An Efficient Marine Predators Algorithm for Feature Selection

Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic op...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 60136 - 60153
Main Authors Elminaam, Diaa Salama Abd, Nabil, Ayman, Ibraheem, Shimaa A., Houssein, Essam H.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3073261

Cover

Abstract Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic optimization algorithms may be beneficial. This paper proposes a novel approach to dimension reduction in feature selection. As a seminal attempt, this work uses binary variants of the recent Marine Predators Algorithm (MPA) to select the optimal feature subset to improve classification accuracy. MPA is a new and novel nature-inspired metaheuristic. This research proposes an algorithm that is a hybridization between MPA and k-Nearest Neighbors (k-NN) called MPA-KNN. K-Nearest Neighbors (k-NN) is used to evaluate the selected features on medical datasets with feature sizes ranging from tiny to massive. The proposed methods are evaluated on 18 well-known UCI medical dataset benchmarks and compared with eight well-regarded metaheuristic wrapper-based approaches. The core exploratory and exploitative processes are adapted in MPA to select the optimal and meaningful features for achieving the most accurate classification. The results show that the proposed MPA-KNN approach had a remarkable capability to select the optimal and significant features. It performed better than the well-established metaheuristic algorithms we tested. The algorithms we used for comparison are Grey Wolf Optimizer (GWO), MothFlame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Slap Swarm Algorithm (SSA), Butterfly Optimization Algorithm (BFO), and Harris Hawks Optimization (HHO). This paper is the first work that implements MPA for Feature Selection problems. The results ensure that the proposed MPA-KNN approach has a remarkable capability to select the optimal and significant features and performed better than several metaheuristic algorithms. MPA-KNN achieves the best averages accuracy, Sensitivity, and Specificity rates of all datasets.
AbstractList Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent classification accuracy. F.S. can be considered an optimization problem. As the problem is challenging and there are many local solutions, stochastic optimization algorithms may be beneficial. This paper proposes a novel approach to dimension reduction in feature selection. As a seminal attempt, this work uses binary variants of the recent Marine Predators Algorithm (MPA) to select the optimal feature subset to improve classification accuracy. MPA is a new and novel nature-inspired metaheuristic. This research proposes an algorithm that is a hybridization between MPA and k-Nearest Neighbors (k-NN) called MPA-KNN. K-Nearest Neighbors (k-NN) is used to evaluate the selected features on medical datasets with feature sizes ranging from tiny to massive. The proposed methods are evaluated on 18 well-known UCI medical dataset benchmarks and compared with eight well-regarded metaheuristic wrapper-based approaches. The core exploratory and exploitative processes are adapted in MPA to select the optimal and meaningful features for achieving the most accurate classification. The results show that the proposed MPA-KNN approach had a remarkable capability to select the optimal and significant features. It performed better than the well-established metaheuristic algorithms we tested. The algorithms we used for comparison are Grey Wolf Optimizer (GWO), MothFlame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Slap Swarm Algorithm (SSA), Butterfly Optimization Algorithm (BFO), and Harris Hawks Optimization (HHO). This paper is the first work that implements MPA for Feature Selection problems. The results ensure that the proposed MPA-KNN approach has a remarkable capability to select the optimal and significant features and performed better than several metaheuristic algorithms. MPA-KNN achieves the best averages accuracy, Sensitivity, and Specificity rates of all datasets.
Author Ibraheem, Shimaa A.
Elminaam, Diaa Salama Abd
Nabil, Ayman
Houssein, Essam H.
Author_xml – sequence: 1
  givenname: Diaa Salama Abd
  orcidid: 0000-0002-1544-9906
  surname: Elminaam
  fullname: Elminaam, Diaa Salama Abd
  email: diaa.salama@fci.bu.edu.eg
  organization: Faculty of Computers and Artificial Intelligence, Benha University, Banha, Egypt
– sequence: 2
  givenname: Ayman
  orcidid: 0000-0001-9575-6860
  surname: Nabil
  fullname: Nabil, Ayman
  organization: Faculty of Computers and Information, Misr International University, Cairo, Egypt
– sequence: 3
  givenname: Shimaa A.
  surname: Ibraheem
  fullname: Ibraheem, Shimaa A.
  organization: Computer Science Department, Higher Technological Institute, 10th of Ramadan City, Egypt
– sequence: 4
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  organization: Faculty of Computers and Information, Minia University, Minya, Egypt
BookMark eNqFkU1rGzEQhkVJoambX5DLQs929bkrHXowxmkDCS24PYtZaZTKbFauJFPy77PuhlDSQ3SRNMzzDHr1npyNaURCLhldMUbNp_Vms93tVpxythK0E7xlb8g5Z61ZCiXas3_O78hFKXs6LT2VVHdOPq_HZhtCdBHH2txCjiM23zN6qCmXZj3cpRzrr_smpNxcIdRjxmaHA7oa0_iBvA0wFLx42hfk59X2x-br8ubbl-vN-mbpJNV1qTkIg8553gbvJfKgoTUe-gCq0yjcdKMYHBjnwXctB2d8b4CaoGWLvViQ69nrE-ztIcd7yA82QbR_CynfWcg1ugGtg15pLbvARCs9p71USgeusRPK9FJOLjm7juMBHv7AMDwLGbWnRC04h6XYU6L2KdEJ-zhjh5x-H7FUu0_HPE6vtlyxjgqjps4FEXOXy6mUjOE_9_xbL93mBeVihVPANUMcXmEvZzYi4vM0I6lkSopHK_qi1Q
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app122211829
crossref_primary_10_1007_s12530_024_09580_x
crossref_primary_10_1002_cpe_7381
crossref_primary_10_48084_etasr_8274
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_1016_j_rineng_2024_101859
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1007_s13369_024_08755_7
crossref_primary_10_1615_IntJMultCompEng_2024051541
crossref_primary_10_3390_app14051956
crossref_primary_10_1016_j_eswa_2022_117217
crossref_primary_10_1016_j_compbiomed_2023_107003
crossref_primary_10_3390_acoustics6020024
crossref_primary_10_3390_sym15091765
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1016_j_knosys_2023_111352
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_3390_sym15081610
crossref_primary_10_1007_s00704_024_05313_x
crossref_primary_10_1007_s00521_023_08772_x
crossref_primary_10_1109_ACCESS_2024_3388497
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_1109_ACCESS_2022_3143802
crossref_primary_10_3390_aerospace10100875
crossref_primary_10_3390_math11234716
crossref_primary_10_1016_j_knosys_2022_110192
crossref_primary_10_1177_14613484231183938
crossref_primary_10_1007_s11831_023_09900_5
crossref_primary_10_3390_jmse11071411
crossref_primary_10_1016_j_asoc_2023_109987
crossref_primary_10_1016_j_compbiomed_2021_105152
crossref_primary_10_3390_app11146516
crossref_primary_10_3390_pr11030924
crossref_primary_10_1016_j_aej_2021_11_011
crossref_primary_10_1109_ACCESS_2023_3287484
crossref_primary_10_1007_s44196_024_00458_z
crossref_primary_10_3390_app13020906
crossref_primary_10_3390_math10142396
crossref_primary_10_1016_j_jocs_2022_101867
crossref_primary_10_1007_s00500_023_09062_3
crossref_primary_10_1016_j_bspc_2024_106515
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1109_ACCESS_2023_3290895
crossref_primary_10_1109_TGRS_2024_3422475
crossref_primary_10_1111_exsy_13079
crossref_primary_10_3233_IDT_240336
crossref_primary_10_3390_w16081134
crossref_primary_10_1007_s11063_023_11171_x
crossref_primary_10_23919_ICN_2024_0001
crossref_primary_10_1016_j_knosys_2024_112589
crossref_primary_10_1007_s41939_023_00318_x
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_1016_j_asej_2024_102686
crossref_primary_10_1016_j_mlwa_2023_100471
crossref_primary_10_3390_biomimetics8060454
crossref_primary_10_1109_ACCESS_2021_3083531
crossref_primary_10_3390_app122111296
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1109_ACCESS_2021_3117853
crossref_primary_10_1016_j_enconman_2023_117057
crossref_primary_10_1038_s41598_024_71027_9
crossref_primary_10_3390_app13053223
crossref_primary_10_3390_computation11050091
crossref_primary_10_1007_s12652_021_03621_y
crossref_primary_10_1016_j_asej_2022_101728
crossref_primary_10_1016_j_compbiomed_2022_105675
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_3390_math10152675
crossref_primary_10_1016_j_bspc_2023_104718
crossref_primary_10_1109_ACCESS_2024_3389489
crossref_primary_10_1109_ACCESS_2021_3088783
crossref_primary_10_17780_ksujes_1413432
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_1080_21681163_2023_2213783
crossref_primary_10_3389_fninf_2022_956423
Cites_doi 10.1023/A:1025667309714
10.1007/BF00116251
10.1007/s10489-018-1158-6
10.1109/ACCESS.2020.3007928
10.1007/s00521-015-2037-2
10.1103/PhysRevE.49.4677
10.1038/s41598-020-71294-2
10.1109/ICSMC.1997.637339
10.1016/j.knosys.2018.04.025
10.1007/978-981-32-9990-0_13
10.1109/EUROCON.2017.8011255
10.1016/j.eswa.2019.112898
10.1038/44831
10.1145/3231053.3231072
10.1007/978-3-319-95162-1_30
10.1016/j.asoc.2015.10.022
10.1002/9780470496916
10.5343/bms.2010.1057
10.1515/jisys-2019-0062
10.1016/j.neucom.2016.03.101
10.1007/s00500-007-0193-8
10.3390/ijerph17103520
10.1016/j.neucom.2017.11.077
10.1016/j.patrec.2008.11.012
10.1016/j.eswa.2013.09.004
10.1016/j.eswa.2019.113103
10.1016/j.eswa.2020.113377
10.1016/j.knosys.2009.11.020
10.1016/j.jmrt.2020.08.022
10.1109/TCYB.2016.2549639
10.1155/2014/203545
10.1016/j.procs.2017.12.141
10.1007/978-981-10-8863-6_9
10.3233/JIFS-16798
10.1016/S0004-3702(97)00043-X
10.1016/j.knosys.2018.05.009
10.1016/j.compchemeng.2019.106656
10.3390/informatics6020021
10.1007/s42064-018-0053-6
10.1016/j.eswa.2020.113364
10.1016/j.neucom.2017.04.053
10.1109/ACCESS.2020.3033757
10.1038/nature06518
10.1109/ACCESS.2020.2964321
10.1057/jors.2013.72
10.14704/WEB/V17I1/WEB17003
10.1016/j.asoc.2017.11.006
10.1016/j.advengsoft.2017.07.002
10.1007/s12065-019-00212-x
10.1109/TNNLS.2014.2314123
10.1038/nature09116
10.1016/j.jpowsour.2019.05.089
10.1007/978-1-84882-983-1_15
10.1016/j.eswa.2019.02.033
10.1890/04-1806
10.1109/TPAMI.2004.105
10.1109/TNNLS.2018.2884487
10.1016/j.eswa.2015.07.007
10.1155/2019/6291968
10.1016/j.knosys.2016.07.026
10.1016/j.plrev.2008.03.002
10.1016/j.cmpb.2016.07.029
10.1016/j.future.2020.03.055
10.1109/ACCESS.2019.2906757
10.1016/j.jmrt.2019.09.060
10.1007/s12559-019-09668-6
10.1109/TAI.1995.479783
10.1007/s00521-019-04570-6
10.1145/2996357
10.1016/j.aci.2018.04.001
10.1038/scientificamerican0792-66
10.3390/a12040080
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3073261
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 60153
ExternalDocumentID oai_doaj_org_article_cab58847f1364d20b4558f28e7359b44
10.1109/access.2021.3073261
10_1109_ACCESS_2021_3073261
9404154
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-82a39eccd26fdd4e2f8a69dabfa578e3ca690efca9cdad762ac9db9a09f846eb3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:27:06 EDT 2025
Tue Aug 19 21:01:21 EDT 2025
Mon Jun 30 04:43:09 EDT 2025
Wed Oct 01 04:44:04 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Aug 27 02:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-82a39eccd26fdd4e2f8a69dabfa578e3ca690efca9cdad762ac9db9a09f846eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9575-6860
0000-0002-1544-9906
0000-0002-8127-7233
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9312710/09404154.pdf
PQID 2517039507
PQPubID 4845423
PageCount 18
ParticipantIDs ieee_primary_9404154
proquest_journals_2517039507
unpaywall_primary_10_1109_access_2021_3073261
crossref_primary_10_1109_ACCESS_2021_3073261
crossref_citationtrail_10_1109_ACCESS_2021_3073261
doaj_primary_oai_doaj_org_article_cab58847f1364d20b4558f28e7359b44
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref16
ref19
ref51
ref50
dheeru (ref78) 2017
nie (ref17) 2010
ref46
ref45
ref48
ref47
ref42
ref41
han (ref9) 2015; 26
ref44
ref43
ref49
ref8
ref7
talbi (ref18) 2009; 74
ref5
ref40
ref35
ref34
ref37
ref36
ref75
ref31
ref30
li (ref4) 2017; 50
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
quinlan (ref13) 1993
krithiga (ref26) 2020; 17
ref71
ref70
ref73
ref72
zamani (ref3) 2016; 14
einstein (ref74) 1956
ref68
ref24
liu (ref6) 2012; 454
ref67
ref23
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
too (ref54) 2019; 6
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1023/A:1025667309714
– ident: ref12
  doi: 10.1007/BF00116251
– ident: ref30
  doi: 10.1007/s10489-018-1158-6
– ident: ref68
  doi: 10.1109/ACCESS.2020.3007928
– ident: ref24
  doi: 10.1007/s00521-015-2037-2
– ident: ref73
  doi: 10.1103/PhysRevE.49.4677
– ident: ref67
  doi: 10.1038/s41598-020-71294-2
– ident: ref21
  doi: 10.1109/ICSMC.1997.637339
– ident: ref7
  doi: 10.1016/j.knosys.2018.04.025
– ident: ref23
  doi: 10.1007/978-981-32-9990-0_13
– ident: ref53
  doi: 10.1109/EUROCON.2017.8011255
– ident: ref5
  doi: 10.1016/j.eswa.2019.112898
– ident: ref61
  doi: 10.1038/44831
– ident: ref22
  doi: 10.1145/3231053.3231072
– ident: ref27
  doi: 10.1007/978-3-319-95162-1_30
– ident: ref75
  doi: 10.1016/j.asoc.2015.10.022
– volume: 74
  year: 2009
  ident: ref18
  publication-title: Metaheuristics From Design to Implementation
  doi: 10.1002/9780470496916
– ident: ref72
  doi: 10.5343/bms.2010.1057
– ident: ref62
  doi: 10.1515/jisys-2019-0062
– ident: ref47
  doi: 10.1016/j.neucom.2016.03.101
– ident: ref46
  doi: 10.1007/s00500-007-0193-8
– ident: ref66
  doi: 10.3390/ijerph17103520
– ident: ref1
  doi: 10.1016/j.neucom.2017.11.077
– start-page: 1813
  year: 2010
  ident: ref17
  article-title: Efficient and robust feature selection via joint 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1016/j.patrec.2008.11.012
– ident: ref51
  doi: 10.1016/j.eswa.2013.09.004
– volume: 14
  start-page: 1243
  year: 2016
  ident: ref3
  article-title: Feature selection based on whale optimization algorithm for diseases diagnosis
  publication-title: Int J Comput Sci Inf Secur
– ident: ref58
  doi: 10.1016/j.eswa.2019.113103
– year: 2017
  ident: ref78
  article-title: Uci machine learning repository
– ident: ref35
  doi: 10.1016/j.eswa.2020.113377
– ident: ref10
  doi: 10.1016/j.knosys.2009.11.020
– volume: 454
  year: 2012
  ident: ref6
  publication-title: Feature Selection for Knowledge Discovery and Data Mining
– ident: ref69
  doi: 10.1016/j.jmrt.2020.08.022
– ident: ref52
  doi: 10.1109/TCYB.2016.2549639
– ident: ref43
  doi: 10.1155/2014/203545
– ident: ref44
  doi: 10.1016/j.procs.2017.12.141
– ident: ref25
  doi: 10.1007/978-981-10-8863-6_9
– ident: ref38
  doi: 10.3233/JIFS-16798
– ident: ref15
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref29
  doi: 10.1016/j.knosys.2018.05.009
– ident: ref57
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 6
  start-page: 21
  year: 2019
  ident: ref54
  article-title: A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection
  publication-title: Informatics
  doi: 10.3390/informatics6020021
– ident: ref65
  doi: 10.1007/s42064-018-0053-6
– ident: ref59
  doi: 10.1016/j.eswa.2020.113364
– year: 1993
  ident: ref13
  publication-title: C4 5 Programs for Machine Learning
– ident: ref55
  doi: 10.1016/j.neucom.2017.04.053
– ident: ref39
  doi: 10.1109/ACCESS.2020.3033757
– ident: ref40
  doi: 10.1038/nature06518
– ident: ref36
  doi: 10.1109/ACCESS.2020.2964321
– ident: ref48
  doi: 10.1057/jors.2013.72
– volume: 17
  start-page: 260
  year: 2020
  ident: ref26
  article-title: A novel hybrid algorithm to classify spam profiles in Twitter
  publication-title: Webology
  doi: 10.14704/WEB/V17I1/WEB17003
– ident: ref49
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref28
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref31
  doi: 10.1007/s12065-019-00212-x
– volume: 26
  start-page: 252
  year: 2015
  ident: ref9
  article-title: Semisupervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2314123
– ident: ref41
  doi: 10.1038/nature09116
– ident: ref63
  doi: 10.1016/j.jpowsour.2019.05.089
– ident: ref70
  doi: 10.1007/978-1-84882-983-1_15
– year: 1956
  ident: ref74
  publication-title: Investigations on the Theory of the Brownian Movement
– ident: ref76
  doi: 10.1016/j.eswa.2019.02.033
– ident: ref71
  doi: 10.1890/04-1806
– ident: ref16
  doi: 10.1109/TPAMI.2004.105
– ident: ref8
  doi: 10.1109/TNNLS.2018.2884487
– ident: ref77
  doi: 10.1016/j.eswa.2015.07.007
– ident: ref32
  doi: 10.1155/2019/6291968
– ident: ref45
  doi: 10.1016/j.knosys.2016.07.026
– ident: ref42
  doi: 10.1016/j.plrev.2008.03.002
– ident: ref19
  doi: 10.1016/j.cmpb.2016.07.029
– ident: ref34
  doi: 10.1016/j.future.2020.03.055
– ident: ref56
  doi: 10.1109/ACCESS.2019.2906757
– ident: ref64
  doi: 10.1016/j.jmrt.2019.09.060
– ident: ref2
  doi: 10.1007/s12559-019-09668-6
– ident: ref11
  doi: 10.1109/TAI.1995.479783
– ident: ref37
  doi: 10.1007/s00521-019-04570-6
– volume: 50
  start-page: 1
  year: 2017
  ident: ref4
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput Surv
  doi: 10.1145/2996357
– ident: ref60
  doi: 10.1016/j.aci.2018.04.001
– ident: ref20
  doi: 10.1038/scientificamerican0792-66
– ident: ref33
  doi: 10.3390/a12040080
SSID ssj0000816957
Score 2.4972434
Snippet Feature Selection (F.S.) reduces the number of features by removing unnecessary, redundant, and noisy information while keeping a relatively decent...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60136
SubjectTerms Accuracy
Algorithms
Classification
Datasets
Evaluation
exploitation phase
Feature extraction
Feature selection
Genetic algorithms
Heuristic methods
k-nearest neighbors
Machine learning algorithms
marine predators algorithm
Medical diagnostic imaging
metaheuristics
Microprocessors
Optimization
Optimization algorithms
Particle swarm optimization
Predators
Prediction algorithms
Trigonometric functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA_Fl9YH0ap4fpQ8-NjVbDab3Xk8D0UKSqEVfAuTryqcd3LeUfrfO8muxx2F-tLHDdkw85tJZmbZ_IaxU8BKVxRHiiogFiqiKkBAU1hLDoDWlj7zzN7c6us79e2-vl9p9ZX-CevogTvgzh3adJeyiWWllZfCqrpuo2xDU9VgVWYCFS2sFFP5DG5LDXXT0wyVAs6HoxFpRAWhLM-SX0tdroWizNjft1hZyzY_LibP-Oc3jscrgedqm231GSMfdpLusA9h8pltrvAI7jIq4vll5oKgEMJvMN3o499nwaeK-oUPx7-ms8f5wxOnDJWnpG8xC_xH7oBDZtljd1eXP0fXRd8XoXBKtPOilVgBQe-ljt6rIGOLGjzaiLT_QuXoSYToEJxHT6cdOvAWUECkbIOq5322MZlOwgHjELEtSxdBN055SpZqYUHLhLH0CpsBk28QGdeThqfeFWOTiwcBpsPVJFxNj-uAfV2-9NxxZvx7-kXCfjk1EV7nAXID07uBec8NBmw3WW65CKjEPUDDx2-WNP3mfDGJpU0kVUm9Ymndv0TF3LFyTdTD_yHqEfuU1uy-4xyzjflsEU4os5nbL9mJXwG8B-_k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21vQAHChTEQkE-cGy2ieM48YHDdtWqQlqEBJV6s8ZfgLpkq20iRH99bccbdQEhbknkJDN-43jG8bwBeCew5KWfR7LSImbMIctELupMKW8AqFRhIs_s4iM_v2AfLqvLHTgac2GstXHzmZ2Gw_gv36x0H5bKjgULCeVsF3brhg-5WuN6SiggIao6EQsVuTiezedeBx8C0mIaLJnyYmvyiRz9qajKln_5oG-v8ddPXC7vTTVn-7DYCDnsMLma9p2a6tvf-Bv_V4sn8Dj5nGQ2GMlT2LHtM3h0j4nwAN7PWnIa2ST8vWSBISeQfFpbE2LyGzJbfl2tv3fffhDv45LgNvZrSz7HGjoe2OdwcXb6ZX6epcoKmWZ502UNxVJ48AzlzhhmqWuQC4PKoR_BttT-LLdOo9AGjf9eohZGCcyF8_6Kj79fwF67au1LIMJhUxTaCV5rZry7VeVKcMqqqqGGYT0BuulyqRPteKh-sZQx_MiFHHCSASeZcJrA0XjT9cC68e_mJwHLsWmgzI4XfL_LNAKlRhWScmtXlJwZmqsgoqONrctKKMYmcBCwGh-SYJrA4cYyZBreNzLwvOVBVa9eNlrLH6JirHm5Jeqrv7_lNTwMrYa1nUPY69a9feO9nU69jWZ-B-FN-jk
  priority: 102
  providerName: IEEE
Title An Efficient Marine Predators Algorithm for Feature Selection
URI https://ieeexplore.ieee.org/document/9404154
https://www.proquest.com/docview/2517039507
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09404154.pdf
https://doaj.org/article/cab58847f1364d20b4558f28e7359b44
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage0A8MGAguo0qDzySNnEcJ37gIVSbJqRNk6DSeLLOv2BayKouFdv-es6uW60gIcFbEjnWWd_Zd2f7viPknYCCF2hH0sICpMwBS0UmqlQpVABQKjeBZ_b0jJ_M2KeL8iJuuIVcGGttuHxmx_4xnOVf2va2mnDqydPERGDXaBYnnviN-X2RuXGPyQ4v0RcfkJ3Z2Xnz1VeUyzkKEM4mDyKx5gRCDUIMCmk-9rpNeb5ljgJrfyyzsuVxPll2c7j7CW37wPgc7xK5Fnt15-RqvOzVWN__xuj4_-N6Tp5FvzRpVor0gjyy3Uvy9AFb4R750HTJUWCcQEOVnILPG0zOF9b4uP0madpv14vL_vuPBP3gxLuWy4VNPoc6Owj-KzI7PvoyPUlj9YVUs6zu05pCIRBgQ7kzhlnqauDCgHKAs9wWGt8y6zQIbcDgmgpaGCUgEw59GozRX5NBd93ZNyQRDuo8107wSjODLlmZKcEpK8uaGgbVkNA1CFJHanJfIaOVIUTJhGymU9RH6ZGTEbkheb_5ab5i5vh7848e3U1TT6sdPiASMs5SqUH5xN3K5QVnhmbKi-hobauiFIqxIdnz6G06iVANyeFaV2RcAm6k54LL_FBxeOlGf_4QdaWTW6Lu_2P7QzLoF0v7Fr2jXo3CrsIoJDKO4nT4BbdaClI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXUhQI-cGy2ieM8fOCwrFot0K2QaKXerPGrILbZapsIwa_HdrxRFxDilkR2MpNvHM84nm8A3nDMy9zNI0luEBNmkSU85VUipTMAlDLTgWd2flrOztmHi-JiCw6GXBhjTNh8Zsb-MPzL10vV-aWyQ858Qjm7A3cLxljRZ2sNKyq-hAQvqkgtlKX8cDKdOi1cEEizsbdlWmYb009g6Y9lVTY8zJ2uucYf33GxuDXZHD-E-VrMfo_Jt3HXyrH6-RuD4__q8QgeRK-TTHozeQxbpnkC929xEe7C20lDjgKfhOtL5uizAsmnldE-Kr8hk8XlcvW1_XJFnJdLvOPYrQz5HKroOGifwvnx0dl0lsTaColiad0mNcWcO_g0La3WzFBbY8k1SotuDJtcubPUWIVcadTui4mKa8kx5dZ5LC4CfwbbzbIxe0C4xTrLlOVlpZh2DleRSl5SVhQ11QyrEdD1KxcqEo_7-hcLEQKQlIseJ-FxEhGnERwMna573o1_N3_nsRyaetLscMG9dxHHoFAofVpuZbO8ZJqm0otoaW2qvOCSsRHseqyGm0SYRrC_tgwRB_iN8ExvqVfVqZcM1vKHqBiqXm6I-vzvT3kNO7Oz-Yk4eX_68QXc8z36lZ592G5XnXnpfJ9Wvgom_wsd7f2G
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBXEloJ84Eh2E8dx4gOHsGpVIbWqBCuVkzV-QUVIV9usCvx6xl7vqgsSEtySyLHG-saez69vCHktoRQlxpGsdAAZ98Azmcs60xodALQubNSZPT0TJ3P-_qK6SAtu8S6Mcy4ePnOT8Bj38i9d972eChbE0-RUYtUYFqdB-I2HdZGF9XfJnqiQi4_I3vzsvP0UMsoVAg2Ie5MvkrDmFGIOQpwUsmISfJuJYiccRdX-lGZlh3HeW_UL-HEDXXcr-Bw_JGpj9vrMydfJatAT8_M3Rcf_b9cj8iDxUtquHekxueP6J-T-LbXCffK27elRVJzAQEVPIdwbpOdLZ8O8_Zq23eer5eXw5RtFHkwDtVwtHf0Q8-wg-E_J_Pjo4-wkS9kXMsPzZsgaBqVEgC0T3lrumG9ASAvaA_ZyVxp8y503II0Fi2MqGGm1hFx65DQ4R39GRv1V754TKj00RWG8FLXhFilZlWspGK-qhlkO9ZiwDQjKJGnykCGjU3GKkkvVzmbojyogpxJyY_Jm-9Nirczx9-LvArrbokFWO35AJFTqpcqADhd3a1-UgluW62CiZ42ry0pqzsdkP6C3rSRBNSaHG19RaQi4VkELLg9NxeZlW__5w9S1T-6YevCP5Q_JaFiu3EtkR4N-lbrAL0zkCFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Marine+Predators+Algorithm+for+Feature+Selection&rft.jtitle=IEEE+access&rft.au=Elminaam%2C+Diaa+Salama+Abd&rft.au=Nabil%2C+Ayman&rft.au=Ibraheem%2C+Shimaa+A.&rft.au=Houssein%2C+Essam+H.&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=60136&rft.epage=60153&rft_id=info:doi/10.1109%2FACCESS.2021.3073261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3073261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon