Migraine aura discrimination using machine learning: an fMRI study during ictal and interictal periods
Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in tw...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 62; no. 8; pp. 2545 - 2556 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-024-03080-5 |
Cover
| Abstract | Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86–90% and 77–81%, respectively (
p
< 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
Graphical Abstract |
|---|---|
| AbstractList | Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86–90% and 77–81%, respectively (
p
< 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
Graphical Abstract Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86–90% and 77–81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms. Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms. |
| Author | Sanchez, Tiago Arruda Fernandes, Orlando Ramos, Lucas Rego Acchar, Mariana Calixto |
| Author_xml | – sequence: 1 givenname: Orlando surname: Fernandes fullname: Fernandes, Orlando organization: Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina – Universidade Federal do Rio de Janeiro, Laboratório de Neurofisiolgia e Comportamento, Departamento de Fisiologia e Farmacologia, Instituto Biomédico – Universidade Federal Fluminense – sequence: 2 givenname: Lucas Rego surname: Ramos fullname: Ramos, Lucas Rego organization: Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina – Universidade Federal do Rio de Janeiro – sequence: 3 givenname: Mariana Calixto surname: Acchar fullname: Acchar, Mariana Calixto organization: Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina – Universidade Federal do Rio de Janeiro, Universidade Estacio de Sá (UNESA) – sequence: 4 givenname: Tiago Arruda orcidid: 0000-0002-2853-1490 surname: Sanchez fullname: Sanchez, Tiago Arruda email: tiago@medicina.ufrj.br organization: Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina – Universidade Federal do Rio de Janeiro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38637358$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1LHDEYh4NYdN32H_BQAr30Mvq--dhkeitiW8GlIPYcspmMjcxmtsnMYf97M45V8CBCIF_PL8mb54Qcxj56Qk4RzhBAnWdEiaoCJirgoKGSB2SBSmAFQohDsgAUUAGiPiYnOd8DMJRMHJFjrldccakXpF2Hu2RD9NSOydImZJfCNkQ7hD7SMYd4R7fW_Z2IztsUy8I3aiNt1zdXNA9js6fNmCYsuMF2ZauhIQ4-zdNdGfRN_kg-tLbL_tNTvyR_flzeXvyqrn__vLr4fl05AXqolOO48a0V3kkupHau8XLFrQCwUDuoYQN1yzVDp5lToq05bwQTclNa64Evydf53F3q_40-D2ZbKvJdZ6Pvx2w4Sq6YRvYOFAQHxcRKFvTLK_S-H1MshRRKr1BJhLpQn5-ocbP1jdmVj7Rpb_5_dgHYDLjU55x8-4wgmMmomY2aYtQ8GjXT3fpVyIXh0c5QvHVvR_kczbtJkE8vz34j9QAjObN3 |
| CitedBy_id | crossref_primary_10_62087_hpr_2024_0024 crossref_primary_10_3390_neurolint17020015 |
| Cites_doi | 10.1007/s00429-012-0390-9 10.1093/cercor/bhj181 10.1093/brain/awaa242 10.1212/WNL.0000000000008956 10.1212/WNL.58.6.885 10.1212/wnl.0000000000008962 10.1177/0333102416652091 10.1523/JNEUROSCI.3920-14.2015 10.1016/j.neuroimage.2018.11.016 10.1371/journal.pone.0117603 10.1007/s12021-017-9347-8 10.1093/brain/119.2.355 10.1038/npp.2011.9 10.1002/ana.25096 10.3233/BME-141118 10.1002/hbm.26204 10.1016/j.neuroimage.2016.10.038 10.1186/s12883-023-03183-w 10.1002/hbm.10067 10.3233/jad-191169 10.3389/fneur.2022.953921 10.1016/j.neuroimage.2009.10.072 10.1017/CBO9780511809682 10.1097/WCO.0000000000000573 10.3389/fneur.2022.981752 10.1186/s10194-019-1008-x 10.1111/head.12587 10.1016/j.neuroimage.2007.02.020 10.1002/hbm.22361 10.1073/pnas.071582498 10.1007/s12021-013-9178-1 10.3389/fneur.2023.1106612 10.1002/hbm.20348 10.1212/WNL.0b013e31827f0f10 10.1177/0333102416657147 10.1186/s10194-022-01525-6 10.1023/A:1009715923555 10.1093/brain/117.1.199 10.1371/journal.pone.0029482 10.3389/fnmol.2022.819507 10.1016/j.neuroimage.2011.03.047 10.3389/fpain.2022.1012831 10.1002/hbm.24854 10.1006/nimg.1999.0516 10.1016/S1053-8119(03)00169-1 10.1186/s12938-018-0587-0 10.1093/brain/awt309 10.1212/wnl.59.1.72 10.1186/s10194-022-01501-0 10.1177/0333102415584360 10.1023/B:MACH.0000035475.85309.1b 10.1016/j.neuroimage.2011.06.053 10.7551/mitpress/3206.001.0001 10.21203/rs.3.rs-2928305/v1 10.1186/s10194-020-01086-6 10.1016/j.neuroimage.2004.12.034 10.1111/ene.15061 10.1177/0333102417738202 10.1109/NSSMIC.1993.373602 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. International Federation for Medical and Biological Engineering. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. International Federation for Medical and Biological Engineering. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11517-024-03080-5 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 2556 |
| ExternalDocumentID | 38637358 10_1007_s11517_024_03080_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro grantid: E-26/201.678/2022 funderid: http://dx.doi.org/10.13039/501100004586 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro grantid: E-26/201.678/2022 |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-7c31befa4ec53458ccde563a400a09c090b09f3821c82c74f933d4245b45bfe03 |
| IEDL.DBID | BENPR |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Oct 02 06:27:53 EDT 2025 Sat Sep 27 23:05:33 EDT 2025 Tue Oct 07 05:44:20 EDT 2025 Wed Feb 19 02:16:02 EST 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Oct 01 03:38:03 EDT 2025 Fri Feb 21 02:39:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Migraine with aura (MWA) Spatiotemporal classifier fMRI Machine learning |
| Language | English |
| License | 2024. International Federation for Medical and Biological Engineering. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-7c31befa4ec53458ccde563a400a09c090b09f3821c82c74f933d4245b45bfe03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2853-1490 |
| PMID | 38637358 |
| PQID | 3086175109 |
| PQPubID | 54161 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3153728120 proquest_miscellaneous_3043072465 proquest_journals_3086175109 pubmed_primary_38637358 crossref_primary_10_1007_s11517_024_03080_5 crossref_citationtrail_10_1007_s11517_024_03080_5 springer_journals_10_1007_s11517_024_03080_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 2024-Aug 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Arngrim, Hougaard, Ahmadi (CR51) 2017; 82 Marquand, Howard, Brammer (CR57) 2010; 49 Varoquaux, Raamana, Engemann (CR58) 2017; 145 Hougaard, Amin, Amin (CR7) 2013; 80 CR37 Lauritzen (CR8) 1994; 117 Russell, Olesen (CR53) 1996; 119 CR34 CR33 Portugal, Rosa, Rao (CR43) 2016; 11 Shawe-Taylor, Cristianini (CR17) 2004 Lee, Park, Lee, Park (CR24) 2023; 44 Chu, Mourão-Miranda, Chiu (CR28) 2011; 58 Rottschy, Eickhoff, Schleicher (CR39) 2007; 28 Chong, Gaw, Fu (CR12) 2017; 37 Schrouff, Monteiro, Portugal (CR44) 2018; 16 CR3 Maldjian, Laurienti, Kraft, Burdette (CR42) 2003; 19 Fu, Liu, Huang (CR16) 2022; 23 Venkatesh, Jaja, Pessoa (CR31) 2019; 186 CR47 Viana, Tronvik, Do (CR2) 2019; 20 Malikovic, Amunts, Schleicher (CR41) 2006; 17 Yang, Zhang, Liu, Wang (CR15) 2018; 17 Hagenbeek, Rombouts, Van Dijk, Barkhof (CR32) 2002; 17 Amunts, Malikovic, Mohlberg (CR38) 2000; 11 Burges (CR36) 1998; 2 Hougaard, Amin, Hoffmann (CR46) 2014; 35 Viana, Sances, Linde (CR5) 2017; 37 Messina, Filippi, Goadsby (CR9) 2018; 31 Gill, Mouches, Hu (CR59) 2020; 75 Guidotti, Del Gratta, Baldassarre (CR29) 2015; 35 Tedeschi, Russo, Conte (CR48) 2016; 36 Rasmussen, Kogelman, Kristensen (CR52) 2020; 143 Hadjikhani, Sanchez del Rio, Wu (CR6) 2001; 98 Cao, Aurora, Nagesh (CR45) 2002; 59 Messina, Cetta, Colombo, Filippi (CR11) 2022; 23 Schrouff, Rosa, Rondina (CR35) 2013; 11 CR55 Lipton, Scher, Kolodner (CR4) 2002; 58 Hansen, Baca, VanValkenburgh, Charles (CR1) 2013; 136 Cheng, Zhang, Zheng (CR23) 2022; 13 Tessitore, Russo, Conte (CR49) 2015; 55 CR50 Jorge-Hernandez, Chimeno, Garcia-Zapirain (CR13) 2014; 24 Gou, Yang, Hou (CR19) 2023; 23 Mu, Chen, Quan (CR25) 2020; 41 Marquand, De Simoni, O’Daly (CR54) 2011; 36 Mitrović, Petrušić, Radojičić (CR18) 2023; 14 Mourão-Miranda, Friston, Brammer (CR27) 2007; 36 Kujovic, Zilles, Malikovic (CR40) 2013; 218 Hong, Sun, Zhang (CR21) 2022; 13 Wei, Xu, Wang (CR22) 2022; 15 Mitchell, Hutchinson, Niculescu (CR26) 2004; 57 Rocca, Harrer, Filippi (CR14) 2020; 94 Mourão-Miranda, Oliveira, Ladouceur (CR56) 2012; 7 Tu, Zeng, Lan (CR10) 2020; 94 Dumkrieger, Chong, Ross (CR20) 2023; 3 Janoos, Machiraju, Singh, Morocz (CR30) 2011; 57 3080_CR34 LCL Portugal (3080_CR43) 2016; 11 3080_CR33 3080_CR37 AF Marquand (3080_CR54) 2011; 36 M Viana (3080_CR5) 2017; 37 MA Rocca (3080_CR14) 2020; 94 N Hadjikhani (3080_CR6) 2001; 98 C Rottschy (3080_CR39) 2007; 28 J Mourão-Miranda (3080_CR27) 2007; 36 N Arngrim (3080_CR51) 2017; 82 A Malikovic (3080_CR41) 2006; 17 MB Russell (3080_CR53) 1996; 119 3080_CR3 J Mu (3080_CR25) 2020; 41 S Gill (3080_CR59) 2020; 75 J Hong (3080_CR21) 2022; 13 A Hougaard (3080_CR46) 2014; 35 G Tedeschi (3080_CR48) 2016; 36 M Venkatesh (3080_CR31) 2019; 186 JM Hansen (3080_CR1) 2013; 136 A Marquand (3080_CR57) 2010; 49 CD Chong (3080_CR12) 2017; 37 CH Lee (3080_CR24) 2023; 44 H Yang (3080_CR15) 2018; 17 C Chu (3080_CR28) 2011; 58 R Messina (3080_CR11) 2022; 23 RE Hagenbeek (3080_CR32) 2002; 17 TM Mitchell (3080_CR26) 2004; 57 J Schrouff (3080_CR35) 2013; 11 3080_CR55 A Tessitore (3080_CR49) 2015; 55 G Dumkrieger (3080_CR20) 2023; 3 3080_CR50 S Cheng (3080_CR23) 2022; 13 M Lauritzen (3080_CR8) 1994; 117 R Guidotti (3080_CR29) 2015; 35 K Amunts (3080_CR38) 2000; 11 CJ Burges (3080_CR36) 1998; 2 JA Maldjian (3080_CR42) 2003; 19 R Messina (3080_CR9) 2018; 31 H-L Wei (3080_CR22) 2022; 15 M Viana (3080_CR2) 2019; 20 A Hougaard (3080_CR7) 2013; 80 F Janoos (3080_CR30) 2011; 57 AH Rasmussen (3080_CR52) 2020; 143 F Jorge-Hernandez (3080_CR13) 2014; 24 3080_CR47 J Mourão-Miranda (3080_CR56) 2012; 7 Y Tu (3080_CR10) 2020; 94 J Shawe-Taylor (3080_CR17) 2004 G Varoquaux (3080_CR58) 2017; 145 K Mitrović (3080_CR18) 2023; 14 M Kujovic (3080_CR40) 2013; 218 T Fu (3080_CR16) 2022; 23 C Gou (3080_CR19) 2023; 23 J Schrouff (3080_CR44) 2018; 16 RB Lipton (3080_CR4) 2002; 58 Y Cao (3080_CR45) 2002; 59 |
| References_xml | – volume: 218 start-page: 157 year: 2013 end-page: 172 ident: CR40 article-title: Cytoarchitectonic mapping of the human dorsal extrastriate cortex publication-title: Brain Struct Funct doi: 10.1007/s00429-012-0390-9 – volume: 17 start-page: 562 year: 2006 end-page: 574 ident: CR41 article-title: Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5 publication-title: Cereb Cortex doi: 10.1093/cercor/bhj181 – volume: 143 start-page: 2945 year: 2020 end-page: 2956 ident: CR52 article-title: Functional gene networks reveal distinct mechanisms segregating in migraine families publication-title: Brain: J Neurol doi: 10.1093/brain/awaa242 – volume: 94 start-page: 291 year: 2020 end-page: 292 ident: CR14 article-title: Are machine learning approaches the future to study patients with migraine? publication-title: Neurology doi: 10.1212/WNL.0000000000008956 – volume: 58 start-page: 885 year: 2002 end-page: 894 ident: CR4 article-title: Migraine in the United States: epidemiology and patterns of health care use publication-title: Neurology doi: 10.1212/WNL.58.6.885 – volume: 94 start-page: e741 year: 2020 end-page: e751 ident: CR10 article-title: An fMRI-based neural marker for migraine without aura publication-title: Neurology doi: 10.1212/wnl.0000000000008962 – volume: 37 start-page: 828 year: 2017 end-page: 844 ident: CR12 article-title: Migraine classification using magnetic resonance imaging resting-state functional connectivity data publication-title: Cephalalgia doi: 10.1177/0333102416652091 – volume: 35 start-page: 9786 year: 2015 end-page: 9798 ident: CR29 article-title: Visual learning induces changes in resting-state fMRI multivariate pattern of information publication-title: J Neurosci : official J Soc Neurosci doi: 10.1523/JNEUROSCI.3920-14.2015 – volume: 186 start-page: 410 year: 2019 end-page: 423 ident: CR31 article-title: Brain dynamics and temporal trajectories during task and naturalistic processing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.016 – volume: 11 year: 2016 ident: CR43 article-title: Can emotional and behavioral dysregulation in youth be decoded from functional neuroimaging? publication-title: PLoS ONE doi: 10.1371/journal.pone.0117603 – volume: 16 start-page: 117 year: 2018 end-page: 143 ident: CR44 article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models publication-title: Neuroinformatics doi: 10.1007/s12021-017-9347-8 – volume: 119 start-page: 355 issue: Pt 2 year: 1996 end-page: 361 ident: CR53 article-title: A nosographic analysis of the migraine aura in a general population publication-title: Brain: J Neurol doi: 10.1093/brain/119.2.355 – volume: 36 start-page: 1237 year: 2011 end-page: 1247 ident: CR54 article-title: Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers publication-title: Neuropsychopharmacol doi: 10.1038/npp.2011.9 – ident: CR50 – volume: 82 start-page: 925 year: 2017 end-page: 939 ident: CR51 article-title: Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses publication-title: Ann Neurol doi: 10.1002/ana.25096 – volume: 24 start-page: 2979 year: 2014 end-page: 2986 ident: CR13 article-title: Graph theory for feature extraction and classification: a migraine pathology case study publication-title: Bio-Med Mater Eng doi: 10.3233/BME-141118 – volume: 44 start-page: 2224 year: 2023 end-page: 2233 ident: CR24 article-title: Whole-brain functional gradients reveal cortical and subcortical alterations in patients with episodic migraine publication-title: Hum Brain Mapp doi: 10.1002/hbm.26204 – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: CR58 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 23 start-page: 142 year: 2023 ident: CR19 article-title: Functional connectivity of the language area in migraine: a preliminary classification model publication-title: BMC Neurol doi: 10.1186/s12883-023-03183-w – volume: 17 start-page: 244 year: 2002 end-page: 250 ident: CR32 article-title: Determination of individual stimulus-response curves in the visual cortex publication-title: Hum Brain Mapp doi: 10.1002/hbm.10067 – volume: 75 start-page: 277 year: 2020 end-page: 288 ident: CR59 article-title: Using machine learning to predict dementia from neuropsychiatric symptom and neuroimaging data publication-title: J Alzheim Dis doi: 10.3233/jad-191169 – volume: 13 year: 2022 ident: CR23 article-title: Efficacy prediction of acupuncture treatment for migraine without aura based on multimodal MRI: A study protocol publication-title: Front Neurol doi: 10.3389/fneur.2022.953921 – volume: 49 start-page: 2178 year: 2010 end-page: 2189 ident: CR57 article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.072 – year: 2004 ident: CR17 publication-title: Kernel methods for pattern analysis doi: 10.1017/CBO9780511809682 – ident: CR47 – volume: 31 start-page: 379 year: 2018 end-page: 385 ident: CR9 article-title: Recent advances in headache neuroimaging publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000573 – volume: 13 year: 2022 ident: CR21 article-title: Neurological mechanism and treatment effects prediction of acupuncture on migraine without aura: study protocol for a randomized controlled trial publication-title: Front Neurol doi: 10.3389/fneur.2022.981752 – volume: 20 start-page: 64 year: 2019 ident: CR2 article-title: Clinical features of visual migraine aura: a systematic review publication-title: J Headache Pain doi: 10.1186/s10194-019-1008-x – volume: 55 start-page: 794 year: 2015 end-page: 805 ident: CR49 article-title: Abnormal connectivity within executive resting-state network in migraine with aura publication-title: Headache doi: 10.1111/head.12587 – volume: 36 start-page: 88 year: 2007 end-page: 99 ident: CR27 article-title: Dynamic discrimination analysis: a spatial-temporal SVM publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.020 – volume: 35 start-page: 2714 year: 2014 end-page: 2723 ident: CR46 article-title: Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura publication-title: Hum Brain Mapp doi: 10.1002/hbm.22361 – ident: CR37 – volume: 98 start-page: 4687 year: 2001 end-page: 4692 ident: CR6 article-title: Mechanisms of migraine aura revealed by functional MRI in human visual cortex publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.071582498 – volume: 11 start-page: 319 year: 2013 end-page: 337 ident: CR35 article-title: PRoNTo: pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics doi: 10.1007/s12021-013-9178-1 – volume: 14 start-page: 1106612 year: 2023 ident: CR18 article-title: Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data publication-title: Front Neurol doi: 10.3389/fneur.2023.1106612 – volume: 28 start-page: 1045 year: 2007 end-page: 1059 ident: CR39 article-title: Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas publication-title: Hum Brain Mapp doi: 10.1002/hbm.20348 – ident: CR33 – volume: 80 start-page: 428 year: 2013 end-page: 431 ident: CR7 article-title: Provocation of migraine with aura using natural trigger factors publication-title: Neurology doi: 10.1212/WNL.0b013e31827f0f10 – volume: 37 start-page: 979 year: 2017 end-page: 989 ident: CR5 article-title: Clinical features of migraine aura: results from a prospective diary-aided study publication-title: Cephalalgia: an Intl J Headache doi: 10.1177/0333102416657147 – volume: 23 start-page: 149 year: 2022 ident: CR11 article-title: Tracking the evolution of non-headache symptoms through the migraine attack publication-title: J Headache Pain doi: 10.1186/s10194-022-01525-6 – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: CR36 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 – volume: 117 start-page: 199 issue: Pt 1 year: 1994 end-page: 210 ident: CR8 article-title: Pathophysiology of the migraine aura. The spreading depression theory publication-title: Brain: a J Neurol doi: 10.1093/brain/117.1.199 – volume: 7 year: 2012 ident: CR56 article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents publication-title: PLoS ONE doi: 10.1371/journal.pone.0029482 – volume: 15 year: 2022 ident: CR22 article-title: Disrupted functional connectivity of the amygdala predicts the efficacy of non-steroidal anti-inflammatory drugs in migraineurs without aura publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2022.819507 – volume: 57 start-page: 362 year: 2011 end-page: 377 ident: CR30 article-title: Spatio-temporal models of mental processes from fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.047 – volume: 3 start-page: 1012831 year: 2023 ident: CR20 article-title: The value of brain MRI functional connectivity data in a machine learning classifier for distinguishing migraine from persistent post-traumatic headache publication-title: Front Pain Res doi: 10.3389/fpain.2022.1012831 – volume: 41 start-page: 984 year: 2020 end-page: 993 ident: CR25 article-title: Neuroimaging features of whole-brain functional connectivity predict attack frequency of migraine publication-title: Hum Brain Mapp doi: 10.1002/hbm.24854 – ident: CR3 – volume: 11 start-page: 66 year: 2000 end-page: 84 ident: CR38 article-title: Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? publication-title: Neuroimage doi: 10.1006/nimg.1999.0516 – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: CR42 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00169-1 – volume: 17 start-page: 1 year: 2018 end-page: 14 ident: CR15 article-title: Multimodal MRI-based classification of migraine: using deep learning convolutional neural network publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0587-0 – volume: 136 start-page: 3589 year: 2013 end-page: 3595 ident: CR1 article-title: Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording publication-title: Brain doi: 10.1093/brain/awt309 – volume: 59 start-page: 72 year: 2002 end-page: 78 ident: CR45 article-title: Functional MRI-BOLD of brainstem structures during visually triggered migraine publication-title: Neurology doi: 10.1212/wnl.59.1.72 – ident: CR34 – volume: 23 start-page: 131 year: 2022 ident: CR16 article-title: Cerebral blood flow alterations in migraine patients with and without aura: an arterial spin labeling study publication-title: J Headache Pain doi: 10.1186/s10194-022-01501-0 – ident: CR55 – volume: 36 start-page: 139 year: 2016 end-page: 147 ident: CR48 article-title: Increased interictal visual network connectivity in patients with migraine with aura publication-title: Cephalalgia an Intl J Headache doi: 10.1177/0333102415584360 – volume: 57 start-page: 145 year: 2004 end-page: 175 ident: CR26 article-title: Learning to decode cognitive states from brain images publication-title: Mach Learn doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 58 start-page: 560 year: 2011 end-page: 571 ident: CR28 article-title: Utilizing temporal information in fMRI decoding: classifier using kernel regression methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.053 – volume: 17 start-page: 1 year: 2018 ident: 3080_CR15 publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0587-0 – volume: 57 start-page: 145 year: 2004 ident: 3080_CR26 publication-title: Mach Learn doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 11 start-page: 319 year: 2013 ident: 3080_CR35 publication-title: Neuroinformatics doi: 10.1007/s12021-013-9178-1 – volume: 3 start-page: 1012831 year: 2023 ident: 3080_CR20 publication-title: Front Pain Res doi: 10.3389/fpain.2022.1012831 – volume: 15 year: 2022 ident: 3080_CR22 publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2022.819507 – volume: 36 start-page: 139 year: 2016 ident: 3080_CR48 publication-title: Cephalalgia an Intl J Headache doi: 10.1177/0333102415584360 – ident: 3080_CR34 doi: 10.7551/mitpress/3206.001.0001 – ident: 3080_CR55 doi: 10.21203/rs.3.rs-2928305/v1 – volume: 98 start-page: 4687 year: 2001 ident: 3080_CR6 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.071582498 – volume: 7 year: 2012 ident: 3080_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029482 – volume: 36 start-page: 88 year: 2007 ident: 3080_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.020 – volume: 49 start-page: 2178 year: 2010 ident: 3080_CR57 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.072 – volume: 17 start-page: 244 year: 2002 ident: 3080_CR32 publication-title: Hum Brain Mapp doi: 10.1002/hbm.10067 – volume: 36 start-page: 1237 year: 2011 ident: 3080_CR54 publication-title: Neuropsychopharmacol doi: 10.1038/npp.2011.9 – volume: 11 year: 2016 ident: 3080_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0117603 – volume: 17 start-page: 562 year: 2006 ident: 3080_CR41 publication-title: Cereb Cortex doi: 10.1093/cercor/bhj181 – volume: 44 start-page: 2224 year: 2023 ident: 3080_CR24 publication-title: Hum Brain Mapp doi: 10.1002/hbm.26204 – volume: 58 start-page: 560 year: 2011 ident: 3080_CR28 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.053 – volume: 13 year: 2022 ident: 3080_CR23 publication-title: Front Neurol doi: 10.3389/fneur.2022.953921 – volume: 57 start-page: 362 year: 2011 ident: 3080_CR30 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.047 – ident: 3080_CR50 doi: 10.1186/s10194-020-01086-6 – volume: 20 start-page: 64 year: 2019 ident: 3080_CR2 publication-title: J Headache Pain doi: 10.1186/s10194-019-1008-x – volume: 23 start-page: 131 year: 2022 ident: 3080_CR16 publication-title: J Headache Pain doi: 10.1186/s10194-022-01501-0 – ident: 3080_CR37 doi: 10.1016/j.neuroimage.2004.12.034 – volume: 37 start-page: 828 year: 2017 ident: 3080_CR12 publication-title: Cephalalgia doi: 10.1177/0333102416652091 – volume: 37 start-page: 979 year: 2017 ident: 3080_CR5 publication-title: Cephalalgia: an Intl J Headache doi: 10.1177/0333102416657147 – volume: 16 start-page: 117 year: 2018 ident: 3080_CR44 publication-title: Neuroinformatics doi: 10.1007/s12021-017-9347-8 – volume: 119 start-page: 355 issue: Pt 2 year: 1996 ident: 3080_CR53 publication-title: Brain: J Neurol doi: 10.1093/brain/119.2.355 – volume: 58 start-page: 885 year: 2002 ident: 3080_CR4 publication-title: Neurology doi: 10.1212/WNL.58.6.885 – volume: 35 start-page: 9786 year: 2015 ident: 3080_CR29 publication-title: J Neurosci : official J Soc Neurosci doi: 10.1523/JNEUROSCI.3920-14.2015 – volume: 11 start-page: 66 year: 2000 ident: 3080_CR38 publication-title: Neuroimage doi: 10.1006/nimg.1999.0516 – volume: 75 start-page: 277 year: 2020 ident: 3080_CR59 publication-title: J Alzheim Dis doi: 10.3233/jad-191169 – volume: 13 year: 2022 ident: 3080_CR21 publication-title: Front Neurol doi: 10.3389/fneur.2022.981752 – volume: 218 start-page: 157 year: 2013 ident: 3080_CR40 publication-title: Brain Struct Funct doi: 10.1007/s00429-012-0390-9 – volume: 80 start-page: 428 year: 2013 ident: 3080_CR7 publication-title: Neurology doi: 10.1212/WNL.0b013e31827f0f10 – volume: 55 start-page: 794 year: 2015 ident: 3080_CR49 publication-title: Headache doi: 10.1111/head.12587 – volume: 41 start-page: 984 year: 2020 ident: 3080_CR25 publication-title: Hum Brain Mapp doi: 10.1002/hbm.24854 – volume: 94 start-page: e741 year: 2020 ident: 3080_CR10 publication-title: Neurology doi: 10.1212/wnl.0000000000008962 – volume: 23 start-page: 149 year: 2022 ident: 3080_CR11 publication-title: J Headache Pain doi: 10.1186/s10194-022-01525-6 – volume: 31 start-page: 379 year: 2018 ident: 3080_CR9 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000573 – ident: 3080_CR47 doi: 10.1111/ene.15061 – volume: 24 start-page: 2979 year: 2014 ident: 3080_CR13 publication-title: Bio-Med Mater Eng doi: 10.3233/BME-141118 – volume-title: Kernel methods for pattern analysis year: 2004 ident: 3080_CR17 doi: 10.1017/CBO9780511809682 – volume: 94 start-page: 291 year: 2020 ident: 3080_CR14 publication-title: Neurology doi: 10.1212/WNL.0000000000008956 – volume: 28 start-page: 1045 year: 2007 ident: 3080_CR39 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20348 – volume: 82 start-page: 925 year: 2017 ident: 3080_CR51 publication-title: Ann Neurol doi: 10.1002/ana.25096 – volume: 2 start-page: 121 year: 1998 ident: 3080_CR36 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 – volume: 59 start-page: 72 year: 2002 ident: 3080_CR45 publication-title: Neurology doi: 10.1212/wnl.59.1.72 – volume: 23 start-page: 142 year: 2023 ident: 3080_CR19 publication-title: BMC Neurol doi: 10.1186/s12883-023-03183-w – volume: 19 start-page: 1233 year: 2003 ident: 3080_CR42 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00169-1 – volume: 143 start-page: 2945 year: 2020 ident: 3080_CR52 publication-title: Brain: J Neurol doi: 10.1093/brain/awaa242 – volume: 35 start-page: 2714 year: 2014 ident: 3080_CR46 publication-title: Hum Brain Mapp doi: 10.1002/hbm.22361 – ident: 3080_CR3 doi: 10.1177/0333102417738202 – volume: 145 start-page: 166 year: 2017 ident: 3080_CR58 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 136 start-page: 3589 year: 2013 ident: 3080_CR1 publication-title: Brain doi: 10.1093/brain/awt309 – volume: 14 start-page: 1106612 year: 2023 ident: 3080_CR18 publication-title: Front Neurol doi: 10.3389/fneur.2023.1106612 – volume: 186 start-page: 410 year: 2019 ident: 3080_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.016 – volume: 117 start-page: 199 issue: Pt 1 year: 1994 ident: 3080_CR8 publication-title: Brain: a J Neurol doi: 10.1093/brain/117.1.199 – ident: 3080_CR33 doi: 10.1109/NSSMIC.1993.373602 |
| SSID | ssj0021524 |
| Score | 2.422892 |
| Snippet | Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2545 |
| SubjectTerms | Activation analysis Activity patterns Adult Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine brain Brain - diagnostic imaging Brain - physiopathology Brain Mapping - methods Computer Applications Embedding Female Functional magnetic resonance imaging Gaussian process Headache Human Physiology Humans Imaging Information processing Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods magnetism Male Migraine Migraine with Aura - diagnostic imaging Migraine with Aura - physiopathology Neuroimaging normal distribution Original Article Radiology therapeutics Visual discrimination Visual discrimination learning Visual stimuli |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIlVcoLQ8tlDkStxaIye2E4cbqqA8tBwQK9FT5Dj2CgHZah-X_vqOEycroCAh5RJ5Ejn2eOaLZuYbgIMycjKxTFFjuaGoIQnNbKmpQGcqS6kQZNQJslfJ2VBc3MrbUBQ2bbPd25BkbakXxW7onFKKPoV6jhVG5TKs1HxbPVg5_vX78qT70UKfJLrURUTQoVjm_2956pBeoMwXEdLa8Zyuw7CdcpNvcn84nxWH5u8zNsf3ftNHWAtIlBw3qrMBS7b6BB8GIdb-GdzgbuT7R1ii5xNNfPlu0wLMbyXx-fIj8linYloSek-MjoiuiBtcn5OatpY0RZDkziDEx6GSeHaKSXPrKZbH5XQThqcnNz_PaOjKQI1gakZTw6PCOi2skVxIZUxpZcI1GgPNMsMyVrDMcRVHRsUmFS7jvPTx1QIvZxnfgl41ruwOEK4RALnYWJQUpS8pcagfHCFQZK1yqg9RuzW5CZTlvnPGQ74gW_YLmOMC5vUC5rIP37tn_jSEHW9K77U7nofDO81xCHEdGqusD9-6YTx2PpaiKzueexmB1jEWiXxDBr1JGiOCYn3YbrSpmxJXCU-5xE_80WrGYgKvz_fL-8R3YTWulcsnLO5BbzaZ268IombFfjgz_wDcRQ7P priority: 102 providerName: Springer Nature |
| Title | Migraine aura discrimination using machine learning: an fMRI study during ictal and interictal periods |
| URI | https://link.springer.com/article/10.1007/s11517-024-03080-5 https://www.ncbi.nlm.nih.gov/pubmed/38637358 https://www.proquest.com/docview/3086175109 https://www.proquest.com/docview/3043072465 https://www.proquest.com/docview/3153728120 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swED7aBMa-jL03Wxc02LdNTLYkWx6MkYyk3UbCKAtkn4wiS6GwOV2a_P_d-S2MsoCxMZJB1p10j313zwG8KaKgEy8Md146jhqS8MwXlis0prrQBkFGFSA7Ty4X6utSL09g3ubCUFhluydWG3WxcfSP_L1E7I2mLhLZp5s_nKpGkXe1LaFhm9IKxceKYuwU-jExY_WgP57Mv191n2BorVQX1IjYukmjqZPp0PilHG0WJw4XwfW_puoO_rzjO61M0vQhPGiwJBvVwn8EJ758DPdmjbf8CYTZ9ZoqQHhm91vLKAG3LuJFwmAU8b5mv6tgSs-a6hHrD8yWLMyuvrCKeJbVaYzs2iFIx6aCEb_Etr4lkuRNcfsUFtPJj8-XvKmrwJ0SZsdTJ6OVD1Z5p6XSxrnC60RaXM5WZE5kYiWyIE0cORO7VIVMyoI8pCs8ghfyGfTKTenPgEmLECbEzmNPVVBSSEAJSwQxkfcmmAFE7RTmriEdp9oXv_IDXTJNe47TnlfTnusBvO2euakpN472Pm8lkzfL7zY_KMsAXnfNuHDIG2JLv9lTH4X7W6wSfaQP2oM0RgwkBvC8lno3JGkSmUqNr_iuVYPDAP4_3hfHx_sS7seVClKI4Tn0dtu9f4WwZ7cawmm6TPFsphdD6I-m4_Gcrhc_v02GjZ5j6yIe_QXCZQFD |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VVgJeEGe7UMBI8AQWTmwnTqUKcbTapd0Vqlqpb8HrY1UJsmUPIf4cv63jxMkKVexbpbxEdqLJzNjzOXMBvLaJl5ljihrHDUUNyWjhrKYCjam0UiHIqANkR1n_THw9l-cb8LfNhQlhle2eWG_UdmrCP_L3HLE3mrqEFR8uf9HQNSp4V9sWGjq2VrD7dYmxmNhx5P78xiPcfH_wBeX9Jk0PD04_92nsMkCNYGpBc8OTsfNaOCO5kMoY62TGNSq3ZoVhBRuzwnOVJkalJhe-4NwGf-EYL-8Yx_fegi3BRYGHv61PB6NvJ92RD62j6IIoEcvHtJ0meQ-NbU7RRtJQM4ZR-a9pvIZ3r_lqaxN4eB_uRexKPjbK9gA2XPUQbg-jd_4R-OHFJHSccEQvZ5qEhN-maVgQPgkR9hPysw7edCR2q5jsEV0RPzwZkLrQLWnSJsmFwUMBDlkS6lnMmttQlHlq54_h7EY4_AQ2q2nldoBwjZDJp8bhTGFDEopHjeIImhLnlFc9SFoWliYWOQ-9Nn6Uq_LMge0lsr2s2V7KHrztnrlsSnysnb3bSqaMy31erpSzB6-6YVyowfuiKzddhjkC99NUZHLNHLQ_eYqYi_Vgu5F6RxJXGc-5xE9816rBioD_0_t0Pb0v4U7_dHhcHg9GR8_gblqrYwhv3IXNxWzpniPkWoxfRL0m8P2ml9IVmiU4Fw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7UCsUX8d61VSPok4ZmJslMRhAR69K1bhGxsG9jNpeloLPtXpD-tf46z5nLLlLct8K8DMkMmZMvOV_m3ABe-STqLAjDXZCOI0IyXgRvuUJlqr02SDJqB9mT7OhUfRnp0RZcdbEw5FbZ7Yn1Ru2njv6RH0jk3qjqElEcxNYt4tth_8P5BacKUmRp7cppNBA5Dpd_8Pg2fz84xLl-nab9zz8-HfG2wgB3SpgFz51MxiFaFZyWShvnfNCZtAhsKwonCjEWRZQmTZxJXa4iHv892QrHeMUgJL73FtzOpSzInTAfrQ97qBfVyn0SWXwbsNOE7aGazTlqR07ZYgTX_yrFa0z3mpW2Vn79e3C3Za3sYwOz-7AVqgewM2zt8g8hDs8mVGsiMLucWUahvk25MJp2Rr71E_a7dtsMrK1TMXnHbMXi8PuA1SluWRMwyc4cHgewyTPKZDFrbikd89TPH8Hpjcj3MWxX0yrsApMWyVJMXcCeylP4SUQsSaRLSQgmmh4knQhL16Y3pyobv8p1YmYSe4liL2uxl7oHb1bPnDfJPTb23u9mpmwX-rxcw7IHL1fNuETJ7mKrMF1SH4U7aaoyvaEPap48RbYlevCkmfXVkKTJZC41fuLbDgbrAfx_vE83j_cF7OACKr8OTo734E5ao5H8GvdhezFbhmfItRbj5zWoGfy86VX0F_fGNbE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Migraine+aura+discrimination+using+machine+learning%3A+an+fMRI+study+during+ictal+and+interictal+periods&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Fernandes%2C+Orlando&rft.au=Ramos%2C+Lucas+Rego&rft.au=Acchar%2C+Mariana+Calixto&rft.au=Sanchez%2C+Tiago+Arruda&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=62&rft.issue=8&rft.spage=2545&rft.epage=2556&rft_id=info:doi/10.1007%2Fs11517-024-03080-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |