Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks
The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected th...
        Saved in:
      
    
          | Published in | IEEE access Vol. 10; pp. 76318 - 76339 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2022.3192472 | 
Cover
| Abstract | The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques. | 
    
|---|---|
| AbstractList | The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques. | 
    
| Author | Saleh, Sami Abdulla Mohsen Ngah, Amir Omolara, Abiodun Esther Abiodun, Oludare Isaac Ghanem, Waheed Ali H. M. Nasser, Abdullah B. Saad, Abdul-Malik H. Y. Ghaleb, Sanaa Abduljabbar Ahmed El-Ebiary, Yousef A. Baker Alhadi, Arifah Che Arshad, Humaira Jantan, Aman  | 
    
| Author_xml | – sequence: 1 givenname: Waheed Ali H. M. orcidid: 0000-0002-3764-4788 surname: Ghanem fullname: Ghanem, Waheed Ali H. M. email: waheed.ghanem@gmail.com organization: Faculty of Engineering, University of Aden, Aden, Yemen – sequence: 2 givenname: Sanaa Abduljabbar Ahmed orcidid: 0000-0003-4506-5214 surname: Ghaleb fullname: Ghaleb, Sanaa Abduljabbar Ahmed email: sanaaghaleb.sg@gmail.com organization: Faculty of Engineering, University of Aden, Aden, Yemen – sequence: 3 givenname: Aman surname: Jantan fullname: Jantan, Aman organization: School of Computer Science, Universiti Sains Malaysia, Pinang, Malaysia – sequence: 4 givenname: Abdullah B. surname: Nasser fullname: Nasser, Abdullah B. organization: School of Technology and Innovation, University of Vaasa, Vaasa, Finland – sequence: 5 givenname: Sami Abdulla Mohsen surname: Saleh fullname: Saleh, Sami Abdulla Mohsen organization: School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia – sequence: 6 givenname: Amir surname: Ngah fullname: Ngah, Amir organization: Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia – sequence: 7 givenname: Arifah Che surname: Alhadi fullname: Alhadi, Arifah Che organization: Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia – sequence: 8 givenname: Humaira surname: Arshad fullname: Arshad, Humaira organization: Department of Computer Science, Islamia University of Bahawalpur, Bahawalpur, Pakistan – sequence: 9 givenname: Abdul-Malik H. Y. surname: Saad fullname: Saad, Abdul-Malik H. Y. organization: Division of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia – sequence: 10 givenname: Abiodun Esther surname: Omolara fullname: Omolara, Abiodun Esther organization: Department of Computer Science, University of Abuja, Gwagwalada, Nigeria – sequence: 11 givenname: Yousef A. Baker surname: El-Ebiary fullname: El-Ebiary, Yousef A. Baker organization: Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia – sequence: 12 givenname: Oludare Isaac surname: Abiodun fullname: Abiodun, Oludare Isaac organization: Department of Computer Science, Bingham University, Karu, Nigeria  | 
    
| BookMark | eNptUsGO0zAQjdAisSz7BXuxxLkldhLHOXZDFyotLFLhbE2cya5LYhfbYVU-im_EbaoKFXwZe_zeG888v04ujDWYJDc0nVOaVu8Wdb1cr-csZWye0YrlJXuRXDLKq1lWZPzir_2r5Nr7TRqXiKmivEx-17sGHVmZ4EavrSHvMaAK-9165wMO5BY8tiSegXwa-3jTbPaAn0hutQG3i4BAFv2jdTo8DaSzjtwhhNEhWWN_1ALTkqV5AqOi1r-EL-BgiIUdedgGPehfcGBpQz7j6KCPITxb992_SV520Hu8Psar5Nvd8mv9cXb_8GFVL-5nKk9FmJW841ilDGmRg1CF4F3X0axo24JlnDXIVIqcNizOQbQ5h5gtsVCCCyw4pdlVspp0WwsbuXV6iJ1KC1oeEtY9SnBBqx6laFJFhWLIhMoxayEvRVkWIJA22PImauWT1mi2sHuGvj8J0lTuLZSgFHov9xbKo4WR9naibZ39MaIPcmNHZ2LXkkXvaJ4zwSOqmlDKWe8ddlLpcJhecKD7U4Xpk5xXyM645-_6P-tmYmlEPDEqkTFRVdkf7MXLEw | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1016_j_iotcps_2024_01_003 crossref_primary_10_1002_itl2_516 crossref_primary_10_1016_j_aej_2024_10_100 crossref_primary_10_1007_s10586_024_04385_8 crossref_primary_10_1007_s10586_024_04388_5 crossref_primary_10_3233_JIFS_231948 crossref_primary_10_1007_s12083_024_01678_y crossref_primary_10_1016_j_jocs_2023_102201 crossref_primary_10_1038_s41598_025_91663_z crossref_primary_10_46604_peti_2024_13352 crossref_primary_10_1109_ACCESS_2023_3319814 crossref_primary_10_1109_ACCESS_2022_3204593 crossref_primary_10_1109_TCE_2023_3328552 crossref_primary_10_3390_pr13010101 crossref_primary_10_1109_TASC_2023_3259331 crossref_primary_10_1186_s40537_024_00887_9 crossref_primary_10_7717_peerj_cs_1580 crossref_primary_10_1016_j_iot_2025_101536 crossref_primary_10_3390_machines11100963 crossref_primary_10_22399_ijcesen_831  | 
    
| Cites_doi | 10.1016/j.jisa.2018.11.007 10.1109/ACCESS.2019.2930832 10.1109/UBMK.2017.8093473 10.1109/ACCESS.2019.2895334 10.1016/j.jocs.2016.11.011 10.1016/j.asoc.2020.106522 10.1109/ACCESS.2019.2908225 10.1016/j.eswa.2020.113249 10.1016/j.knosys.2020.105648 10.1007/978-3-540-74472-6_42 10.1109/ACCESS.2020.2964751 10.1109/tia.2020.3011397 10.1007/s12559-018-9588-3 10.1111/coin.12342 10.1016/j.aej.2021.08.009 10.1016/j.swevo.2017.07.010 10.1109/BADGERS.2015.014 10.3390/sym13122306 10.1016/j.engappai.2017.01.013 10.1504/IJBIC.2011.042259 10.1016/j.jnca.2021.103266 10.1007/978-981-33-6835-4_26 10.18178/ijmlc.2022.12.2.1077 10.1007/978-3-642-12538-6_6 10.1007/s00500-021-05752-y 10.1002/spy2.147 10.1007/s00521-017-3021-9 10.1016/j.eswa.2019.113105 10.1016/j.procs.2020.03.438 10.1109/ICCES48766.2020.9137888 10.1016/j.cose.2019.101681 10.1007/s11063-019-10120-x 10.32604/cmc.2022.020472 10.1109/MilCIS.2015.7348942 10.1109/ACCESS.2020.3009533 10.1002/ett.4221 10.1007/978-981-33-6835-4_27 10.1016/j.future.2021.03.024 10.1145/382912.382914 10.1016/j.cose.2021.102537 10.1007/978-3-642-30671-6_1 10.1016/j.future.2021.09.027 10.1109/ACCESS.2021.3105914 10.1016/j.cose.2011.12.012 10.5220/0006639801080116 10.5220/0006105602530262 10.3390/sym13010004 10.1007/978-981-33-6835-4_28 10.1016/j.eswa.2021.116089 10.1007/s00521-019-04655-2 10.3390/su131810057 10.1109/ICAIIC48513.2020.9064976 10.32604/cmc.2021.016113 10.1016/j.comnet.2020.107247 10.1007/s11128-021-03311-w 10.1016/j.procs.2021.05.025 10.1016/j.procs.2021.10.052 10.1016/j.jksuci.2018.03.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2022.3192472 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall [Open Access] DOAJ 오픈액세스 저널 디렉토리  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 76339 | 
    
| ExternalDocumentID | oai_doaj_org_article_8b0c18c2e28c4e3da478775a8e1bed6b 10.1109/access.2022.3192472 10_1109_ACCESS_2022_3192472 9832899  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-76f6e902e154a8c586fff135dd52362be2c0e61b20818d46a2367e5c868e56113 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:53:17 EDT 2025 Wed Oct 01 15:52:45 EDT 2025 Sun Jun 29 15:54:51 EDT 2025 Wed Oct 01 04:58:15 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Wed Aug 27 02:25:29 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-76f6e902e154a8c586fff135dd52362be2c0e61b20818d46a2367e5c868e56113 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3764-4788 0000-0003-4506-5214  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9832899 | 
    
| PQID | 2695144286 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | ieee_primary_9832899 crossref_citationtrail_10_1109_ACCESS_2022_3192472 doaj_primary_oai_doaj_org_article_8b0c18c2e28c4e3da478775a8e1bed6b proquest_journals_2695144286 unpaywall_primary_10_1109_access_2022_3192472 crossref_primary_10_1109_ACCESS_2022_3192472  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Ghanem (ref26) 2016; 8 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 Luo (ref39) 2021; 23 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 Kumar (ref27) 2021; 7 ref32 ref2 ref1 ref38 ref24 ref23 ref25 ref20 ref63 ref22 ref21 Ibrahim (ref58) 2013; 8 ref28 ref29 Rawat (ref46) 2019 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref43 doi: 10.1016/j.jisa.2018.11.007 – ident: ref50 doi: 10.1109/ACCESS.2019.2930832 – ident: ref56 doi: 10.1109/UBMK.2017.8093473 – ident: ref45 doi: 10.1109/ACCESS.2019.2895334 – year: 2019 ident: ref46 article-title: Intrusion detection systems using classical machine learning techniques versus integrated unsupervised feature learning and deep neural network publication-title: arXiv:1910.01114 – ident: ref1 doi: 10.1016/j.jocs.2016.11.011 – ident: ref41 doi: 10.1016/j.asoc.2020.106522 – ident: ref44 doi: 10.1109/ACCESS.2019.2908225 – ident: ref48 doi: 10.1016/j.eswa.2020.113249 – ident: ref51 doi: 10.1016/j.knosys.2020.105648 – ident: ref57 doi: 10.1007/978-3-540-74472-6_42 – ident: ref2 doi: 10.1109/ACCESS.2020.2964751 – ident: ref5 doi: 10.1109/tia.2020.3011397 – ident: ref14 doi: 10.1007/s12559-018-9588-3 – ident: ref32 doi: 10.1111/coin.12342 – ident: ref37 doi: 10.1016/j.aej.2021.08.009 – volume: 7 start-page: 7552 issue: 11 year: 2021 ident: ref27 article-title: A multi-objective hyper-heuristic improved particle swarm optimization based configuration of SVM for big data cyber security publication-title: Eur. J. Mol. Clin. Med. – ident: ref29 doi: 10.1016/j.swevo.2017.07.010 – volume: 8 start-page: 70 issue: 1 year: 2016 ident: ref26 article-title: Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intrusion detection publication-title: Int. J. Adv. Soft Comput. Appl. – ident: ref61 doi: 10.1109/BADGERS.2015.014 – ident: ref16 doi: 10.3390/sym13122306 – ident: ref24 doi: 10.1016/j.engappai.2017.01.013 – ident: ref30 doi: 10.1504/IJBIC.2011.042259 – ident: ref36 doi: 10.1016/j.jnca.2021.103266 – ident: ref21 doi: 10.1007/978-981-33-6835-4_26 – ident: ref7 doi: 10.18178/ijmlc.2022.12.2.1077 – ident: ref28 doi: 10.1007/978-3-642-12538-6_6 – ident: ref23 doi: 10.1007/s00500-021-05752-y – ident: ref8 doi: 10.1002/spy2.147 – ident: ref22 doi: 10.1007/s00521-017-3021-9 – ident: ref53 doi: 10.1016/j.eswa.2019.113105 – volume: 8 start-page: 107 issue: 1 year: 2013 ident: ref58 article-title: A comparison study for intrusion database (KDD99, NSL-KDD) based on self-organization map (SOM) artificial neural network publication-title: J. Eng. Sci. Technol. – ident: ref10 doi: 10.1016/j.procs.2020.03.438 – ident: ref3 doi: 10.1109/ICCES48766.2020.9137888 – ident: ref49 doi: 10.1016/j.cose.2019.101681 – ident: ref11 doi: 10.1007/s11063-019-10120-x – ident: ref12 doi: 10.32604/cmc.2022.020472 – volume: 23 start-page: 490 issue: 3 year: 2021 ident: ref39 article-title: Research on network security intrusion detection system based on machine learning publication-title: Int. J. Netw. Secur. – ident: ref60 doi: 10.1109/MilCIS.2015.7348942 – ident: ref25 doi: 10.1109/ACCESS.2020.3009533 – ident: ref40 doi: 10.1002/ett.4221 – ident: ref13 doi: 10.1007/978-981-33-6835-4_27 – ident: ref15 doi: 10.1016/j.future.2021.03.024 – ident: ref55 doi: 10.1145/382912.382914 – ident: ref35 doi: 10.1016/j.cose.2021.102537 – ident: ref31 doi: 10.1007/978-3-642-30671-6_1 – ident: ref33 doi: 10.1016/j.future.2021.09.027 – ident: ref4 doi: 10.1109/ACCESS.2021.3105914 – ident: ref59 doi: 10.1016/j.cose.2011.12.012 – ident: ref62 doi: 10.5220/0006639801080116 – ident: ref63 doi: 10.5220/0006105602530262 – ident: ref17 doi: 10.3390/sym13010004 – ident: ref19 doi: 10.1007/978-981-33-6835-4_28 – ident: ref34 doi: 10.1016/j.eswa.2021.116089 – ident: ref20 doi: 10.1007/s00521-019-04655-2 – ident: ref18 doi: 10.3390/su131810057 – ident: ref47 doi: 10.1109/ICAIIC48513.2020.9064976 – ident: ref6 doi: 10.32604/cmc.2021.016113 – ident: ref42 doi: 10.1016/j.comnet.2020.107247 – ident: ref54 doi: 10.1007/s11128-021-03311-w – ident: ref38 doi: 10.1016/j.procs.2021.05.025 – ident: ref9 doi: 10.1016/j.procs.2021.10.052 – ident: ref52 doi: 10.1016/j.jksuci.2018.03.011  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.4990053 | 
    
| Snippet | The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 76318 | 
    
| SubjectTerms | Algorithms Artificial neural networks bat algorithm (BAT) Classification algorithms Communications traffic Computer science Cybersecurity Datasets False alarms Feature extraction Feature selection feature selection (FS) Intrusion detection Intrusion detection system (IDS) Intrusion detection systems metaheuristic algorithm (MA) Metaheuristics multi-objective optimization (MOO) multilayer perceptron (MLP) Multilayer perceptrons Multiple objective analysis Neural networks Optimization System effectiveness Training  | 
    
| SummonAdditionalLinks | – databaseName: [Open Access] DOAJ 오픈액세스 저널 디렉토리 dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAQWxpSAfOBI1duLXcXdpVZAoSFCpN8uPCS3aZqttKtQ_xW9kbKerXYHgwjGRbY09k_F80cw3hLwRnWlE4KxirRNVG7yvjA9QcZCpobs0OhPPfzyRx6fthzNxttHqK-WEFXrgcnAH2teB6cCB69BCE11ik1HCaWAeovTJ-9babICp7IM1k0aokWaI1eZgOp_jjhAQco44FVGH4ltXUWbsH1usbEWb92_6K3f7wy0WGxfP0WPyaIwY6bRI-oTcg_4pebjBI7hLfs5vPazo-z5VUOBB03cw5BSrnhZGcjrDyypSfHY0l9wu_ffi6egsF-TigIFOF9-Wq4vh_JJiJEtTcHizAvold8pJa7k-0sP-POcM_GHCZ5cSvVBP9BP6ocuxwJNe9DQxgOAWTkrK-fUzcnp0-HV-XI2NGKrQ1nqolOwkmJoDxltOB6Fl13WsETEijJXcAw81SOZ54seLrXSJFg5E0FIDxmeseU52-mUPLwhVOKrRoGrndBuDMjp6xqJCFNgpE-SE8Dud2DCylKdmGQub0UptbFGkTYq0oyIn5O160lUh6fj78FlS9npoYtjOL9Du7Gh39l92NyG7yVTWixh0jYhdJ2T_znTs6A2uLUdbRODKNW6vWpvTb6K63CJzS9S9_yHqS_IgrVl-HO2THbRFeIWh1OBf56_mFy3NGhk priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWge0A8jI-B6BjIDzySNnESx3lsy6aBRJkElcaT5Y8bVsjSqksF40fxG7l23GoFhARvSXQT2fKxfW5877mEvMirMs0NS6IkU3mUGa2jUhuIGHBX0J2XwgvPv53y01n25jw_Dz_cfC4MAPjgMxi4S3-WP4f6WzHkzImnlUOOWzw6CcO4RDDixWBpq9tkj-fIxXtkbzY9G310FeUSXkapP5t8GoQ1h8rXIESnkDH0VdHzKNjOduRV-0OZlR3GeWfdLNX1V1XXNzafk3tEbprdxZx8GaxbPTDff1F0_P9-3Sf7gZfSUQekB-QWNA_J3RtqhQfkx-Raw4q-blyeBg4nfQWtD-RqaKd7Tse4JVqK94r6xN6F_tytp3Ts037RoKWj-tNiNW8vLinyZeoo6HoF9L2vx-O-pRpLj5sLH5nwhxfOlAsnQzTQd7jaXYY0UjpvqNMZwS5Mu8D2q0dkdnL8YXIahXIPkcli0UYFrziUMQNkdUqYXPCqqpI0txadZc40MBMDTzRzKnw248qJz0FuBBeALDBJH5Nes2jgCaEFWqUCilgpkVlTlMLqJLEF-ppVURreJ2wz6tIELXRXkqOW3ieKSzmaTHACSAcVGaDSJy-3Ly07KZC_m48dnLamTsfbP8Chl2FZkELHJhGGARMmg9Qqp5VU5EpAosFy3ScHDi7bjwRs9MnRBpwyrDlXknFkyxm6k9i9aAvY35raTYKdph7-o_0R6SHS4BnSsVY_D3PuJw-KMQo priority: 102 providerName: Unpaywall  | 
    
| Title | Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9832899 https://www.proquest.com/docview/2695144286 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09832899.pdf https://doaj.org/article/8b0c18c2e28c4e3da478775a8e1bed6b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacgAOFFoQC2XlA8dmm3gTP467S6uC1KUSrFROkR8TWthmqzYrVH4Uv5Gx4426UCFueYwdW_5szzgz3xDytqjUsLAsS7JcF0lujUmUsZAw4D6hO1cyEM-fTPnxLP9wVpxtkP0uFgYAgvMZDPxl-JfvFnbpj8oOFMIP7YNNsikkb2O1uvMUn0BCFSISC2WpOhhNJtgHNAEZQ8sU7QzB1jafwNEfk6qs6ZcPl_WVvv2h5_M7W83RNjlZNbL1MPk-WDZmYH_-wd_4v714Sp5EnZOOWpA8IxtQ75DtVT4HGqf3Dnl8h5xwl_ya3Bp8-772YRk4evQdNMFvq6YtzTkd4w7oKN5rGuJ4F-Zbu3zScYjyRYGGjuZfF9cXzfklRfWYeo1zeQ30U0i_4-vStaOH9XlwRLinwKn23mO-mR9xcbuMUaP0oqaeVgR7NW392G-ek9nR4efJcRKzOyQ2T2WTCF5xUCkDVOK0tIXkVVVlw8I5tI05M8BsCjwzzJPuuZxrzzUHhZVcAip92fAF2aoXNbwkVKDUUIJItZa5s0JJZ7LMCTQtK6Es7xG2GvbSRupzn4FjXgYTKFVli5XSY6WMWOmR_a7QVcv88W_xscdTJ-ppu8MDHPsyrgKlNKnNpGXApM1h6LSnRhKFlpAZcNz0yK7HS1dJhEqP7K3QWcYl5qZkCHe0hpnE7iUdYv9qqg55N9ea-ur-r7wmj7xUe760R7YQXfAGNa7G9MNJRT9MuD55MJuejr78BtdhK9A | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOFFoQCwV84NhsEyd2nOPu0moL3QWJVuot8mPSFrbZqs0KlR_Fb2TseKMuVIhbHrYzlj_bM87MN4S851WRcsOSKMkUjzKjdVRoAxED4RK6i0J64vnJVIxPso-n_HSN7HaxMADgnc-g7y79v3w7Nwt3VLZXIPzQPnhAHvIsy3gbrdWdqLgUEgXPA7VQEhd7g9EIe4FGIGNom6KlkbOV7cez9Ie0Kisa5saivlK3P9RsdmezOdgkk6WYrY_J9_6i0X3z8w8Gx__tx1PyJGiddNDC5BlZg3qLbC4zOtAwwbfI4zv0hNvk1-hW49vD2gVm4PjRD9B4z62atkTndIh7oKV4r6iP5J3rb-0CSoc-zhcLNHQwO5tfXzTnlxQVZOp0zsU10K8-AY9rS9WW7tfn3hXhngpflPMfc2J-xuXtMsSN0ouaOmIR7NW09WS_eU5ODvaPR-Mo5HeITBbLJspFJaCIGaAap6ThUlRVlaTcWrSOBdPATAwi0czR7tlMKMc2B9xIIQHVviR9QdbreQ0vCc2xVCohj5WSmTV5Ia1OEpujcVnlhRE9wpbDXppAfu5ycMxKbwTFRdlipXRYKQNWemS3q3TVcn_8u_jQ4akr6oi7_QMc-zKsA6XUsUmkYcCkySC1ypEj5VxJSDRYoXtk2-GlayRApUd2lugswyJzUzKEO9rDTGL3og6xf4mqfObNFVFf3f-Vd2RjfDw5Ko8Op59ek0euRnvatEPWEWnwBvWvRr_10-43KXAseA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWge0A8jI-B6BjIDzySNnESx3lsy6aBRJkElcaT5Y8bVsjSqksF40fxG7l23GoFhARvSXQT2fKxfW5877mEvMirMs0NS6IkU3mUGa2jUhuIGHBX0J2XwgvPv53y01n25jw_Dz_cfC4MAPjgMxi4S3-WP4f6WzHkzImnlUOOWzw6CcO4RDDixWBpq9tkj-fIxXtkbzY9G310FeUSXkapP5t8GoQ1h8rXIESnkDH0VdHzKNjOduRV-0OZlR3GeWfdLNX1V1XXNzafk3tEbprdxZx8GaxbPTDff1F0_P9-3Sf7gZfSUQekB-QWNA_J3RtqhQfkx-Raw4q-blyeBg4nfQWtD-RqaKd7Tse4JVqK94r6xN6F_tytp3Ts037RoKWj-tNiNW8vLinyZeoo6HoF9L2vx-O-pRpLj5sLH5nwhxfOlAsnQzTQd7jaXYY0UjpvqNMZwS5Mu8D2q0dkdnL8YXIahXIPkcli0UYFrziUMQNkdUqYXPCqqpI0txadZc40MBMDTzRzKnw248qJz0FuBBeALDBJH5Nes2jgCaEFWqUCilgpkVlTlMLqJLEF-ppVURreJ2wz6tIELXRXkqOW3ieKSzmaTHACSAcVGaDSJy-3Ly07KZC_m48dnLamTsfbP8Chl2FZkELHJhGGARMmg9Qqp5VU5EpAosFy3ScHDi7bjwRs9MnRBpwyrDlXknFkyxm6k9i9aAvY35raTYKdph7-o_0R6SHS4BnSsVY_D3PuJw-KMQo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber+Intrusion+Detection+System+Based+on+a+Multiobjective+Binary+Bat+Algorithm+for+Feature+Selection+and+Enhanced+Bat+Algorithm+for+Parameter+Optimization+in+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Ghanem%2C+Waheed+Ali+H.+M.&rft.au=Ghaleb%2C+Sanaa+Abduljabbar+Ahmed&rft.au=Jantan%2C+Aman&rft.au=Nasser%2C+Abdullah+B.&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=76318&rft.epage=76339&rft_id=info:doi/10.1109%2FACCESS.2022.3192472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3192472 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |