Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks

The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected th...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 76318 - 76339
Main Authors Ghanem, Waheed Ali H. M., Ghaleb, Sanaa Abduljabbar Ahmed, Jantan, Aman, Nasser, Abdullah B., Saleh, Sami Abdulla Mohsen, Ngah, Amir, Alhadi, Arifah Che, Arshad, Humaira, Saad, Abdul-Malik H. Y., Omolara, Abiodun Esther, El-Ebiary, Yousef A. Baker, Abiodun, Oludare Isaac
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3192472

Cover

Abstract The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques.
AbstractList The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques.
Author Saleh, Sami Abdulla Mohsen
Ngah, Amir
Omolara, Abiodun Esther
Abiodun, Oludare Isaac
Ghanem, Waheed Ali H. M.
Nasser, Abdullah B.
Saad, Abdul-Malik H. Y.
Ghaleb, Sanaa Abduljabbar Ahmed
El-Ebiary, Yousef A. Baker
Alhadi, Arifah Che
Arshad, Humaira
Jantan, Aman
Author_xml – sequence: 1
  givenname: Waheed Ali H. M.
  orcidid: 0000-0002-3764-4788
  surname: Ghanem
  fullname: Ghanem, Waheed Ali H. M.
  email: waheed.ghanem@gmail.com
  organization: Faculty of Engineering, University of Aden, Aden, Yemen
– sequence: 2
  givenname: Sanaa Abduljabbar Ahmed
  orcidid: 0000-0003-4506-5214
  surname: Ghaleb
  fullname: Ghaleb, Sanaa Abduljabbar Ahmed
  email: sanaaghaleb.sg@gmail.com
  organization: Faculty of Engineering, University of Aden, Aden, Yemen
– sequence: 3
  givenname: Aman
  surname: Jantan
  fullname: Jantan, Aman
  organization: School of Computer Science, Universiti Sains Malaysia, Pinang, Malaysia
– sequence: 4
  givenname: Abdullah B.
  surname: Nasser
  fullname: Nasser, Abdullah B.
  organization: School of Technology and Innovation, University of Vaasa, Vaasa, Finland
– sequence: 5
  givenname: Sami Abdulla Mohsen
  surname: Saleh
  fullname: Saleh, Sami Abdulla Mohsen
  organization: School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
– sequence: 6
  givenname: Amir
  surname: Ngah
  fullname: Ngah, Amir
  organization: Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia
– sequence: 7
  givenname: Arifah Che
  surname: Alhadi
  fullname: Alhadi, Arifah Che
  organization: Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia
– sequence: 8
  givenname: Humaira
  surname: Arshad
  fullname: Arshad, Humaira
  organization: Department of Computer Science, Islamia University of Bahawalpur, Bahawalpur, Pakistan
– sequence: 9
  givenname: Abdul-Malik H. Y.
  surname: Saad
  fullname: Saad, Abdul-Malik H. Y.
  organization: Division of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
– sequence: 10
  givenname: Abiodun Esther
  surname: Omolara
  fullname: Omolara, Abiodun Esther
  organization: Department of Computer Science, University of Abuja, Gwagwalada, Nigeria
– sequence: 11
  givenname: Yousef A. Baker
  surname: El-Ebiary
  fullname: El-Ebiary, Yousef A. Baker
  organization: Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
– sequence: 12
  givenname: Oludare Isaac
  surname: Abiodun
  fullname: Abiodun, Oludare Isaac
  organization: Department of Computer Science, Bingham University, Karu, Nigeria
BookMark eNptUsGO0zAQjdAisSz7BXuxxLkldhLHOXZDFyotLFLhbE2cya5LYhfbYVU-im_EbaoKFXwZe_zeG888v04ujDWYJDc0nVOaVu8Wdb1cr-csZWye0YrlJXuRXDLKq1lWZPzir_2r5Nr7TRqXiKmivEx-17sGHVmZ4EavrSHvMaAK-9165wMO5BY8tiSegXwa-3jTbPaAn0hutQG3i4BAFv2jdTo8DaSzjtwhhNEhWWN_1ALTkqV5AqOi1r-EL-BgiIUdedgGPehfcGBpQz7j6KCPITxb992_SV520Hu8Psar5Nvd8mv9cXb_8GFVL-5nKk9FmJW841ilDGmRg1CF4F3X0axo24JlnDXIVIqcNizOQbQ5h5gtsVCCCyw4pdlVspp0WwsbuXV6iJ1KC1oeEtY9SnBBqx6laFJFhWLIhMoxayEvRVkWIJA22PImauWT1mi2sHuGvj8J0lTuLZSgFHov9xbKo4WR9naibZ39MaIPcmNHZ2LXkkXvaJ4zwSOqmlDKWe8ddlLpcJhecKD7U4Xpk5xXyM645-_6P-tmYmlEPDEqkTFRVdkf7MXLEw
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_iotcps_2024_01_003
crossref_primary_10_1002_itl2_516
crossref_primary_10_1016_j_aej_2024_10_100
crossref_primary_10_1007_s10586_024_04385_8
crossref_primary_10_1007_s10586_024_04388_5
crossref_primary_10_3233_JIFS_231948
crossref_primary_10_1007_s12083_024_01678_y
crossref_primary_10_1016_j_jocs_2023_102201
crossref_primary_10_1038_s41598_025_91663_z
crossref_primary_10_46604_peti_2024_13352
crossref_primary_10_1109_ACCESS_2023_3319814
crossref_primary_10_1109_ACCESS_2022_3204593
crossref_primary_10_1109_TCE_2023_3328552
crossref_primary_10_3390_pr13010101
crossref_primary_10_1109_TASC_2023_3259331
crossref_primary_10_1186_s40537_024_00887_9
crossref_primary_10_7717_peerj_cs_1580
crossref_primary_10_1016_j_iot_2025_101536
crossref_primary_10_3390_machines11100963
crossref_primary_10_22399_ijcesen_831
Cites_doi 10.1016/j.jisa.2018.11.007
10.1109/ACCESS.2019.2930832
10.1109/UBMK.2017.8093473
10.1109/ACCESS.2019.2895334
10.1016/j.jocs.2016.11.011
10.1016/j.asoc.2020.106522
10.1109/ACCESS.2019.2908225
10.1016/j.eswa.2020.113249
10.1016/j.knosys.2020.105648
10.1007/978-3-540-74472-6_42
10.1109/ACCESS.2020.2964751
10.1109/tia.2020.3011397
10.1007/s12559-018-9588-3
10.1111/coin.12342
10.1016/j.aej.2021.08.009
10.1016/j.swevo.2017.07.010
10.1109/BADGERS.2015.014
10.3390/sym13122306
10.1016/j.engappai.2017.01.013
10.1504/IJBIC.2011.042259
10.1016/j.jnca.2021.103266
10.1007/978-981-33-6835-4_26
10.18178/ijmlc.2022.12.2.1077
10.1007/978-3-642-12538-6_6
10.1007/s00500-021-05752-y
10.1002/spy2.147
10.1007/s00521-017-3021-9
10.1016/j.eswa.2019.113105
10.1016/j.procs.2020.03.438
10.1109/ICCES48766.2020.9137888
10.1016/j.cose.2019.101681
10.1007/s11063-019-10120-x
10.32604/cmc.2022.020472
10.1109/MilCIS.2015.7348942
10.1109/ACCESS.2020.3009533
10.1002/ett.4221
10.1007/978-981-33-6835-4_27
10.1016/j.future.2021.03.024
10.1145/382912.382914
10.1016/j.cose.2021.102537
10.1007/978-3-642-30671-6_1
10.1016/j.future.2021.09.027
10.1109/ACCESS.2021.3105914
10.1016/j.cose.2011.12.012
10.5220/0006639801080116
10.5220/0006105602530262
10.3390/sym13010004
10.1007/978-981-33-6835-4_28
10.1016/j.eswa.2021.116089
10.1007/s00521-019-04655-2
10.3390/su131810057
10.1109/ICAIIC48513.2020.9064976
10.32604/cmc.2021.016113
10.1016/j.comnet.2020.107247
10.1007/s11128-021-03311-w
10.1016/j.procs.2021.05.025
10.1016/j.procs.2021.10.052
10.1016/j.jksuci.2018.03.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3192472
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
[Open Access] DOAJ 오픈액세스 저널 디렉토리
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 76339
ExternalDocumentID oai_doaj_org_article_8b0c18c2e28c4e3da478775a8e1bed6b
10.1109/access.2022.3192472
10_1109_ACCESS_2022_3192472
9832899
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-76f6e902e154a8c586fff135dd52362be2c0e61b20818d46a2367e5c868e56113
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:17 EDT 2025
Wed Oct 01 15:52:45 EDT 2025
Sun Jun 29 15:54:51 EDT 2025
Wed Oct 01 04:58:15 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Wed Aug 27 02:25:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-76f6e902e154a8c586fff135dd52362be2c0e61b20818d46a2367e5c868e56113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3764-4788
0000-0003-4506-5214
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9832899
PQID 2695144286
PQPubID 4845423
PageCount 22
ParticipantIDs ieee_primary_9832899
crossref_citationtrail_10_1109_ACCESS_2022_3192472
doaj_primary_oai_doaj_org_article_8b0c18c2e28c4e3da478775a8e1bed6b
proquest_journals_2695144286
unpaywall_primary_10_1109_access_2022_3192472
crossref_primary_10_1109_ACCESS_2022_3192472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ghanem (ref26) 2016; 8
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
Luo (ref39) 2021; 23
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
Kumar (ref27) 2021; 7
ref32
ref2
ref1
ref38
ref24
ref23
ref25
ref20
ref63
ref22
ref21
Ibrahim (ref58) 2013; 8
ref28
ref29
Rawat (ref46) 2019
ref60
ref62
ref61
References_xml – ident: ref43
  doi: 10.1016/j.jisa.2018.11.007
– ident: ref50
  doi: 10.1109/ACCESS.2019.2930832
– ident: ref56
  doi: 10.1109/UBMK.2017.8093473
– ident: ref45
  doi: 10.1109/ACCESS.2019.2895334
– year: 2019
  ident: ref46
  article-title: Intrusion detection systems using classical machine learning techniques versus integrated unsupervised feature learning and deep neural network
  publication-title: arXiv:1910.01114
– ident: ref1
  doi: 10.1016/j.jocs.2016.11.011
– ident: ref41
  doi: 10.1016/j.asoc.2020.106522
– ident: ref44
  doi: 10.1109/ACCESS.2019.2908225
– ident: ref48
  doi: 10.1016/j.eswa.2020.113249
– ident: ref51
  doi: 10.1016/j.knosys.2020.105648
– ident: ref57
  doi: 10.1007/978-3-540-74472-6_42
– ident: ref2
  doi: 10.1109/ACCESS.2020.2964751
– ident: ref5
  doi: 10.1109/tia.2020.3011397
– ident: ref14
  doi: 10.1007/s12559-018-9588-3
– ident: ref32
  doi: 10.1111/coin.12342
– ident: ref37
  doi: 10.1016/j.aej.2021.08.009
– volume: 7
  start-page: 7552
  issue: 11
  year: 2021
  ident: ref27
  article-title: A multi-objective hyper-heuristic improved particle swarm optimization based configuration of SVM for big data cyber security
  publication-title: Eur. J. Mol. Clin. Med.
– ident: ref29
  doi: 10.1016/j.swevo.2017.07.010
– volume: 8
  start-page: 70
  issue: 1
  year: 2016
  ident: ref26
  article-title: Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intrusion detection
  publication-title: Int. J. Adv. Soft Comput. Appl.
– ident: ref61
  doi: 10.1109/BADGERS.2015.014
– ident: ref16
  doi: 10.3390/sym13122306
– ident: ref24
  doi: 10.1016/j.engappai.2017.01.013
– ident: ref30
  doi: 10.1504/IJBIC.2011.042259
– ident: ref36
  doi: 10.1016/j.jnca.2021.103266
– ident: ref21
  doi: 10.1007/978-981-33-6835-4_26
– ident: ref7
  doi: 10.18178/ijmlc.2022.12.2.1077
– ident: ref28
  doi: 10.1007/978-3-642-12538-6_6
– ident: ref23
  doi: 10.1007/s00500-021-05752-y
– ident: ref8
  doi: 10.1002/spy2.147
– ident: ref22
  doi: 10.1007/s00521-017-3021-9
– ident: ref53
  doi: 10.1016/j.eswa.2019.113105
– volume: 8
  start-page: 107
  issue: 1
  year: 2013
  ident: ref58
  article-title: A comparison study for intrusion database (KDD99, NSL-KDD) based on self-organization map (SOM) artificial neural network
  publication-title: J. Eng. Sci. Technol.
– ident: ref10
  doi: 10.1016/j.procs.2020.03.438
– ident: ref3
  doi: 10.1109/ICCES48766.2020.9137888
– ident: ref49
  doi: 10.1016/j.cose.2019.101681
– ident: ref11
  doi: 10.1007/s11063-019-10120-x
– ident: ref12
  doi: 10.32604/cmc.2022.020472
– volume: 23
  start-page: 490
  issue: 3
  year: 2021
  ident: ref39
  article-title: Research on network security intrusion detection system based on machine learning
  publication-title: Int. J. Netw. Secur.
– ident: ref60
  doi: 10.1109/MilCIS.2015.7348942
– ident: ref25
  doi: 10.1109/ACCESS.2020.3009533
– ident: ref40
  doi: 10.1002/ett.4221
– ident: ref13
  doi: 10.1007/978-981-33-6835-4_27
– ident: ref15
  doi: 10.1016/j.future.2021.03.024
– ident: ref55
  doi: 10.1145/382912.382914
– ident: ref35
  doi: 10.1016/j.cose.2021.102537
– ident: ref31
  doi: 10.1007/978-3-642-30671-6_1
– ident: ref33
  doi: 10.1016/j.future.2021.09.027
– ident: ref4
  doi: 10.1109/ACCESS.2021.3105914
– ident: ref59
  doi: 10.1016/j.cose.2011.12.012
– ident: ref62
  doi: 10.5220/0006639801080116
– ident: ref63
  doi: 10.5220/0006105602530262
– ident: ref17
  doi: 10.3390/sym13010004
– ident: ref19
  doi: 10.1007/978-981-33-6835-4_28
– ident: ref34
  doi: 10.1016/j.eswa.2021.116089
– ident: ref20
  doi: 10.1007/s00521-019-04655-2
– ident: ref18
  doi: 10.3390/su131810057
– ident: ref47
  doi: 10.1109/ICAIIC48513.2020.9064976
– ident: ref6
  doi: 10.32604/cmc.2021.016113
– ident: ref42
  doi: 10.1016/j.comnet.2020.107247
– ident: ref54
  doi: 10.1007/s11128-021-03311-w
– ident: ref38
  doi: 10.1016/j.procs.2021.05.025
– ident: ref9
  doi: 10.1016/j.procs.2021.10.052
– ident: ref52
  doi: 10.1016/j.jksuci.2018.03.011
SSID ssj0000816957
Score 2.4990053
Snippet The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76318
SubjectTerms Algorithms
Artificial neural networks
bat algorithm (BAT)
Classification algorithms
Communications traffic
Computer science
Cybersecurity
Datasets
False alarms
Feature extraction
Feature selection
feature selection (FS)
Intrusion detection
Intrusion detection system (IDS)
Intrusion detection systems
metaheuristic algorithm (MA)
Metaheuristics
multi-objective optimization (MOO)
multilayer perceptron (MLP)
Multilayer perceptrons
Multiple objective analysis
Neural networks
Optimization
System effectiveness
Training
SummonAdditionalLinks – databaseName: [Open Access] DOAJ 오픈액세스 저널 디렉토리
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQWxpSAfOBI1duLXcXdpVZAoSFCpN8uPCS3aZqttKtQ_xW9kbKerXYHgwjGRbY09k_F80cw3hLwRnWlE4KxirRNVG7yvjA9QcZCpobs0OhPPfzyRx6fthzNxttHqK-WEFXrgcnAH2teB6cCB69BCE11ik1HCaWAeovTJ-9babICp7IM1k0aokWaI1eZgOp_jjhAQco44FVGH4ltXUWbsH1usbEWb92_6K3f7wy0WGxfP0WPyaIwY6bRI-oTcg_4pebjBI7hLfs5vPazo-z5VUOBB03cw5BSrnhZGcjrDyypSfHY0l9wu_ffi6egsF-TigIFOF9-Wq4vh_JJiJEtTcHizAvold8pJa7k-0sP-POcM_GHCZ5cSvVBP9BP6ocuxwJNe9DQxgOAWTkrK-fUzcnp0-HV-XI2NGKrQ1nqolOwkmJoDxltOB6Fl13WsETEijJXcAw81SOZ54seLrXSJFg5E0FIDxmeseU52-mUPLwhVOKrRoGrndBuDMjp6xqJCFNgpE-SE8Dud2DCylKdmGQub0UptbFGkTYq0oyIn5O160lUh6fj78FlS9npoYtjOL9Du7Gh39l92NyG7yVTWixh0jYhdJ2T_znTs6A2uLUdbRODKNW6vWpvTb6K63CJzS9S9_yHqS_IgrVl-HO2THbRFeIWh1OBf56_mFy3NGhk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWge0A8jI-B6BjIDzySNnESx3lsy6aBRJkElcaT5Y8bVsjSqksF40fxG7l23GoFhARvSXQT2fKxfW5877mEvMirMs0NS6IkU3mUGa2jUhuIGHBX0J2XwgvPv53y01n25jw_Dz_cfC4MAPjgMxi4S3-WP4f6WzHkzImnlUOOWzw6CcO4RDDixWBpq9tkj-fIxXtkbzY9G310FeUSXkapP5t8GoQ1h8rXIESnkDH0VdHzKNjOduRV-0OZlR3GeWfdLNX1V1XXNzafk3tEbprdxZx8GaxbPTDff1F0_P9-3Sf7gZfSUQekB-QWNA_J3RtqhQfkx-Raw4q-blyeBg4nfQWtD-RqaKd7Tse4JVqK94r6xN6F_tytp3Ts037RoKWj-tNiNW8vLinyZeoo6HoF9L2vx-O-pRpLj5sLH5nwhxfOlAsnQzTQd7jaXYY0UjpvqNMZwS5Mu8D2q0dkdnL8YXIahXIPkcli0UYFrziUMQNkdUqYXPCqqpI0txadZc40MBMDTzRzKnw248qJz0FuBBeALDBJH5Nes2jgCaEFWqUCilgpkVlTlMLqJLEF-ppVURreJ2wz6tIELXRXkqOW3ieKSzmaTHACSAcVGaDSJy-3Ly07KZC_m48dnLamTsfbP8Chl2FZkELHJhGGARMmg9Qqp5VU5EpAosFy3ScHDi7bjwRs9MnRBpwyrDlXknFkyxm6k9i9aAvY35raTYKdph7-o_0R6SHS4BnSsVY_D3PuJw-KMQo
  priority: 102
  providerName: Unpaywall
Title Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks
URI https://ieeexplore.ieee.org/document/9832899
https://www.proquest.com/docview/2695144286
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09832899.pdf
https://doaj.org/article/8b0c18c2e28c4e3da478775a8e1bed6b
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacgAOFFoQC2XlA8dmm3gTP467S6uC1KUSrFROkR8TWthmqzYrVH4Uv5Gx4426UCFueYwdW_5szzgz3xDytqjUsLAsS7JcF0lujUmUsZAw4D6hO1cyEM-fTPnxLP9wVpxtkP0uFgYAgvMZDPxl-JfvFnbpj8oOFMIP7YNNsikkb2O1uvMUn0BCFSISC2WpOhhNJtgHNAEZQ8sU7QzB1jafwNEfk6qs6ZcPl_WVvv2h5_M7W83RNjlZNbL1MPk-WDZmYH_-wd_4v714Sp5EnZOOWpA8IxtQ75DtVT4HGqf3Dnl8h5xwl_ya3Bp8-772YRk4evQdNMFvq6YtzTkd4w7oKN5rGuJ4F-Zbu3zScYjyRYGGjuZfF9cXzfklRfWYeo1zeQ30U0i_4-vStaOH9XlwRLinwKn23mO-mR9xcbuMUaP0oqaeVgR7NW392G-ek9nR4efJcRKzOyQ2T2WTCF5xUCkDVOK0tIXkVVVlw8I5tI05M8BsCjwzzJPuuZxrzzUHhZVcAip92fAF2aoXNbwkVKDUUIJItZa5s0JJZ7LMCTQtK6Es7xG2GvbSRupzn4FjXgYTKFVli5XSY6WMWOmR_a7QVcv88W_xscdTJ-ppu8MDHPsyrgKlNKnNpGXApM1h6LSnRhKFlpAZcNz0yK7HS1dJhEqP7K3QWcYl5qZkCHe0hpnE7iUdYv9qqg55N9ea-ur-r7wmj7xUe760R7YQXfAGNa7G9MNJRT9MuD55MJuejr78BtdhK9A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOFFoQCwV84NhsEyd2nOPu0moL3QWJVuot8mPSFrbZqs0KlR_Fb2TseKMuVIhbHrYzlj_bM87MN4S851WRcsOSKMkUjzKjdVRoAxED4RK6i0J64vnJVIxPso-n_HSN7HaxMADgnc-g7y79v3w7Nwt3VLZXIPzQPnhAHvIsy3gbrdWdqLgUEgXPA7VQEhd7g9EIe4FGIGNom6KlkbOV7cez9Ie0Kisa5saivlK3P9RsdmezOdgkk6WYrY_J9_6i0X3z8w8Gx__tx1PyJGiddNDC5BlZg3qLbC4zOtAwwbfI4zv0hNvk1-hW49vD2gVm4PjRD9B4z62atkTndIh7oKV4r6iP5J3rb-0CSoc-zhcLNHQwO5tfXzTnlxQVZOp0zsU10K8-AY9rS9WW7tfn3hXhngpflPMfc2J-xuXtMsSN0ouaOmIR7NW09WS_eU5ODvaPR-Mo5HeITBbLJspFJaCIGaAap6ThUlRVlaTcWrSOBdPATAwi0czR7tlMKMc2B9xIIQHVviR9QdbreQ0vCc2xVCohj5WSmTV5Ia1OEpujcVnlhRE9wpbDXppAfu5ycMxKbwTFRdlipXRYKQNWemS3q3TVcn_8u_jQ4akr6oi7_QMc-zKsA6XUsUmkYcCkySC1ypEj5VxJSDRYoXtk2-GlayRApUd2lugswyJzUzKEO9rDTGL3og6xf4mqfObNFVFf3f-Vd2RjfDw5Ko8Op59ek0euRnvatEPWEWnwBvWvRr_10-43KXAseA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWge0A8jI-B6BjIDzySNnESx3lsy6aBRJkElcaT5Y8bVsjSqksF40fxG7l23GoFhARvSXQT2fKxfW5877mEvMirMs0NS6IkU3mUGa2jUhuIGHBX0J2XwgvPv53y01n25jw_Dz_cfC4MAPjgMxi4S3-WP4f6WzHkzImnlUOOWzw6CcO4RDDixWBpq9tkj-fIxXtkbzY9G310FeUSXkapP5t8GoQ1h8rXIESnkDH0VdHzKNjOduRV-0OZlR3GeWfdLNX1V1XXNzafk3tEbprdxZx8GaxbPTDff1F0_P9-3Sf7gZfSUQekB-QWNA_J3RtqhQfkx-Raw4q-blyeBg4nfQWtD-RqaKd7Tse4JVqK94r6xN6F_tytp3Ts037RoKWj-tNiNW8vLinyZeoo6HoF9L2vx-O-pRpLj5sLH5nwhxfOlAsnQzTQd7jaXYY0UjpvqNMZwS5Mu8D2q0dkdnL8YXIahXIPkcli0UYFrziUMQNkdUqYXPCqqpI0txadZc40MBMDTzRzKnw248qJz0FuBBeALDBJH5Nes2jgCaEFWqUCilgpkVlTlMLqJLEF-ppVURreJ2wz6tIELXRXkqOW3ieKSzmaTHACSAcVGaDSJy-3Ly07KZC_m48dnLamTsfbP8Chl2FZkELHJhGGARMmg9Qqp5VU5EpAosFy3ScHDi7bjwRs9MnRBpwyrDlXknFkyxm6k9i9aAvY35raTYKdph7-o_0R6SHS4BnSsVY_D3PuJw-KMQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber+Intrusion+Detection+System+Based+on+a+Multiobjective+Binary+Bat+Algorithm+for+Feature+Selection+and+Enhanced+Bat+Algorithm+for+Parameter+Optimization+in+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Ghanem%2C+Waheed+Ali+H.+M.&rft.au=Ghaleb%2C+Sanaa+Abduljabbar+Ahmed&rft.au=Jantan%2C+Aman&rft.au=Nasser%2C+Abdullah+B.&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=76318&rft.epage=76339&rft_id=info:doi/10.1109%2FACCESS.2022.3192472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3192472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon