher coverage of non-self set area. Based on a 10 kV distribution network, the performance of the proposed identification framework is evaluated. The simulation results show that, compared with the wavelet analysis and the neural network algorithm, the proposed algorithm can effectively identify the high resistance faults in distribution network with small samples. |
| Author | Song, Xiaohui Gao, Fei Chen, Zhenning Liu, Wenjing |
| Author_xml | – sequence: 1 givenname: Xiaohui surname: Song fullname: Song, Xiaohui organization: China Electric Power Research Institute, State Grid Corporation of China, Beijing, China – sequence: 2 givenname: Fei surname: Gao fullname: Gao, Fei organization: China Electric Power Research Institute, State Grid Corporation of China, Beijing, China – sequence: 3 givenname: Zhenning orcidid: 0000-0003-1221-237X surname: Chen fullname: Chen, Zhenning email: chzhn1997@163.com organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China – sequence: 4 givenname: Wenjing surname: Liu fullname: Liu, Wenjing organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| BookMark | eNptkVFP2zAQxyPEpDHGJ-Al0p7T2bHj2I9dR0clxCQK2qPlOOfiksad7YD49jMJqqYKv_h0d7__nf3_kp32rocsu8RohjES3-eLxdV6PSsRFrNSEFIxdpKdlZiJglSEnf4Xf84uQtiidHhKVfVZ5uf5LWxUtM-Qr6EDHa3r83m3cd7Gx13xQwVo81ULfbTGajWWl17t4MX5p9w4n_-0IXrbDGPpFuJYWKqhiyH_k0Tya7t5zO8gpD7Va_iafTKqC3Dxfp9nD8ur-8V1cfP712oxvyk0RTwWnNamJIRTwWqOTFkBNQZBYxqOkGnqttTaMExoA4gyxanWgBllIECzJqHn2WrSbZ3ayr23O-VfpVNWjgnnN1L5aHUHsi0NV0aQGhFNOeLpGFGnmFVg6honLTppDf1evb6orjsIYiTfbJAqzQ9Bvtkg321I2LcJ23v3d4AQ5dYNvk-vliWtqkrQElepS0xd2rsQPBipbRx_Onplu8OEyejjCeSIPd7rY-pyoiwAHAhe87QQJ_8ABGG1sQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1051_e3sconf_202128801100 crossref_primary_10_1080_23311916_2020_1747373 crossref_primary_10_1109_TSG_2021_3129315 crossref_primary_10_1109_TPWRD_2021_3095228 crossref_primary_10_3390_s23218948 crossref_primary_10_3390_electronics12194066 crossref_primary_10_1109_TAI_2021_3114661 crossref_primary_10_1109_ACCESS_2020_2978659 crossref_primary_10_1177_0958305X241276829 crossref_primary_10_1109_ACCESS_2020_2976875 crossref_primary_10_2139_ssrn_4164377 crossref_primary_10_1080_23311916_2020_1770916 crossref_primary_10_1016_j_asoc_2024_111339 crossref_primary_10_1155_2022_5360302 crossref_primary_10_1016_j_knosys_2023_110892 crossref_primary_10_1166_jno_2022_3195 crossref_primary_10_1109_ACCESS_2021_3055236 crossref_primary_10_1016_j_epsr_2021_107676 |
| Cites_doi | 10.1109/TPWRD.2010.2050218 10.1109/TPWRD.2018.2808428 10.1016/j.segan.2016.11.002 10.1016/j.epsr.2013.12.010 10.1109/TPWRD.2016.2548942 10.1016/j.ijepes.2019.04.050 10.1109/CICED.2018.8592100 10.1109/RISP.1994.296580 10.1016/j.ins.2008.12.015 10.1109/TPWRD.2004.837836 10.1109/TPWRD.2005.844307 10.1016/j.ijepes.2009.01.005 10.1109/TPWRD.2006.874581 10.1109/TIA.2015.2434993 10.1109/TPWRD.2005.852367 10.1109/TPWRD.2019.2901634 10.1016/j.epsr.2011.01.022 10.1109/CCDC.2018.8408033 10.1109/TPWRD.2007.911125 10.1016/j.epsr.2017.08.039 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2933566 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 109374 |
| ExternalDocumentID | oai_doaj_org_article_d2f8af93703c4808888f973c465ef771 10.1109/access.2019.2933566 10_1109_ACCESS_2019_2933566 8789428 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: State Grid Corporation of China grantid: PDB17201800215 funderid: 10.13039/501100010880 – fundername: Research on Immune Mechanism and Model of Self-healing Oriented Smart Distribution Network |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-847f2338496780f25e4ff0ebfb800fb7d2ccf6134be046a84cce1646e9ec6bf23 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:02 EDT 2025 Wed Oct 01 15:37:16 EDT 2025 Mon Jun 30 06:02:29 EDT 2025 Wed Oct 01 03:22:36 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Wed Aug 27 02:41:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-847f2338496780f25e4ff0ebfb800fb7d2ccf6134be046a84cce1646e9ec6bf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1221-237X |
| OpenAccessLink | https://doaj.org/article/d2f8af93703c4808888f973c465ef771 |
| PQID | 2455594215 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2019_2933566 crossref_citationtrail_10_1109_ACCESS_2019_2933566 ieee_primary_8789428 proquest_journals_2455594215 doaj_primary_oai_doaj_org_article_d2f8af93703c4808888f973c465ef771 crossref_primary_10_1109_ACCESS_2019_2933566 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 sirojan (ref18) 0 ref10 ref2 ref1 ref17 (ref22) 2008 zhou (ref14) 2009; 179 ref23 li (ref7) 2014; 42 ref25 ref20 ref21 wu (ref24) 2016; 27 ref8 ref9 ref4 sheng (ref16) 2019; 39 ref3 sergio (ref19) 2018; 154 ref6 ref5 |
| References_xml | – volume: 39 start-page: 17 year: 2019 ident: ref16 article-title: Detection method of high impedance grounding fault based on differential current of zero-sequence current projection and neutral point current in low-resistance grounding system publication-title: Elect Power Automat Equip – start-page: 2 year: 2008 ident: ref22 publication-title: DL/T559-2007 220 kV-750 kV Power Grid Relay Protection Device Operation Setting Regulation Replaces DL/T 559-1994 – volume: 42 start-page: 44 year: 2014 ident: ref7 article-title: A new method and simulation for arcing high-impedance-grounding fault line selection in resonant grounded system publication-title: Power Syst Protection Control – ident: ref8 doi: 10.1109/TPWRD.2010.2050218 – ident: ref17 doi: 10.1109/TPWRD.2018.2808428 – ident: ref21 doi: 10.1016/j.segan.2016.11.002 – ident: ref25 doi: 10.1016/j.epsr.2013.12.010 – volume: 27 start-page: 479 year: 2016 ident: ref24 article-title: Fault diagnosis method for wind turbine vibration based on improved negative selection algorithm publication-title: Chinese Journal of Mechanical Engineering – ident: ref1 doi: 10.1109/TPWRD.2016.2548942 – ident: ref15 doi: 10.1016/j.ijepes.2019.04.050 – ident: ref4 doi: 10.1109/CICED.2018.8592100 – ident: ref23 doi: 10.1109/RISP.1994.296580 – volume: 179 start-page: 1390 year: 2009 ident: ref14 article-title: V-detector: An efficient negative selection algorithm with 'probably adequate' detector coverage publication-title: Inf Sci doi: 10.1016/j.ins.2008.12.015 – ident: ref9 doi: 10.1109/TPWRD.2004.837836 – ident: ref13 doi: 10.1109/TPWRD.2005.844307 – year: 0 ident: ref18 article-title: Sustainable deep learning at grid edge for real-time high impedance fault detection publication-title: IEEE Trans Sustain Comput – ident: ref11 doi: 10.1016/j.ijepes.2009.01.005 – ident: ref5 doi: 10.1109/TPWRD.2006.874581 – ident: ref2 doi: 10.1109/TIA.2015.2434993 – ident: ref10 doi: 10.1109/TPWRD.2005.852367 – ident: ref20 doi: 10.1109/TPWRD.2019.2901634 – ident: ref6 doi: 10.1016/j.epsr.2011.01.022 – ident: ref3 doi: 10.1109/CCDC.2018.8408033 – ident: ref12 doi: 10.1109/TPWRD.2007.911125 – volume: 154 start-page: 474 year: 2018 ident: ref19 article-title: High impedance fault detection in power distribution systems using wavelet transform and evolving neural network publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2017.08.039 |
| SSID | ssj0000816957 |
| Score | 2.2934558 |
| Snippet | Most high resistance faults in distribution network are caused by overhead lines contacting with high impedance objects. It is difficult to identify the high... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109363 |
| SubjectTerms | Algorithms Classification algorithms Fault classification Fault detection Fault diagnosis Feature extraction HHT High impedance High resistance high resistance fault identification Hilbert transformation Impedance improved negative selection algorithm Neural networks Power lines Resistance Signal processing algorithms small samples Transforms Wavelet analysis |
| SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library (LUT) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHvgoiUJAPHJutN3ES-7hdWFVI7QGo6M2KnXGpCLvVbiIEv56x4w0tIMQtihzH0Rtn3tjjNwCvp9JhJWqZoqPpJlzFU4lNkZaGezU1Qr3xO7qnZ-XJuXh3UVzswOF4FgYRQ_IZTvxl2MtvVrb3S2VHspKK6PIu7FayHM5qjespvoCEKqooLDTl6mg2n9M3-OwtNSGnlhdBCfGX8wka_bGoyi1-eadfXtffv9Vte8PVLB7A6XaQQ4bJl0nfmYn98Zt-4_9-xUO4Hzknmw1G8gh2cPkY7t1QItyH9Yyd4WUQAWcfQmkcwovN2svV-qr7_DU9JmfXsOFUr4vLfGyxTexixHzZGy_BG6tnUWchu5wt6r7tNuwTdcJ8Sgl7jxvPWMnUnsD54u3H-UkayzGkVnDZpeTHXEYRrVDk4LjLChTOcTTOEOl0pmoyax2xA2GQgu5aCmvRq5ehQlsaevQp7C1XS3wGLM9yM1W2bGqK5yhmkjY3AnleY0EESGQJZFuctI1a5b5kRqtDzMKVHsDVHlwdwU3gcHzoepDq-HfzY28AY1Ovsx1uEFg6TlvdZE7Wjigcz62Q9EeW0qmKrssCXVVNE9j3AI-dRGwTONiak47_hI3OREHhmyCOlUA6mtgfQ61DocxbQ33-97e8gLu-1bAgdAB73brHl0SROvMqzI2fEE0NAQ priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagOyAODBiIwEA-cMSpkziJc8w6qgmJCgEV42TFzvOYCF3VpgL26_fsuGUDCQluVuRYjr7nvO_Zz98j5GUiLZSikQwsLjdhS84ktDkrNHdqaoh66050386Kk7l4c5qfhg03fxcGAHzyGcSu6c_yz6H7UY6L1ImnVWPpFNV5MuaylBWS53jZ2ttkr8iRi4_I3nz2rv7sKsolRcUyfzb5LAhrjhtfg9Dlc1Uxurks99qIv9yRV-0PZVZuMM47m8Wy-fm96bprzme6T9R22kPOydd40-vYXP6m6Pj_33Wf3Au8lNaDIT0gt2DxkNy9plZ4QFY1ncGZFwqnH3z5HMSU1t3Zxeq8__KNHaFDbOlw89eGrUA63SZ_UWTH9NjJ9IYKWziYz0Cn02bT9Wv6CQehLu2Evoe1Y7Vojo_IfPr64-SEhZINzAgue4a-zqYY9YoKnSC3aQ7CWg7aaiSmVpdtaoxFBiE0YGDeSIGIOIUzqMAUGl99TEaLiwU8ITRLM51UpmgbjPkwrpIm0wJ41kCOJEmkEUm3yCkT9MxdWY1O-biGV6qeTNCIlYNbBbgj8mr30nKQ8_h79yNnEruuTovbP0D4VFjaqk2tbCzSPJ4ZIfGvLaWtSmwXOdiyTCJy4CDfDRLwjcjh1sBU-G-sVSpyDPEE8rCIsJ3R_THVwZBvTPXpP_Y_JKN-tYHnSKl6_SKsmyvw6xsM priority: 102 providerName: Unpaywall |
| Title | A Negative Selection Algorithm-Based Identification Framework for Distribution Network Faults With High Resistance |
| URI | https://ieeexplore.ieee.org/document/8789428 https://www.proquest.com/docview/2455594215 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08789428.pdf https://doaj.org/article/d2f8af93703c4808888f973c465ef771 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQeygcqtKCSD9WPnAk1Os4iX1Mt11VSKwQsKKcLNsZl0PYVt1dVf33HTveZatKcOEWRfFo4hln5jnjN4S8H0oPtTAyB4_LTfia5RLaMq8sC2xqaPU2_NH9PKkup-LTVXm10eor1IT19MD9xJ223EvjMYiywgmJa0JKr2q8rkrwdTw9zplUG2AqfoPlsFJlnWiGhkydNqMRvlGo5VIfMcQVZeRF_BOKImN_arHyJNvcWc5uzcO96bqNwDPeI7spY6RNr-lr8gJm--TVBo_gAblr6ASuI4U3_RYb2-Bs06a7vkHo_-t3foahqqX9mVyfNunoeFWWRTFvpeeBQDf1vkJhsTacjs2yW8zpDxRCQ0EI_QrzkG-io7wh0_HF99Flnpop5E4wucgxCnmOeFQoDE_M8xKE9wyst5gyelu33DmPsV1YQMhspHAOAvcYKHCVxaFvydbsZgbvCC14YYfKVa1BNIaIR7rCCmCFgRLTF8Ezwlfzql1iGg8NLzodEQdTujeGDsbQyRgZ-bAedNsTbfz98bNgsPWjgSU73kDf0cl39L98JyMHwdxrIbKWCuFYRo5X5tdpRc81FyWCL4EZUkbytUs8U9XENpdPVD38H6oekZdBZr_5c0y2FndLOMF0aGEH0fMH8eTigGxPJ1-an4_-awVQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4zA48GsgAgN84Lh0aWI3zrErVAXWHmATu1mx8zwQoZ3aRAj-ep4dN2yAELcoih1H33Pe9-zn7wG8HEqLOS9ljJamG7d5EkusRDzSiVNTI9Qrt6M7X4xmZ_ztuTjfgcP-LAwi-uQzHLhLv5dfrUzrlsqOZC4Loss34KbgnIvutFa_ouJKSBQiD9JCw6Q4Gk8m9BUuf6sYkFvLhNdC_OV-vEp_KKtyjWHutcvL8vu3sq6vOJvpXZhvh9nlmHwZtI0emB-_KTj-73fcgzuBdbJxZyb3YQeXD-D2FS3CfViP2QIvvAw4--CL4xBibFxfrNafm09f42NydxXrzvXasNDHptvULkbcl71yIryhfhZ15vPL2bRs62bDPlInzCWVsPe4cZyVjO0hnE1fn05mcSjIEBueyCYmT2ZTiml5QS4usalAbm2C2mqinVbnVWqMJX7ANVLYXUpuDDr9MizQjDQ1fQS7y9USHwPL0kwPCzOqSoroKGqSJtMck6xEQRSIpxGkW5yUCWrlrmhGrXzUkhSqA1c5cFUAN4LDvtFlJ9bx78ePnQH0jzqlbX-DwFJh4qoqtbK0ROKSzHBJ_2QpbZHT9UigzfNhBPsO4L6TgG0EB1tzUuGvsFEpFxTAcWJZEcS9if0x1NKXyrw21Cd_f8sL2Judzk_UyZvFu6dwy7XolocOYLdZt_iMCFOjn_t58hNBZhBO |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLagOyAODBiIwEA-cMSpkziJc8w6qgmJCgEV42TFzvOYCF3VpgL26_fsuGUDCQluVuRYjr7nvO_Zz98j5GUiLZSikQwsLjdhS84ktDkrNHdqaoh66050386Kk7l4c5qfhg03fxcGAHzyGcSu6c_yz6H7UY6L1ImnVWPpFNV5MuaylBWS53jZ2ttkr8iRi4_I3nz2rv7sKsolRcUyfzb5LAhrjhtfg9Dlc1Uxurks99qIv9yRV-0PZVZuMM47m8Wy-fm96bprzme6T9R22kPOydd40-vYXP6m6Pj_33Wf3Au8lNaDIT0gt2DxkNy9plZ4QFY1ncGZFwqnH3z5HMSU1t3Zxeq8__KNHaFDbOlw89eGrUA63SZ_UWTH9NjJ9IYKWziYz0Cn02bT9Wv6CQehLu2Evoe1Y7Vojo_IfPr64-SEhZINzAgue4a-zqYY9YoKnSC3aQ7CWg7aaiSmVpdtaoxFBiE0YGDeSIGIOIUzqMAUGl99TEaLiwU8ITRLM51UpmgbjPkwrpIm0wJ41kCOJEmkEUm3yCkT9MxdWY1O-biGV6qeTNCIlYNbBbgj8mr30nKQ8_h79yNnEruuTovbP0D4VFjaqk2tbCzSPJ4ZIfGvLaWtSmwXOdiyTCJy4CDfDRLwjcjh1sBU-G-sVSpyDPEE8rCIsJ3R_THVwZBvTPXpP_Y_JKN-tYHnSKl6_SKsmyvw6xsM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Negative+Selection+Algorithm-Based+Identification+Framework+for+Distribution+Network+Faults+With+High+Resistance&rft.jtitle=IEEE+access&rft.au=Song%2C+Xiaohui&rft.au=Gao%2C+Fei&rft.au=Chen%2C+Zhenning&rft.au=Liu%2C+Wenjing&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=109363&rft.epage=109374&rft_id=info:doi/10.1109%2FACCESS.2019.2933566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2933566 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |