On Segmentation of Pectoral Muscle in Digital Mammograms by Means of Deep Learning

Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such a...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 204173 - 204182
Main Authors Soleimani, Hossein, Michailovich, Oleg V.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3036662

Cover

Abstract Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm, and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing. The average values of dice similarity coefficient (DSC) and accuracy (ACC) on the mentioned three datasets are 97.22 ± 1.96% and 99.64±.27%, respectively.
AbstractList Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm, and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing. The average values of dice similarity coefficient (DSC) and accuracy (ACC) on the mentioned three datasets are 97.22 ± 1.96% and 99.64±.27%, respectively.
Author Soleimani, Hossein
Michailovich, Oleg V.
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0003-4075-2728
  surname: Soleimani
  fullname: Soleimani, Hossein
  email: h3soleim@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Oleg V.
  surname: Michailovich
  fullname: Michailovich, Oleg V.
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNptkV9r2zAUxc3ooF3XT9AXw56T6q9jPZa0WwspHcv6LK6lK6NgS5nkMPLtZ88ljDC9SBzu79x7jz4VFyEGLIpbSpaUEnV3v14_brdLRhhZcsKrqmIfiitGK7XgklcX_7wvi5ucd2Q89SjJ1VXx4zWUW2x7DAMMPoYyuvI7miEm6MqXQzYdlj6UD771w6RA38c2QZ_L5li-IIQ8EQ-I-3KDkIIP7efio4Mu4837fV28fX38uX5abF6_Pa_vNwsjSD0satpQxSwatLaqUSghmWPQ1ADCOKqstRwos41yglBnpWuUYdJxJBY4Mn5dPM--NsJO75PvIR11BK__CjG1GtLgxw00oOCWSMYaCQKkUMpSYShwaquVQzl6idnrEPZw_A1ddzKkRE8xazAGc9ZTzPo95hH7MmP7FH8dMA96Fw8pjFtrJirG2IqsJnM1V5kUc07otPFz2kMC3506zB953oGfsedz_Z-6nSmPiCdCMcnoWPIH5hKpxQ
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2022_031046
crossref_primary_10_3390_biology11010134
crossref_primary_10_1109_ACCESS_2021_3058773
crossref_primary_10_1002_int_22622
crossref_primary_10_1007_s12553_023_00804_9
crossref_primary_10_1007_s10278_024_01364_8
crossref_primary_10_1007_s00521_021_06804_y
crossref_primary_10_1016_j_neucom_2024_127937
crossref_primary_10_3390_diagnostics14192144
crossref_primary_10_1088_1361_6560_acd221
crossref_primary_10_3390_s21144854
crossref_primary_10_1007_s00521_024_09721_y
crossref_primary_10_3390_cancers14215334
crossref_primary_10_1088_1361_6560_adb367
crossref_primary_10_3390_biology11010015
Cites_doi 10.1080/21681163.2015.1131197
10.1016/j.artmed.2018.10.007
10.1088/0031-9155/43/2/011
10.1016/j.media.2019.06.007
10.1016/j.acra.2011.09.014
10.1007/s10278-009-9240-6
10.1016/j.sigpro.2012.07.026
10.1007/978-3-030-27202-9_34
10.1093/jnci/dju255
10.1109/TMI.2004.830529
10.1109/TSMC.1979.4310076
10.1109/ICCV.2015.164
10.1109/CVPR.2017.622
10.1007/s10278-015-9813-5
10.1155/2016/5967580
10.1007/978-3-319-46723-8_55
10.1109/WACV45572.2020.9093290
10.1109/TPAMI.2018.2878849
10.1016/j.compbiomed.2018.03.011
10.1109/CVPR.2009.5206848
10.1007/s40846-015-0043-6
10.1007/s11548-018-1867-7
10.1007/BF02344632
10.1007/978-1-4419-0685-4_1
10.1007/s10916-017-0839-8
10.1186/s40537-019-0197-0
10.1097/01.gco.0000192965.29449.da
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3036662
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE/IET Electronic Library (IEL)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 204182
ExternalDocumentID oai_doaj_org_article_ae43d0522b5a4a5499d14c1a31d67fe5
10.1109/access.2020.3036662
10_1109_ACCESS_2020_3036662
9252130
Genre orig-research
GrantInformation_xml – fundername: Discovery Program of the Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-81b192decedd68e49452f2ab8aa4cf19ddd3a12db9f401fd5fb9c25f3e0da3e23
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:33 EDT 2025
Tue Aug 19 16:20:00 EDT 2025
Mon Jun 30 02:14:53 EDT 2025
Wed Oct 01 03:37:46 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Aug 27 02:33:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-81b192decedd68e49452f2ab8aa4cf19ddd3a12db9f401fd5fb9c25f3e0da3e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4075-2728
OpenAccessLink https://doaj.org/article/ae43d0522b5a4a5499d14c1a31d67fe5
PQID 2462227075
PQPubID 4845423
PageCount 10
ParticipantIDs proquest_journals_2462227075
unpaywall_primary_10_1109_access_2020_3036662
ieee_primary_9252130
doaj_primary_oai_doaj_org_article_ae43d0522b5a4a5499d14c1a31d67fe5
crossref_primary_10_1109_ACCESS_2020_3036662
crossref_citationtrail_10_1109_ACCESS_2020_3036662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref14
ref11
ref32
ref10
ref2
ref1
ruder (ref30) 2016
ref17
ref16
cormen (ref31) 2009
ref19
ref18
suckling (ref25) 1994
simonyan (ref24) 2014
lee (ref27) 2017; 4
ref23
ref26
ref20
ref22
ronneberger (ref33) 2015
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
chen (ref12) 2010
References_xml – ident: ref17
  doi: 10.1080/21681163.2015.1131197
– ident: ref5
  doi: 10.1016/j.artmed.2018.10.007
– ident: ref7
  doi: 10.1088/0031-9155/43/2/011
– ident: ref19
  doi: 10.1016/j.media.2019.06.007
– ident: ref26
  doi: 10.1016/j.acra.2011.09.014
– ident: ref34
  doi: 10.1007/s10278-009-9240-6
– ident: ref11
  doi: 10.1016/j.sigpro.2012.07.026
– ident: ref6
  doi: 10.1007/978-3-030-27202-9_34
– ident: ref2
  doi: 10.1093/jnci/dju255
– ident: ref9
  doi: 10.1109/TMI.2004.830529
– ident: ref32
  doi: 10.1109/TSMC.1979.4310076
– start-page: 375
  year: 1994
  ident: ref25
  article-title: The mammographic image analysis society digital mammogram database
  publication-title: Proc 2nd Int Workshop on Digital Mammography
– ident: ref20
  doi: 10.1109/ICCV.2015.164
– ident: ref22
  doi: 10.1109/CVPR.2017.622
– volume: 4
  year: 2017
  ident: ref27
  article-title: A curated mammography data set for use in computer-aided detection and diagnosis research
  publication-title: Data Science Journal
– ident: ref10
  doi: 10.1007/s10278-015-9813-5
– ident: ref16
  doi: 10.1155/2016/5967580
– ident: ref18
  doi: 10.1007/978-3-319-46723-8_55
– ident: ref23
  doi: 10.1109/WACV45572.2020.9093290
– ident: ref21
  doi: 10.1109/TPAMI.2018.2878849
– year: 2009
  ident: ref31
  publication-title: Introduction to Algorithms
– year: 2016
  ident: ref30
  article-title: An overview of gradient descent optimization algorithms
  publication-title: arXiv 1609 04747
– ident: ref4
  doi: 10.1016/j.compbiomed.2018.03.011
– ident: ref29
  doi: 10.1109/CVPR.2009.5206848
– ident: ref15
  doi: 10.1007/s40846-015-0043-6
– start-page: 71
  year: 2010
  ident: ref12
  article-title: Segmentation of the breast region with pectoral muscle removal in mammograms
  publication-title: Proc Med Img Unders Anal (MIUA)
– ident: ref14
  doi: 10.1007/s11548-018-1867-7
– ident: ref8
  doi: 10.1007/BF02344632
– ident: ref1
  doi: 10.1007/978-1-4419-0685-4_1
– year: 2014
  ident: ref24
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– start-page: 234
  year: 2015
  ident: ref33
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref13
  doi: 10.1007/s10916-017-0839-8
– ident: ref28
  doi: 10.1186/s40537-019-0197-0
– ident: ref3
  doi: 10.1097/01.gco.0000192965.29449.da
SSID ssj0000816957
Score 2.2886717
Snippet Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 204173
SubjectTerms Algorithms
Anatomy
Artificial neural networks
Breast
Breast cancer
CAI
Computer assisted instruction
Datasets
Deep learning
digital mammography
Image processing
Image segmentation
Machine learning
Mammography
Muscles
pectoral muscle
Prediction algorithms
Reliability
segmentation
Shortest-path problems
Spatial resolution
Task analysis
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV0EECvKBY7NN_Ep8bLetKqQAAir1FtnxeFV1ya7YjVD59YwTb9SlqOIWRZ7E1jfOfDPxzBDyQbrc6iKzKZpeSIVWLNXCF7jjLXPaCd5AyHeuPqnzC_HxUl7ukIMxFwYA-sNnMAmX_b98t2i6ECo71AyNDUcH_UFRqiFXa4ynhAYSWhaxsFCe6cOj6RTXgC4gQ88UP9RKsS3j09foj01Vtvjlw65dmptfZj6_ZWrOnpJqM8nhhMn1pFvbSfP7r_qN_7uKZ-RJ5Jz0aFCS52QH2hfk8a1KhHvk6-eWfoPZj5iJ1NKFp1_6gD4KVt0K5ehVS0-uZqHJCK0Mqm8417Wi9oZWgPYuSJwALGms2Dp7SS7OTr9Pz9PYbiFtRFauUySwSPccIDpOlSC0kMwzY0tjRONz7ZzjJmfOao9OmXfSW90w6TlkznBg_BXZbRctvCbUcmeRCprSF8h4PEdOgLRRKu10AbzwCWEbHOom1iIPLTHmde-TZLoewKsDeHUELyEHo9ByKMVx__DjAPA4NNTR7m8gGHXclrUBwV2GHNRKI0zwlV0umtzw3KnCg0zIXgBwfEjELiH7G3Wp455f1UyokFiMHCwh6ahCd6Zq-kaYW1N98--3vCWPwqgh4LNPdtc_O3iHFGht3_e6_wdhygEc
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELUgPSAOfBXEloJ84Mgmu7bXuz6GlKpCSqmASOVk2etxFBG2UZMIyq9n7DhRAxIS3FYrz8qrN_a88ccbQl5XrrSqLmyOoRdyoSTLlfA1jnjLnHKCtxDuO4_P5dlEvL-sLtOCW7wLAwDx8Bn0w2Pcy5_B_Ec9kCyIp6lBowTOqJjLK4ahhxf9hfN3yYGskIv3yMHk_GL4JVSUK6XKedybfJGENQcm1iDEpJBhropTt5RsLxxF1f5UZmWPcd5bdwtz893M57eCz-lDorfd3pw5-dpfr2y__fmbouP__9cj8iDxUjrcONJjcge6J-T-LbXCQ_LxQ0c_wfRbuq3U0StPL-KiPxqO10u0o7OOnsymoRAJHRt08XD2a0ntDR0DxsRgcQKwoEnVdfqUTE7ffR6d5akkQ96KolnlSHKREjpABJ1sQChRMc-MbYwRrS-Vc46bkjmrPCZu3lXeqpZVnkPhDAfGn5Fed9XBc0Itdxbpoml8jazIc-QNSC0rqZyqgdc-I2yLjG6TXnkomzHXMW8plB6ORuikOsCpE5wZebMzWmzkOv7e_G2AfNc0aG3HFwiPTkNXGxDcFchTbWWECfm0K0VbGl46WXuoMnIYIN19JOGXkeOtA-k0Lyw1EzJcPkaelpF851R_dHXjqHtdPfrH9sekt7pew0ukTCv7Ko2LXyHvD1s
  priority: 102
  providerName: Unpaywall
Title On Segmentation of Pectoral Muscle in Digital Mammograms by Means of Deep Learning
URI https://ieeexplore.ieee.org/document/9252130
https://www.proquest.com/docview/2462227075
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09252130.pdf
https://doaj.org/article/ae43d0522b5a4a5499d14c1a31d67fe5
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED5K99Dtoazrxtx1QQ97rKktybL1mKUrZZCudAt0T0KypFBI3dAklP77nWQ1JAy2l74aSZzvTrrvhO47gC-VLY2sC5Nj6HU5l4Lmkvsad7yhVlrOWhfqnceX4mLCv99UNxutvsKbsJ4euFfcqXac2QJRgqk01yGbsSVvS81KK2rvIntp0ciNZCqewU0pZFUnmqGykKfD0Qj_CBNCinkqHttC0K1QFBn7U4uVLbS5t-rm-ulRz2Ybgef8LewnxEiGvaQHsOO6d_Bmg0fwEK5_dOSnm96lOqKO3HtyFa_jceJ4tcB55LYjZ7fT0CKEjDU6X3iVtSDmiYwdRqsw48y5OUl8q9P3MDn_9mt0kadmCXnLi2aZI_xEsGYd6taKxnHJK-qpNo3WvPWltNYyXVJrpMeUytvKG9nSyjNXWM0cZR9gt7vv3EcghlmDQE43vka84hlGdAR9lZBW1o7VPgP6rDfVJibx0NBipmJGUUjVK1sFZauk7AxO1pPmPZHGv4d_DQZZDw0s2PED-oZKvqH-5xsZHAZzrheRFMEKKzI4fjavSjt2oSgXoSwYEVQG-drkf4mqYxvLLVGPXkLUT_A6rNlf7hzD7vJh5T4j3FmaQfTsQaxMHMCryeXV8Pcfgcr6ZA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8TB44GugBcbwA49Ll_gjqR9Ht6nAMhBs0t4sOz5XEyWtaCs0_nrOiRutgBBvUeRLbP3Oud9dfHeEvJEut6rMbIqmF1KhCpYq4Uvc8ZY55QSvIeQ7VxfF-Eq8v5bXW-Swz4UBgPbwGQzCZfsv383qVQiVHSmGxoajg35PCiFkl63VR1RCCwkly1haKM_U0fFohKtAJ5Chb4qf6qJgG-anrdIf26psMMydVTM3tz_MdHrH2Jw9ItV6mt0Zk6-D1dIO6p-_VXD833U8Jg8j66THnZo8IVvQPCUP7tQi3CWfPzb0C0y-xVykhs48_dSG9FGwWi1Qjt409ORmEtqM0MqgAoeTXQtqb2kFaPGCxAnAnMaarZNn5Ors9HI0TmPDhbQW2XCZIoVFwucA8XHFEIQSknlm7NAYUftcOee4yZmzyqNb5p30VtVMeg6ZMxwYf062m1kDe4Ra7iySQTP0JXIez5EVIHGUhXKqBF76hLA1DrqO1chDU4ypbr2STOkOPB3A0xG8hBz2QvOuGMe_h78NAPdDQyXt9gaCoePG1AYEdxmyUCuNMMFbdrmoc8NzV5QeZEJ2A4D9QyJ2Cdlfq4uOu36hmShCajGysISkvQr9MVXTtsLcmOqLv7_lNdkZX1bn-vzdxYeX5H6Q6MI_-2R7-X0Fr5AQLe1Buw9-AfhIBGk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELUgPSAOfBXEloJ84Mgmu7bXuz6GlKpCSqmASOVk2etxFBG2UZMIyq9n7DhRAxIS3FYrz8qrN_a88ccbQl5XrrSqLmyOoRdyoSTLlfA1jnjLnHKCtxDuO4_P5dlEvL-sLtOCW7wLAwDx8Bn0w2Pcy5_B_Ec9kCyIp6lBowTOqJjLK4ahhxf9hfN3yYGskIv3yMHk_GL4JVSUK6XKedybfJGENQcm1iDEpJBhropTt5RsLxxF1f5UZmWPcd5bdwtz893M57eCz-lDorfd3pw5-dpfr2y__fmbouP__9cj8iDxUjrcONJjcge6J-T-LbXCQ_LxQ0c_wfRbuq3U0StPL-KiPxqO10u0o7OOnsymoRAJHRt08XD2a0ntDR0DxsRgcQKwoEnVdfqUTE7ffR6d5akkQ96KolnlSHKREjpABJ1sQChRMc-MbYwRrS-Vc46bkjmrPCZu3lXeqpZVnkPhDAfGn5Fed9XBc0Itdxbpoml8jazIc-QNSC0rqZyqgdc-I2yLjG6TXnkomzHXMW8plB6ORuikOsCpE5wZebMzWmzkOv7e_G2AfNc0aG3HFwiPTkNXGxDcFchTbWWECfm0K0VbGl46WXuoMnIYIN19JOGXkeOtA-k0Lyw1EzJcPkaelpF851R_dHXjqHtdPfrH9sekt7pew0ukTCv7Ko2LXyHvD1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Segmentation+of+Pectoral+Muscle+in+Digital+Mammograms+by+Means+of+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Soleimani%2C+Hossein&rft.au=Michailovich%2C+Oleg+V.&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=204173&rft.epage=204182&rft_id=info:doi/10.1109%2FACCESS.2020.3036662&rft.externalDocID=9252130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon