An Efficient Marine Predators Algorithm for Feature Selection
Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic op...
Saved in:
| Published in | IEEE access Vol. 9; pp. 60136 - 60153 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3073261 |
Cover
| Abstract | Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic optimization algorithms may be beneficial. This paper proposes a novel approach to dimension reduction in feature selection. As a seminal attempt, this work uses binary variants of the recent Marine Predators Algorithm (MPA) to select the optimal feature subset to improve classification accuracy. MPA is a new and novel nature-inspired metaheuristic. This research proposes an algorithm that is a hybridization between MPA and k-Nearest Neighbors (k-NN) called MPA-KNN. K-Nearest Neighbors (k-NN) is used to evaluate the selected features on medical datasets with feature sizes ranging from tiny to massive. The proposed methods are evaluated on 18 well-known UCI medical dataset benchmarks and compared with eight well-regarded metaheuristic wrapper-based approaches. The core exploratory and exploitative processes are adapted in MPA to select the optimal and meaningful features for achieving the most accurate classification. The results show that the proposed MPA-KNN approach had a remarkable capability to select the optimal and significant features. It performed better than the well-established metaheuristic algorithms we tested. The algorithms we used for comparison are Grey Wolf Optimizer (GWO), MothFlame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Slap Swarm Algorithm (SSA), Butterfly Optimization Algorithm (BFO), and Harris Hawks Optimization (HHO). This paper is the first work that implements MPA for Feature Selection problems. The results ensure that the proposed MPA-KNN approach has a remarkable capability to select the optimal and significant features and performed better than several metaheuristic algorithms. MPA-KNN achieves the best averages accuracy, Sensitivity, and Specificity rates of all datasets. |
|---|---|
| AbstractList | Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic optimization algorithms may be beneficial. This paper proposes a novel approach to dimension reduction in feature selection. As a seminal attempt, this work uses binary variants of the recent Marine Predators Algorithm (MPA) to select the optimal feature subset to improve classification accuracy. MPA is a new and novel nature-inspired metaheuristic. This research proposes an algorithm that is a hybridization between MPA and k-Nearest Neighbors (k-NN) called MPA-KNN. K-Nearest Neighbors (k-NN) is used to evaluate the selected features on medical datasets with feature sizes ranging from tiny to massive. The proposed methods are evaluated on 18 well-known UCI medical dataset benchmarks and compared with eight well-regarded metaheuristic wrapper-based approaches. The core exploratory and exploitative processes are adapted in MPA to select the optimal and meaningful features for achieving the most accurate classification. The results show that the proposed MPA-KNN approach had a remarkable capability to select the optimal and significant features. It performed better than the well-established metaheuristic algorithms we tested. The algorithms we used for comparison are Grey Wolf Optimizer (GWO), MothFlame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Slap Swarm Algorithm (SSA), Butterfly Optimization Algorithm (BFO), and Harris Hawks Optimization (HHO). This paper is the first work that implements MPA for Feature Selection problems. The results ensure that the proposed MPA-KNN approach has a remarkable capability to select the optimal and significant features and performed better than several metaheuristic algorithms. MPA-KNN achieves the best averages accuracy, Sensitivity, and Specificity rates of all datasets. |
| Author | Ibraheem, Shimaa A. Elminaam, Diaa Salama Abd Nabil, Ayman Houssein, Essam H. |
| Author_xml | – sequence: 1 givenname: Diaa Salama Abd orcidid: 0000-0002-1544-9906 surname: Elminaam fullname: Elminaam, Diaa Salama Abd email: diaa.salama@fci.bu.edu.eg organization: Faculty of Computers and Artificial Intelligence, Benha University, Banha, Egypt – sequence: 2 givenname: Ayman orcidid: 0000-0001-9575-6860 surname: Nabil fullname: Nabil, Ayman organization: Faculty of Computers and Information, Misr International University, Cairo, Egypt – sequence: 3 givenname: Shimaa A. surname: Ibraheem fullname: Ibraheem, Shimaa A. organization: Computer Science Department, Higher Technological Institute, 10th of Ramadan City, Egypt – sequence: 4 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. organization: Faculty of Computers and Information, Minia University, Minya, Egypt |
| BookMark | eNqFkU1rGzEQhkVJoambX5DLQs929bkrHXowxmkDCS24PYtZaZTKbFauJFPy77PuhlDSQ3SRNMzzDHr1npyNaURCLhldMUbNp_Vms93tVpxythK0E7xlb8g5Z61ZCiXas3_O78hFKXs6LT2VVHdOPq_HZhtCdBHH2txCjiM23zN6qCmXZj3cpRzrr_smpNxcIdRjxmaHA7oa0_iBvA0wFLx42hfk59X2x-br8ubbl-vN-mbpJNV1qTkIg8553gbvJfKgoTUe-gCq0yjcdKMYHBjnwXctB2d8b4CaoGWLvViQ69nrE-ztIcd7yA82QbR_CynfWcg1ugGtg15pLbvARCs9p71USgeusRPK9FJOLjm7juMBHv7AMDwLGbWnRC04h6XYU6L2KdEJ-zhjh5x-H7FUu0_HPE6vtlyxjgqjps4FEXOXy6mUjOE_9_xbL93mBeVihVPANUMcXmEvZzYi4vM0I6lkSopHK_qi1Q |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_app122211829 crossref_primary_10_1007_s12530_024_09580_x crossref_primary_10_1002_cpe_7381 crossref_primary_10_48084_etasr_8274 crossref_primary_10_1007_s42235_024_00580_w crossref_primary_10_1016_j_rineng_2024_101859 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1007_s13369_024_08755_7 crossref_primary_10_1615_IntJMultCompEng_2024051541 crossref_primary_10_3390_app14051956 crossref_primary_10_1016_j_eswa_2022_117217 crossref_primary_10_1016_j_compbiomed_2023_107003 crossref_primary_10_3390_acoustics6020024 crossref_primary_10_3390_sym15091765 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_1016_j_knosys_2023_111352 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_3390_sym15081610 crossref_primary_10_1007_s00704_024_05313_x crossref_primary_10_1007_s00521_023_08772_x crossref_primary_10_1109_ACCESS_2024_3388497 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_1109_ACCESS_2022_3143802 crossref_primary_10_3390_aerospace10100875 crossref_primary_10_3390_math11234716 crossref_primary_10_1016_j_knosys_2022_110192 crossref_primary_10_1177_14613484231183938 crossref_primary_10_1007_s11831_023_09900_5 crossref_primary_10_3390_jmse11071411 crossref_primary_10_1016_j_asoc_2023_109987 crossref_primary_10_1016_j_compbiomed_2021_105152 crossref_primary_10_3390_app11146516 crossref_primary_10_3390_pr11030924 crossref_primary_10_1016_j_aej_2021_11_011 crossref_primary_10_1109_ACCESS_2023_3287484 crossref_primary_10_1007_s44196_024_00458_z crossref_primary_10_3390_app13020906 crossref_primary_10_3390_math10142396 crossref_primary_10_1016_j_jocs_2022_101867 crossref_primary_10_1007_s00500_023_09062_3 crossref_primary_10_1016_j_bspc_2024_106515 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_1109_ACCESS_2023_3290895 crossref_primary_10_1109_TGRS_2024_3422475 crossref_primary_10_1111_exsy_13079 crossref_primary_10_3233_IDT_240336 crossref_primary_10_3390_w16081134 crossref_primary_10_1007_s11063_023_11171_x crossref_primary_10_23919_ICN_2024_0001 crossref_primary_10_1016_j_knosys_2024_112589 crossref_primary_10_1007_s41939_023_00318_x crossref_primary_10_1007_s42235_023_00400_7 crossref_primary_10_1016_j_asej_2024_102686 crossref_primary_10_1016_j_mlwa_2023_100471 crossref_primary_10_3390_biomimetics8060454 crossref_primary_10_1109_ACCESS_2021_3083531 crossref_primary_10_3390_app122111296 crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_1109_ACCESS_2021_3117853 crossref_primary_10_1016_j_enconman_2023_117057 crossref_primary_10_1038_s41598_024_71027_9 crossref_primary_10_3390_app13053223 crossref_primary_10_3390_computation11050091 crossref_primary_10_1007_s12652_021_03621_y crossref_primary_10_1016_j_asej_2022_101728 crossref_primary_10_1016_j_compbiomed_2022_105675 crossref_primary_10_1109_ACCESS_2021_3105485 crossref_primary_10_3390_math10152675 crossref_primary_10_1016_j_bspc_2023_104718 crossref_primary_10_1109_ACCESS_2024_3389489 crossref_primary_10_1109_ACCESS_2021_3088783 crossref_primary_10_17780_ksujes_1413432 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_1080_21681163_2023_2213783 crossref_primary_10_3389_fninf_2022_956423 |
| Cites_doi | 10.1023/A:1025667309714 10.1007/BF00116251 10.1007/s10489-018-1158-6 10.1109/ACCESS.2020.3007928 10.1007/s00521-015-2037-2 10.1103/PhysRevE.49.4677 10.1038/s41598-020-71294-2 10.1109/ICSMC.1997.637339 10.1016/j.knosys.2018.04.025 10.1007/978-981-32-9990-0_13 10.1109/EUROCON.2017.8011255 10.1016/j.eswa.2019.112898 10.1038/44831 10.1145/3231053.3231072 10.1007/978-3-319-95162-1_30 10.1016/j.asoc.2015.10.022 10.1002/9780470496916 10.5343/bms.2010.1057 10.1515/jisys-2019-0062 10.1016/j.neucom.2016.03.101 10.1007/s00500-007-0193-8 10.3390/ijerph17103520 10.1016/j.neucom.2017.11.077 10.1016/j.patrec.2008.11.012 10.1016/j.eswa.2013.09.004 10.1016/j.eswa.2019.113103 10.1016/j.eswa.2020.113377 10.1016/j.knosys.2009.11.020 10.1016/j.jmrt.2020.08.022 10.1109/TCYB.2016.2549639 10.1155/2014/203545 10.1016/j.procs.2017.12.141 10.1007/978-981-10-8863-6_9 10.3233/JIFS-16798 10.1016/S0004-3702(97)00043-X 10.1016/j.knosys.2018.05.009 10.1016/j.compchemeng.2019.106656 10.3390/informatics6020021 10.1007/s42064-018-0053-6 10.1016/j.eswa.2020.113364 10.1016/j.neucom.2017.04.053 10.1109/ACCESS.2020.3033757 10.1038/nature06518 10.1109/ACCESS.2020.2964321 10.1057/jors.2013.72 10.14704/WEB/V17I1/WEB17003 10.1016/j.asoc.2017.11.006 10.1016/j.advengsoft.2017.07.002 10.1007/s12065-019-00212-x 10.1109/TNNLS.2014.2314123 10.1038/nature09116 10.1016/j.jpowsour.2019.05.089 10.1007/978-1-84882-983-1_15 10.1016/j.eswa.2019.02.033 10.1890/04-1806 10.1109/TPAMI.2004.105 10.1109/TNNLS.2018.2884487 10.1016/j.eswa.2015.07.007 10.1155/2019/6291968 10.1016/j.knosys.2016.07.026 10.1016/j.plrev.2008.03.002 10.1016/j.cmpb.2016.07.029 10.1016/j.future.2020.03.055 10.1109/ACCESS.2019.2906757 10.1016/j.jmrt.2019.09.060 10.1007/s12559-019-09668-6 10.1109/TAI.1995.479783 10.1007/s00521-019-04570-6 10.1145/2996357 10.1016/j.aci.2018.04.001 10.1038/scientificamerican0792-66 10.3390/a12040080 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2021.3073261 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 60153 |
| ExternalDocumentID | oai_doaj_org_article_cab58847f1364d20b4558f28e7359b44 10.1109/access.2021.3073261 10_1109_ACCESS_2021_3073261 9404154 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-82a39eccd26fdd4e2f8a69dabfa578e3ca690efca9cdad762ac9db9a09f846eb3 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:27:06 EDT 2025 Tue Aug 19 21:01:21 EDT 2025 Mon Jun 30 04:43:09 EDT 2025 Wed Oct 01 04:44:04 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Wed Aug 27 02:30:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-82a39eccd26fdd4e2f8a69dabfa578e3ca690efca9cdad762ac9db9a09f846eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9575-6860 0000-0002-1544-9906 0000-0002-8127-7233 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09404154.pdf |
| PQID | 2517039507 |
| PQPubID | 4845423 |
| PageCount | 18 |
| ParticipantIDs | ieee_primary_9404154 proquest_journals_2517039507 unpaywall_primary_10_1109_access_2021_3073261 crossref_primary_10_1109_ACCESS_2021_3073261 crossref_citationtrail_10_1109_ACCESS_2021_3073261 doaj_primary_oai_doaj_org_article_cab58847f1364d20b4558f28e7359b44 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 ref16 ref19 ref51 ref50 dheeru (ref78) 2017 nie (ref17) 2010 ref46 ref45 ref48 ref47 ref42 ref41 han (ref9) 2015; 26 ref44 ref43 ref49 ref8 ref7 talbi (ref18) 2009; 74 ref5 ref40 ref35 ref34 ref37 ref36 ref75 ref31 ref30 li (ref4) 2017; 50 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 quinlan (ref13) 1993 krithiga (ref26) 2020; 17 ref71 ref70 ref73 ref72 zamani (ref3) 2016; 14 einstein (ref74) 1956 ref68 ref24 liu (ref6) 2012; 454 ref67 ref23 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 too (ref54) 2019; 6 ref60 ref62 ref61 |
| References_xml | – ident: ref14 doi: 10.1023/A:1025667309714 – ident: ref12 doi: 10.1007/BF00116251 – ident: ref30 doi: 10.1007/s10489-018-1158-6 – ident: ref68 doi: 10.1109/ACCESS.2020.3007928 – ident: ref24 doi: 10.1007/s00521-015-2037-2 – ident: ref73 doi: 10.1103/PhysRevE.49.4677 – ident: ref67 doi: 10.1038/s41598-020-71294-2 – ident: ref21 doi: 10.1109/ICSMC.1997.637339 – ident: ref7 doi: 10.1016/j.knosys.2018.04.025 – ident: ref23 doi: 10.1007/978-981-32-9990-0_13 – ident: ref53 doi: 10.1109/EUROCON.2017.8011255 – ident: ref5 doi: 10.1016/j.eswa.2019.112898 – ident: ref61 doi: 10.1038/44831 – ident: ref22 doi: 10.1145/3231053.3231072 – ident: ref27 doi: 10.1007/978-3-319-95162-1_30 – ident: ref75 doi: 10.1016/j.asoc.2015.10.022 – volume: 74 year: 2009 ident: ref18 publication-title: Metaheuristics From Design to Implementation doi: 10.1002/9780470496916 – ident: ref72 doi: 10.5343/bms.2010.1057 – ident: ref62 doi: 10.1515/jisys-2019-0062 – ident: ref47 doi: 10.1016/j.neucom.2016.03.101 – ident: ref46 doi: 10.1007/s00500-007-0193-8 – ident: ref66 doi: 10.3390/ijerph17103520 – ident: ref1 doi: 10.1016/j.neucom.2017.11.077 – start-page: 1813 year: 2010 ident: ref17 article-title: Efficient and robust feature selection via joint 1-norms minimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref50 doi: 10.1016/j.patrec.2008.11.012 – ident: ref51 doi: 10.1016/j.eswa.2013.09.004 – volume: 14 start-page: 1243 year: 2016 ident: ref3 article-title: Feature selection based on whale optimization algorithm for diseases diagnosis publication-title: Int J Comput Sci Inf Secur – ident: ref58 doi: 10.1016/j.eswa.2019.113103 – year: 2017 ident: ref78 article-title: Uci machine learning repository – ident: ref35 doi: 10.1016/j.eswa.2020.113377 – ident: ref10 doi: 10.1016/j.knosys.2009.11.020 – volume: 454 year: 2012 ident: ref6 publication-title: Feature Selection for Knowledge Discovery and Data Mining – ident: ref69 doi: 10.1016/j.jmrt.2020.08.022 – ident: ref52 doi: 10.1109/TCYB.2016.2549639 – ident: ref43 doi: 10.1155/2014/203545 – ident: ref44 doi: 10.1016/j.procs.2017.12.141 – ident: ref25 doi: 10.1007/978-981-10-8863-6_9 – ident: ref38 doi: 10.3233/JIFS-16798 – ident: ref15 doi: 10.1016/S0004-3702(97)00043-X – ident: ref29 doi: 10.1016/j.knosys.2018.05.009 – ident: ref57 doi: 10.1016/j.compchemeng.2019.106656 – volume: 6 start-page: 21 year: 2019 ident: ref54 article-title: A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection publication-title: Informatics doi: 10.3390/informatics6020021 – ident: ref65 doi: 10.1007/s42064-018-0053-6 – ident: ref59 doi: 10.1016/j.eswa.2020.113364 – year: 1993 ident: ref13 publication-title: C4 5 Programs for Machine Learning – ident: ref55 doi: 10.1016/j.neucom.2017.04.053 – ident: ref39 doi: 10.1109/ACCESS.2020.3033757 – ident: ref40 doi: 10.1038/nature06518 – ident: ref36 doi: 10.1109/ACCESS.2020.2964321 – ident: ref48 doi: 10.1057/jors.2013.72 – volume: 17 start-page: 260 year: 2020 ident: ref26 article-title: A novel hybrid algorithm to classify spam profiles in Twitter publication-title: Webology doi: 10.14704/WEB/V17I1/WEB17003 – ident: ref49 doi: 10.1016/j.asoc.2017.11.006 – ident: ref28 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref31 doi: 10.1007/s12065-019-00212-x – volume: 26 start-page: 252 year: 2015 ident: ref9 article-title: Semisupervised feature selection via spline regression for video semantic recognition publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2314123 – ident: ref41 doi: 10.1038/nature09116 – ident: ref63 doi: 10.1016/j.jpowsour.2019.05.089 – ident: ref70 doi: 10.1007/978-1-84882-983-1_15 – year: 1956 ident: ref74 publication-title: Investigations on the Theory of the Brownian Movement – ident: ref76 doi: 10.1016/j.eswa.2019.02.033 – ident: ref71 doi: 10.1890/04-1806 – ident: ref16 doi: 10.1109/TPAMI.2004.105 – ident: ref8 doi: 10.1109/TNNLS.2018.2884487 – ident: ref77 doi: 10.1016/j.eswa.2015.07.007 – ident: ref32 doi: 10.1155/2019/6291968 – ident: ref45 doi: 10.1016/j.knosys.2016.07.026 – ident: ref42 doi: 10.1016/j.plrev.2008.03.002 – ident: ref19 doi: 10.1016/j.cmpb.2016.07.029 – ident: ref34 doi: 10.1016/j.future.2020.03.055 – ident: ref56 doi: 10.1109/ACCESS.2019.2906757 – ident: ref64 doi: 10.1016/j.jmrt.2019.09.060 – ident: ref2 doi: 10.1007/s12559-019-09668-6 – ident: ref11 doi: 10.1109/TAI.1995.479783 – ident: ref37 doi: 10.1007/s00521-019-04570-6 – volume: 50 start-page: 1 year: 2017 ident: ref4 article-title: Feature selection: A data perspective publication-title: ACM Comput Surv doi: 10.1145/2996357 – ident: ref60 doi: 10.1016/j.aci.2018.04.001 – ident: ref20 doi: 10.1038/scientificamerican0792-66 – ident: ref33 doi: 10.3390/a12040080 |
| SSID | ssj0000816957 |
| Score | 2.4972434 |
| Snippet | Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 60136 |
| SubjectTerms | Accuracy Algorithms Classification Datasets Evaluation exploitation phase Feature extraction Feature selection Genetic algorithms Heuristic methods k-nearest neighbors Machine learning algorithms marine predators algorithm Medical diagnostic imaging metaheuristics Microprocessors Optimization Optimization algorithms Particle swarm optimization Predators Prediction algorithms Trigonometric functions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA_Fl9YH0ap4fpQ8-NjVbDab3Xk8D0UKSqEVfAuTryqcd3LeUfrfO8muxx2F-tLHDdkw85tJZmbZ_IaxU8BKVxRHiiogFiqiKkBAU1hLDoDWlj7zzN7c6us79e2-vl9p9ZX-CevogTvgzh3adJeyiWWllZfCqrpuo2xDU9VgVWYCFS2sFFP5DG5LDXXT0wyVAs6HoxFpRAWhLM-SX0tdroWizNjft1hZyzY_LibP-Oc3jscrgedqm231GSMfdpLusA9h8pltrvAI7jIq4vll5oKgEMJvMN3o499nwaeK-oUPx7-ms8f5wxOnDJWnpG8xC_xH7oBDZtljd1eXP0fXRd8XoXBKtPOilVgBQe-ljt6rIGOLGjzaiLT_QuXoSYToEJxHT6cdOvAWUECkbIOq5322MZlOwgHjELEtSxdBN055SpZqYUHLhLH0CpsBk28QGdeThqfeFWOTiwcBpsPVJFxNj-uAfV2-9NxxZvx7-kXCfjk1EV7nAXID07uBec8NBmw3WW65CKjEPUDDx2-WNP3mfDGJpU0kVUm9Ymndv0TF3LFyTdTD_yHqEfuU1uy-4xyzjflsEU4os5nbL9mJXwG8B-_k priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHChTEQkE-cGy2ieM48YHDdtWqQlqEBJV6s8ZfgLpkq20iRH99bccbdQEhbknkJDN-43jG8bwBeCew5KWfR7LSImbMIctELupMKW8AqFRhIs_s4iM_v2AfLqvLHTgac2GstXHzmZ2Gw_gv36x0H5bKjgULCeVsF3brhg-5WuN6SiggIao6EQsVuTiezedeBx8C0mIaLJnyYmvyiRz9qajKln_5oG-v8ddPXC7vTTVn-7DYCDnsMLma9p2a6tvf-Bv_V4sn8Dj5nGQ2GMlT2LHtM3h0j4nwAN7PWnIa2ST8vWSBISeQfFpbE2LyGzJbfl2tv3fffhDv45LgNvZrSz7HGjoe2OdwcXb6ZX6epcoKmWZ502UNxVJ48AzlzhhmqWuQC4PKoR_BttT-LLdOo9AGjf9eohZGCcyF8_6Kj79fwF67au1LIMJhUxTaCV5rZry7VeVKcMqqqqGGYT0BuulyqRPteKh-sZQx_MiFHHCSASeZcJrA0XjT9cC68e_mJwHLsWmgzI4XfL_LNAKlRhWScmtXlJwZmqsgoqONrctKKMYmcBCwGh-SYJrA4cYyZBreNzLwvOVBVa9eNlrLH6JirHm5Jeqrv7_lNTwMrYa1nUPY69a9feO9nU69jWZ-B-FN-jk priority: 102 providerName: IEEE |
| Title | An Efficient Marine Predators Algorithm for Feature Selection |
| URI | https://ieeexplore.ieee.org/document/9404154 https://www.proquest.com/docview/2517039507 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09404154.pdf https://doaj.org/article/cab58847f1364d20b4558f28e7359b44 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAguo0qDzySNnEcJ37gIVSbJqRNk6DSeLLOv2BayKouFdv-es6uW60gIcFbEjnWWd_Zd2f7viPknYCCF2hH0sICpMwBS0UmqlQpVABQKjeBZ_b0jJ_M2KeL8iJuuIVcGGttuHxmx_4xnOVf2va2mnDqydPERGDXaBYnnviN-X2RuXGPyQ4v0RcfkJ3Z2Xnz1VeUyzkKEM4mDyKx5gRCDUIMCmk-9rpNeb5ljgJrfyyzsuVxPll2c7j7CW37wPgc7xK5Fnt15-RqvOzVWN__xuj4_-N6Tp5FvzRpVor0gjyy3Uvy9AFb4R750HTJUWCcQEOVnILPG0zOF9b4uP0madpv14vL_vuPBP3gxLuWy4VNPoc6Owj-KzI7PvoyPUlj9YVUs6zu05pCIRBgQ7kzhlnqauDCgHKAs9wWGt8y6zQIbcDgmgpaGCUgEw59GozRX5NBd93ZNyQRDuo8107wSjODLlmZKcEpK8uaGgbVkNA1CFJHanJfIaOVIUTJhGymU9RH6ZGTEbkheb_5ab5i5vh7848e3U1TT6sdPiASMs5SqUH5xN3K5QVnhmbKi-hobauiFIqxIdnz6G06iVANyeFaV2RcAm6k54LL_FBxeOlGf_4QdaWTW6Lu_2P7QzLoF0v7Fr2jXo3CrsIoJDKO4nT4BbdaClI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXUhQI-cGy2ieM8fOCwrFot0K2QaKXerPGrILbZapsIwa_HdrxRFxDilkR2MpNvHM84nm8A3nDMy9zNI0luEBNmkSU85VUipTMAlDLTgWd2flrOztmHi-JiCw6GXBhjTNh8Zsb-MPzL10vV-aWyQ858Qjm7A3cLxljRZ2sNKyq-hAQvqkgtlKX8cDKdOi1cEEizsbdlWmYb009g6Y9lVTY8zJ2uucYf33GxuDXZHD-E-VrMfo_Jt3HXyrH6-RuD4__q8QgeRK-TTHozeQxbpnkC929xEe7C20lDjgKfhOtL5uizAsmnldE-Kr8hk8XlcvW1_XJFnJdLvOPYrQz5HKroOGifwvnx0dl0lsTaColiad0mNcWcO_g0La3WzFBbY8k1SotuDJtcubPUWIVcadTui4mKa8kx5dZ5LC4CfwbbzbIxe0C4xTrLlOVlpZh2DleRSl5SVhQ11QyrEdD1KxcqEo_7-hcLEQKQlIseJ-FxEhGnERwMna573o1_N3_nsRyaetLscMG9dxHHoFAofVpuZbO8ZJqm0otoaW2qvOCSsRHseqyGm0SYRrC_tgwRB_iN8ExvqVfVqZcM1vKHqBiqXm6I-vzvT3kNO7Oz-Yk4eX_68QXc8z36lZ592G5XnXnpfJ9Wvgom_wsd7f2G |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBXEloJ84Eh2E8dx4gOHsGpVIbWqBCuVkzV-QUVIV9usCvx6xl7vqgsSEtySyLHG-saez69vCHktoRQlxpGsdAAZ98Azmcs60xodALQubNSZPT0TJ3P-_qK6SAtu8S6Mcy4ePnOT8Bj38i9d972eChbE0-RUYtUYFqdB-I2HdZGF9XfJnqiQi4_I3vzsvP0UMsoVAg2Ie5MvkrDmFGIOQpwUsmISfJuJYiccRdX-lGZlh3HeW_UL-HEDXXcr-Bw_JGpj9vrMydfJatAT8_M3Rcf_b9cj8iDxUtquHekxueP6J-T-LbXCffK27elRVJzAQEVPIdwbpOdLZ8O8_Zq23eer5eXw5RtFHkwDtVwtHf0Q8-wg-E_J_Pjo4-wkS9kXMsPzZsgaBqVEgC0T3lrumG9ASAvaA_ZyVxp8y503II0Fi2MqGGm1hFx65DQ4R39GRv1V754TKj00RWG8FLXhFilZlWspGK-qhlkO9ZiwDQjKJGnykCGjU3GKkkvVzmbojyogpxJyY_Jm-9Nirczx9-LvArrbokFWO35AJFTqpcqADhd3a1-UgluW62CiZ42ry0pqzsdkP6C3rSRBNSaHG19RaQi4VkELLg9NxeZlW__5w9S1T-6YevCP5Q_JaFiu3EtkR4N-lbrAL0zkCFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Marine+Predators+Algorithm+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Elminaam%2C+Diaa+Salama+Abd&rft.au=Nabil%2C+Ayman&rft.au=Ibraheem%2C+Shimaa+A.&rft.au=Houssein%2C+Essam+H.&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=60136&rft.epage=60153&rft_id=info:doi/10.1109%2FACCESS.2021.3073261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3073261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |