On Segmentation of Pectoral Muscle in Digital Mammograms by Means of Deep Learning
Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such a...
Saved in:
| Published in | IEEE access Vol. 8; pp. 204173 - 204182 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3036662 |
Cover
| Abstract | Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm, and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing. The average values of dice similarity coefficient (DSC) and accuracy (ACC) on the mentioned three datasets are 97.22 ± 1.96% and 99.64±.27%, respectively. |
|---|---|
| AbstractList | Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm, and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing. The average values of dice similarity coefficient (DSC) and accuracy (ACC) on the mentioned three datasets are 97.22 ± 1.96% and 99.64±.27%, respectively. |
| Author | Soleimani, Hossein Michailovich, Oleg V. |
| Author_xml | – sequence: 1 givenname: Hossein orcidid: 0000-0003-4075-2728 surname: Soleimani fullname: Soleimani, Hossein email: h3soleim@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Oleg V. surname: Michailovich fullname: Michailovich, Oleg V. organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada |
| BookMark | eNptkV9r2zAUxc3ooF3XT9AXw56T6q9jPZa0WwspHcv6LK6lK6NgS5nkMPLtZ88ljDC9SBzu79x7jz4VFyEGLIpbSpaUEnV3v14_brdLRhhZcsKrqmIfiitGK7XgklcX_7wvi5ucd2Q89SjJ1VXx4zWUW2x7DAMMPoYyuvI7miEm6MqXQzYdlj6UD771w6RA38c2QZ_L5li-IIQ8EQ-I-3KDkIIP7efio4Mu4837fV28fX38uX5abF6_Pa_vNwsjSD0satpQxSwatLaqUSghmWPQ1ADCOKqstRwos41yglBnpWuUYdJxJBY4Mn5dPM--NsJO75PvIR11BK__CjG1GtLgxw00oOCWSMYaCQKkUMpSYShwaquVQzl6idnrEPZw_A1ddzKkRE8xazAGc9ZTzPo95hH7MmP7FH8dMA96Fw8pjFtrJirG2IqsJnM1V5kUc07otPFz2kMC3506zB953oGfsedz_Z-6nSmPiCdCMcnoWPIH5hKpxQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_32604_cmc_2022_031046 crossref_primary_10_3390_biology11010134 crossref_primary_10_1109_ACCESS_2021_3058773 crossref_primary_10_1002_int_22622 crossref_primary_10_1007_s12553_023_00804_9 crossref_primary_10_1007_s10278_024_01364_8 crossref_primary_10_1007_s00521_021_06804_y crossref_primary_10_1016_j_neucom_2024_127937 crossref_primary_10_3390_diagnostics14192144 crossref_primary_10_1088_1361_6560_acd221 crossref_primary_10_3390_s21144854 crossref_primary_10_1007_s00521_024_09721_y crossref_primary_10_3390_cancers14215334 crossref_primary_10_1088_1361_6560_adb367 crossref_primary_10_3390_biology11010015 |
| Cites_doi | 10.1080/21681163.2015.1131197 10.1016/j.artmed.2018.10.007 10.1088/0031-9155/43/2/011 10.1016/j.media.2019.06.007 10.1016/j.acra.2011.09.014 10.1007/s10278-009-9240-6 10.1016/j.sigpro.2012.07.026 10.1007/978-3-030-27202-9_34 10.1093/jnci/dju255 10.1109/TMI.2004.830529 10.1109/TSMC.1979.4310076 10.1109/ICCV.2015.164 10.1109/CVPR.2017.622 10.1007/s10278-015-9813-5 10.1155/2016/5967580 10.1007/978-3-319-46723-8_55 10.1109/WACV45572.2020.9093290 10.1109/TPAMI.2018.2878849 10.1016/j.compbiomed.2018.03.011 10.1109/CVPR.2009.5206848 10.1007/s40846-015-0043-6 10.1007/s11548-018-1867-7 10.1007/BF02344632 10.1007/978-1-4419-0685-4_1 10.1007/s10916-017-0839-8 10.1186/s40537-019-0197-0 10.1097/01.gco.0000192965.29449.da |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3036662 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE/IET Electronic Library (IEL) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 204182 |
| ExternalDocumentID | oai_doaj_org_article_ae43d0522b5a4a5499d14c1a31d67fe5 10.1109/access.2020.3036662 10_1109_ACCESS_2020_3036662 9252130 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Discovery Program of the Natural Sciences and Engineering Research Council of Canada (NSERC) funderid: 10.13039/501100000038 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-81b192decedd68e49452f2ab8aa4cf19ddd3a12db9f401fd5fb9c25f3e0da3e23 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:33 EDT 2025 Tue Aug 19 16:20:00 EDT 2025 Mon Jun 30 02:14:53 EDT 2025 Wed Oct 01 03:37:46 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Aug 27 02:33:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-81b192decedd68e49452f2ab8aa4cf19ddd3a12db9f401fd5fb9c25f3e0da3e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4075-2728 |
| OpenAccessLink | https://doaj.org/article/ae43d0522b5a4a5499d14c1a31d67fe5 |
| PQID | 2462227075 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2462227075 unpaywall_primary_10_1109_access_2020_3036662 ieee_primary_9252130 doaj_primary_oai_doaj_org_article_ae43d0522b5a4a5499d14c1a31d67fe5 crossref_primary_10_1109_ACCESS_2020_3036662 crossref_citationtrail_10_1109_ACCESS_2020_3036662 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref15 ref14 ref11 ref32 ref10 ref2 ref1 ruder (ref30) 2016 ref17 ref16 cormen (ref31) 2009 ref19 ref18 suckling (ref25) 1994 simonyan (ref24) 2014 lee (ref27) 2017; 4 ref23 ref26 ref20 ref22 ronneberger (ref33) 2015 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 chen (ref12) 2010 |
| References_xml | – ident: ref17 doi: 10.1080/21681163.2015.1131197 – ident: ref5 doi: 10.1016/j.artmed.2018.10.007 – ident: ref7 doi: 10.1088/0031-9155/43/2/011 – ident: ref19 doi: 10.1016/j.media.2019.06.007 – ident: ref26 doi: 10.1016/j.acra.2011.09.014 – ident: ref34 doi: 10.1007/s10278-009-9240-6 – ident: ref11 doi: 10.1016/j.sigpro.2012.07.026 – ident: ref6 doi: 10.1007/978-3-030-27202-9_34 – ident: ref2 doi: 10.1093/jnci/dju255 – ident: ref9 doi: 10.1109/TMI.2004.830529 – ident: ref32 doi: 10.1109/TSMC.1979.4310076 – start-page: 375 year: 1994 ident: ref25 article-title: The mammographic image analysis society digital mammogram database publication-title: Proc 2nd Int Workshop on Digital Mammography – ident: ref20 doi: 10.1109/ICCV.2015.164 – ident: ref22 doi: 10.1109/CVPR.2017.622 – volume: 4 year: 2017 ident: ref27 article-title: A curated mammography data set for use in computer-aided detection and diagnosis research publication-title: Data Science Journal – ident: ref10 doi: 10.1007/s10278-015-9813-5 – ident: ref16 doi: 10.1155/2016/5967580 – ident: ref18 doi: 10.1007/978-3-319-46723-8_55 – ident: ref23 doi: 10.1109/WACV45572.2020.9093290 – ident: ref21 doi: 10.1109/TPAMI.2018.2878849 – year: 2009 ident: ref31 publication-title: Introduction to Algorithms – year: 2016 ident: ref30 article-title: An overview of gradient descent optimization algorithms publication-title: arXiv 1609 04747 – ident: ref4 doi: 10.1016/j.compbiomed.2018.03.011 – ident: ref29 doi: 10.1109/CVPR.2009.5206848 – ident: ref15 doi: 10.1007/s40846-015-0043-6 – start-page: 71 year: 2010 ident: ref12 article-title: Segmentation of the breast region with pectoral muscle removal in mammograms publication-title: Proc Med Img Unders Anal (MIUA) – ident: ref14 doi: 10.1007/s11548-018-1867-7 – ident: ref8 doi: 10.1007/BF02344632 – ident: ref1 doi: 10.1007/978-1-4419-0685-4_1 – year: 2014 ident: ref24 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – start-page: 234 year: 2015 ident: ref33 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref13 doi: 10.1007/s10916-017-0839-8 – ident: ref28 doi: 10.1186/s40537-019-0197-0 – ident: ref3 doi: 10.1097/01.gco.0000192965.29449.da |
| SSID | ssj0000816957 |
| Score | 2.2886717 |
| Snippet | Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 204173 |
| SubjectTerms | Algorithms Anatomy Artificial neural networks Breast Breast cancer CAI Computer assisted instruction Datasets Deep learning digital mammography Image processing Image segmentation Machine learning Mammography Muscles pectoral muscle Prediction algorithms Reliability segmentation Shortest-path problems Spatial resolution Task analysis Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV0EECvKBY7NN_Ep8bLetKqQAAir1FtnxeFV1ya7YjVD59YwTb9SlqOIWRZ7E1jfOfDPxzBDyQbrc6iKzKZpeSIVWLNXCF7jjLXPaCd5AyHeuPqnzC_HxUl7ukIMxFwYA-sNnMAmX_b98t2i6ECo71AyNDUcH_UFRqiFXa4ynhAYSWhaxsFCe6cOj6RTXgC4gQ88UP9RKsS3j09foj01Vtvjlw65dmptfZj6_ZWrOnpJqM8nhhMn1pFvbSfP7r_qN_7uKZ-RJ5Jz0aFCS52QH2hfk8a1KhHvk6-eWfoPZj5iJ1NKFp1_6gD4KVt0K5ehVS0-uZqHJCK0Mqm8417Wi9oZWgPYuSJwALGms2Dp7SS7OTr9Pz9PYbiFtRFauUySwSPccIDpOlSC0kMwzY0tjRONz7ZzjJmfOao9OmXfSW90w6TlkznBg_BXZbRctvCbUcmeRCprSF8h4PEdOgLRRKu10AbzwCWEbHOom1iIPLTHmde-TZLoewKsDeHUELyEHo9ByKMVx__DjAPA4NNTR7m8gGHXclrUBwV2GHNRKI0zwlV0umtzw3KnCg0zIXgBwfEjELiH7G3Wp455f1UyokFiMHCwh6ahCd6Zq-kaYW1N98--3vCWPwqgh4LNPdtc_O3iHFGht3_e6_wdhygEc priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELUgPSAOfBXEloJ84Mgmu7bXuz6GlKpCSqmASOVk2etxFBG2UZMIyq9n7DhRAxIS3FYrz8qrN_a88ccbQl5XrrSqLmyOoRdyoSTLlfA1jnjLnHKCtxDuO4_P5dlEvL-sLtOCW7wLAwDx8Bn0w2Pcy5_B_Ec9kCyIp6lBowTOqJjLK4ahhxf9hfN3yYGskIv3yMHk_GL4JVSUK6XKedybfJGENQcm1iDEpJBhropTt5RsLxxF1f5UZmWPcd5bdwtz893M57eCz-lDorfd3pw5-dpfr2y__fmbouP__9cj8iDxUjrcONJjcge6J-T-LbXCQ_LxQ0c_wfRbuq3U0StPL-KiPxqO10u0o7OOnsymoRAJHRt08XD2a0ntDR0DxsRgcQKwoEnVdfqUTE7ffR6d5akkQ96KolnlSHKREjpABJ1sQChRMc-MbYwRrS-Vc46bkjmrPCZu3lXeqpZVnkPhDAfGn5Fed9XBc0Itdxbpoml8jazIc-QNSC0rqZyqgdc-I2yLjG6TXnkomzHXMW8plB6ORuikOsCpE5wZebMzWmzkOv7e_G2AfNc0aG3HFwiPTkNXGxDcFchTbWWECfm0K0VbGl46WXuoMnIYIN19JOGXkeOtA-k0Lyw1EzJcPkaelpF851R_dHXjqHtdPfrH9sekt7pew0ukTCv7Ko2LXyHvD1s priority: 102 providerName: Unpaywall |
| Title | On Segmentation of Pectoral Muscle in Digital Mammograms by Means of Deep Learning |
| URI | https://ieeexplore.ieee.org/document/9252130 https://www.proquest.com/docview/2462227075 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09252130.pdf https://doaj.org/article/ae43d0522b5a4a5499d14c1a31d67fe5 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED5K99Dtoazrxtx1QQ97rKktybL1mKUrZZCudAt0T0KypFBI3dAklP77nWQ1JAy2l74aSZzvTrrvhO47gC-VLY2sC5Nj6HU5l4Lmkvsad7yhVlrOWhfqnceX4mLCv99UNxutvsKbsJ4euFfcqXac2QJRgqk01yGbsSVvS81KK2rvIntp0ciNZCqewU0pZFUnmqGykKfD0Qj_CBNCinkqHttC0K1QFBn7U4uVLbS5t-rm-ulRz2Ybgef8LewnxEiGvaQHsOO6d_Bmg0fwEK5_dOSnm96lOqKO3HtyFa_jceJ4tcB55LYjZ7fT0CKEjDU6X3iVtSDmiYwdRqsw48y5OUl8q9P3MDn_9mt0kadmCXnLi2aZI_xEsGYd6taKxnHJK-qpNo3WvPWltNYyXVJrpMeUytvKG9nSyjNXWM0cZR9gt7vv3EcghlmDQE43vka84hlGdAR9lZBW1o7VPgP6rDfVJibx0NBipmJGUUjVK1sFZauk7AxO1pPmPZHGv4d_DQZZDw0s2PED-oZKvqH-5xsZHAZzrheRFMEKKzI4fjavSjt2oSgXoSwYEVQG-drkf4mqYxvLLVGPXkLUT_A6rNlf7hzD7vJh5T4j3FmaQfTsQaxMHMCryeXV8Pcfgcr6ZA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8TB44GugBcbwA49Ll_gjqR9Ht6nAMhBs0t4sOz5XEyWtaCs0_nrOiRutgBBvUeRLbP3Oud9dfHeEvJEut6rMbIqmF1KhCpYq4Uvc8ZY55QSvIeQ7VxfF-Eq8v5bXW-Swz4UBgPbwGQzCZfsv383qVQiVHSmGxoajg35PCiFkl63VR1RCCwkly1haKM_U0fFohKtAJ5Chb4qf6qJgG-anrdIf26psMMydVTM3tz_MdHrH2Jw9ItV6mt0Zk6-D1dIO6p-_VXD833U8Jg8j66THnZo8IVvQPCUP7tQi3CWfPzb0C0y-xVykhs48_dSG9FGwWi1Qjt409ORmEtqM0MqgAoeTXQtqb2kFaPGCxAnAnMaarZNn5Ors9HI0TmPDhbQW2XCZIoVFwucA8XHFEIQSknlm7NAYUftcOee4yZmzyqNb5p30VtVMeg6ZMxwYf062m1kDe4Ra7iySQTP0JXIez5EVIHGUhXKqBF76hLA1DrqO1chDU4ypbr2STOkOPB3A0xG8hBz2QvOuGMe_h78NAPdDQyXt9gaCoePG1AYEdxmyUCuNMMFbdrmoc8NzV5QeZEJ2A4D9QyJ2Cdlfq4uOu36hmShCajGysISkvQr9MVXTtsLcmOqLv7_lNdkZX1bn-vzdxYeX5H6Q6MI_-2R7-X0Fr5AQLe1Buw9-AfhIBGk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELUgPSAOfBXEloJ84Mgmu7bXuz6GlKpCSqmASOVk2etxFBG2UZMIyq9n7DhRAxIS3FYrz8qrN_a88ccbQl5XrrSqLmyOoRdyoSTLlfA1jnjLnHKCtxDuO4_P5dlEvL-sLtOCW7wLAwDx8Bn0w2Pcy5_B_Ec9kCyIp6lBowTOqJjLK4ahhxf9hfN3yYGskIv3yMHk_GL4JVSUK6XKedybfJGENQcm1iDEpJBhropTt5RsLxxF1f5UZmWPcd5bdwtz893M57eCz-lDorfd3pw5-dpfr2y__fmbouP__9cj8iDxUjrcONJjcge6J-T-LbXCQ_LxQ0c_wfRbuq3U0StPL-KiPxqO10u0o7OOnsymoRAJHRt08XD2a0ntDR0DxsRgcQKwoEnVdfqUTE7ffR6d5akkQ96KolnlSHKREjpABJ1sQChRMc-MbYwRrS-Vc46bkjmrPCZu3lXeqpZVnkPhDAfGn5Fed9XBc0Itdxbpoml8jazIc-QNSC0rqZyqgdc-I2yLjG6TXnkomzHXMW8plB6ORuikOsCpE5wZebMzWmzkOv7e_G2AfNc0aG3HFwiPTkNXGxDcFchTbWWECfm0K0VbGl46WXuoMnIYIN19JOGXkeOtA-k0Lyw1EzJcPkaelpF851R_dHXjqHtdPfrH9sekt7pew0ukTCv7Ko2LXyHvD1s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Segmentation+of+Pectoral+Muscle+in+Digital+Mammograms+by+Means+of+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Soleimani%2C+Hossein&rft.au=Michailovich%2C+Oleg+V.&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=204173&rft.epage=204182&rft_id=info:doi/10.1109%2FACCESS.2020.3036662&rft.externalDocID=9252130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |