BioCNN: A Hardware Inference Engine for EEG-based Emotion Detection
EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-p...
Saved in:
| Published in | IEEE access Vol. 8; p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.3012900 |
Cover
| Abstract | EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this paper, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors. |
|---|---|
| AbstractList | EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this paper, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors. EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this article, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors. EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer’s disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this article, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of [Formula Omitted], a throughput of [Formula Omitted] that is in line with the real-time specification of a wearable device, and a latency of less than [Formula Omitted], which is smaller than the [Formula Omitted] required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors. |
| Author | Yoo, Jerald Gonzalez, Hector A. Elfadel, Ibrahim M. Muzaffar, Shahzad |
| Author_xml | – sequence: 1 givenname: Hector A. surname: Gonzalez fullname: Gonzalez, Hector A. organization: Chair of Highly-Parallel VLSI-Systems and Neuro-Microelectronics, Technische Universität Dresden, Germany – sequence: 2 givenname: Shahzad surname: Muzaffar fullname: Muzaffar, Shahzad organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Jerald surname: Yoo fullname: Yoo, Jerald organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore and Singapore Institute for Neurotechnology (SINAPSE), Singapore – sequence: 4 givenname: Ibrahim M. surname: Elfadel fullname: Elfadel, Ibrahim M. organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates and Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, United Arab Emirates. (e-mail: ibrahim.elfadel@ku.ac.ae) |
| BookMark | eNptkU1r3DAQhk1JoWmaX5CLoWdv9WXL6m3ruslCSA7JXYylUdDiSFvJS8i_j7cOS1kyFw3DPO9o3vlanIUYsCiuKFlRStSPddf1Dw8rRhhZcUKZIuRTcc5ooype8-bsv_xLcZnzlszRzqVanhfdLx-7u7uf5bq8gWRfIGG5CQ4TBoNlH558wNLFVPb9dTVARlv2z3HyMZS_cUJzyL4Vnx2MGS_f34vi8U__2N1Ut_fXm259WxlB2qmSVLS8AeAOWyFRDUZaSY2rjbCNZKpBUwtsDXGDdVY6h0AIGmTMyQYIvyg2i6yNsNW75J8hveoIXv8rxPSkIU3ejKiJU9ZyAOcGIYyZV0V0rKmhdkwqNcxaYtHahx28vsA4HgUp0QdbNRiDOeuDrfrd1hn7vmC7FP_uMU96G_cpzEtrJmrRCNpSNXeppcukmHNCp42f4ODUlMCPxwnL4U4n8BP29F8fU1cL5RHxSCha01YK_gaUU6Or |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_micpro_2021_104105 crossref_primary_10_1109_JSEN_2024_3514094 crossref_primary_10_1007_s12204_022_2426_5 crossref_primary_10_3390_bios12121097 crossref_primary_10_1109_ACCESS_2022_3180829 crossref_primary_10_1109_TIM_2022_3165280 crossref_primary_10_1109_TBCAS_2021_3113613 crossref_primary_10_1109_ACCESS_2023_3306022 crossref_primary_10_1016_j_compbiomed_2021_104428 crossref_primary_10_1109_TBCAS_2020_3039353 crossref_primary_10_3390_s23218976 crossref_primary_10_1109_JIOT_2022_3232481 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1038_s41598_021_00812_7 crossref_primary_10_1109_TAFFC_2021_3100868 crossref_primary_10_1007_s13534_022_00232_0 crossref_primary_10_1155_2022_3749413 crossref_primary_10_1016_j_bspc_2023_105318 crossref_primary_10_1109_TAFFC_2021_3114123 crossref_primary_10_1109_TAFFC_2022_3220484 crossref_primary_10_1109_TBCAS_2021_3089132 |
| Cites_doi | 10.1109/JETCAS.2019.2951232 10.1109/T-AFFC.2011.15 10.1145/3195970.3196120 10.1109/EMBC.2019.8857248 10.1109/TBCAS.2020.2974154 10.1109/JPROC.2017.2761740 10.1109/TAFFC.2015.2436926 10.1109/TCAD.2018.2857078 10.1109/BIBM.2016.7822545 10.1109/T-AFFC.2011.25 10.1145/3079856.3080254 10.1109/BIBE.2008.4696823 10.1109/ACCESS.2020.2978163 10.3390/s19214736 10.1109/NER.2013.6695876 10.1109/ASICON.2017.8252656 10.1109/IJCNN.2018.8489331 10.1145/3125502.3125534 10.1016/0005-7916(94)90063-9 10.1111/1469-8986.00067 10.1109/TAFFC.2015.2392932 10.1109/IJCNN.2018.8489715 10.1109/JBHI.2017.2688239 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.3012900 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_0f9dd3aaffb44cc695eef265a5f2799b 10.1109/access.2020.3012900 10_1109_ACCESS_2020_3012900 9151874 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-714836aa3fe847e9bc7d71cf5c4d67296ec54e8c0fbdfd7ffea00ece22f76a03 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:07 EDT 2025 Tue Aug 19 18:48:41 EDT 2025 Mon Jun 30 04:52:19 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Oct 01 03:37:25 EDT 2025 Wed Aug 27 02:33:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-714836aa3fe847e9bc7d71cf5c4d67296ec54e8c0fbdfd7ffea00ece22f76a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7312-1389 0000-0001-9237-1148 0000-0002-3150-1727 0000-0003-3220-9987 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09151874.pdf |
| PQID | 2454641819 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0f9dd3aaffb44cc695eef265a5f2799b proquest_journals_2454641819 ieee_primary_9151874 crossref_citationtrail_10_1109_ACCESS_2020_3012900 crossref_primary_10_1109_ACCESS_2020_3012900 unpaywall_primary_10_1109_access_2020_3012900 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 anderson (ref17) 1997; 8 ref12 ref14 ref31 scherer (ref16) 2005 ref30 ref11 ref10 ref2 ref1 ref19 ref18 qiu (ref28) 2016 lavin (ref25) 2015 ref24 abadi (ref23) 2016 ref26 ref20 ref22 ref21 ref27 ref29 ref8 gonzalez (ref15) 0 ref7 ref4 ref3 ref5 petrantonakis (ref9) 2015 tripathi (ref6) 2017 |
| References_xml | – ident: ref14 doi: 10.1109/JETCAS.2019.2951232 – ident: ref1 doi: 10.1109/T-AFFC.2011.15 – start-page: 265 year: 2016 ident: ref23 article-title: Tensorflow: A system for large-scale machine learning on heterogeneous systems publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) – start-page: 539 year: 2005 ident: ref16 article-title: Trends and developments: Research on emotions publication-title: Social Science Information – ident: ref26 doi: 10.1145/3195970.3196120 – ident: ref12 doi: 10.1109/EMBC.2019.8857248 – ident: ref13 doi: 10.1109/TBCAS.2020.2974154 – ident: ref27 doi: 10.1109/JPROC.2017.2761740 – ident: ref21 doi: 10.1109/TAFFC.2015.2436926 – ident: ref31 doi: 10.1109/TCAD.2018.2857078 – ident: ref2 doi: 10.1109/BIBM.2016.7822545 – ident: ref11 doi: 10.1109/T-AFFC.2011.25 – start-page: 269 year: 2015 ident: ref9 publication-title: EEG-Based Emotion Recognition Using Advanced Signal Processing Techniques – year: 2015 ident: ref25 article-title: Fast algorithms for convolutional neural networks publication-title: arXiv 1509 09308 – ident: ref24 doi: 10.1145/3079856.3080254 – ident: ref19 doi: 10.1109/BIBE.2008.4696823 – ident: ref5 doi: 10.1109/ACCESS.2020.2978163 – start-page: 4746 year: 2017 ident: ref6 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset publication-title: Proc Innov Appl Artif Intell 29th IAAI Conf – ident: ref4 doi: 10.3390/s19214736 – ident: ref8 doi: 10.1109/NER.2013.6695876 – ident: ref30 doi: 10.1109/ASICON.2017.8252656 – ident: ref3 doi: 10.1109/IJCNN.2018.8489331 – volume: 8 start-page: 359 year: 1997 ident: ref17 article-title: Circumplex models of personality and emotion publication-title: Amer Psych Assoc – year: 0 ident: ref15 article-title: An inference hardware accelerator for EEG-based emotion detection publication-title: Proc 53th IEEE Int Symp Circuits Syst (ISCAS) – ident: ref29 doi: 10.1145/3125502.3125534 – ident: ref18 doi: 10.1016/0005-7916(94)90063-9 – ident: ref20 doi: 10.1111/1469-8986.00067 – ident: ref22 doi: 10.1109/TAFFC.2015.2392932 – start-page: 26 year: 2016 ident: ref28 article-title: Going deeper with embedded FPGA platform for convolutional neural network publication-title: Proc ACM/SIGDA Int'l Symp Field-Programmable Gate Arrays – ident: ref7 doi: 10.1109/IJCNN.2018.8489715 – ident: ref10 doi: 10.1109/JBHI.2017.2688239 |
| SSID | ssj0000816957 |
| Score | 2.3025687 |
| Snippet | EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accelerators Artificial neural networks Classification Classifiers Convolutional Neural Networks Datasets Edge AI EEG Electroencephalography Emotion Recognition Emotions Engines Feature extraction FPGA Hardware Hardware Accelerator Hardware Parallelism Human relations Inference Low cost Machine learning Neurological diseases Noise reduction Pipelining Real-time systems Software Training Visual stimuli Wearable technology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhl6aHkjYpdZIGHXqMiL5l9bbrbpIWsqcEchOyNILC4oTNhtB_X8n2LrsU2kuvZizGM-OZN7L8BqEvVjIjVBAk5kRAclBI4qWIRDKwogYVoi_7kLdzfXMvfzyoh61RX-VM2EAPPBjukiYbo_A-pVbKELRVAIlr5VXixtq2ZF9a261mqs_BNcuSZqQZYtReTpomP1FuCHnuU_vdF7pTinrG_nHEyg7afPPSPflfr36x2Co8V4fo3YgY8WTQ9D3ag-4DervFI3iEmunPx2Y-_4onuHyJf_VLwN_Xf_LhQRRndIpns2syzXUr4tkwvgd_g1V_GKs7RndXs7vmhozTEUiQtF4RkxsZob0XCXKFAdsGEw0LSQUZdYbMGoKSUAea2piiSQk8pRCA82S0p-Ij2u8eO_iEMGOetkYkxn2UOnAvchNBwUbFoqE-VYiv7eTCyBxeBlgsXN9BUOsG47piXDcat0IXm5ueBuKMv4tPiwM2ooX1ur-QY8GNseD-FQsVOiru2yxiM5ypjazQ2dqdbnxDnx2XSmqZ8Y2tENm4-A9VfT-2ckfVk_-h6ik6KGsOmzlnaH-1fIHPGd6s2vM-kn8DlMLzgg priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UJAPHJut42fMbRu2FKTuqUi9RY49lhCrbFWyquDXYyfZqAsIcYuiSWJ7xpmHZ74BeGdEobl0PPfxR5BHoRC5FdznokDDS5TO2xSHvFyqiy_i87W83oOTqRYGEfvkM5yly_4s36_dJoXKTk1UT6UW-7CvSzXUak3xlNRAwkg9AgsV1JzOqyrOIbqALHqmfbyF7iifHqN_bKqyY18-2LQ39sedXa3uqZrzJ3C5HeSQYfJttumamfv5G37j_87iKTwebU4yH4TkGexh-xwe3UMiPITq7Ou6Wi7fkzlJZ_l39hbJp20tIBlISbRvyWLxMU-az5PF0ACIfMCuT-dqX8DV-eKqusjH_gq5E7Tsch1dIa6s5QGjjkLTOO114YJ0wqtodCt0UmDpaGh88DoEtJSiQ8aCVpbyl3DQrls8AlIUljaah4JZL5Rjlkc3hKLxsvCa2pAB26577Ubs8dQCY1X3Pgg19cCsOjGrHpmVwcn00M0AvfFv8rPE0Ik04Wb3N-Li1-M2rGkw3nNrQ2iEcC5KDGJgSloZmDamyeAwMWx6ycirDI634lGPe_x7zYQUSkQLyWSQTyLzx1Bt3_hyZ6iv_v6V1_AwUQ0BnmM46G43-CaaPF3ztpf1X01A-2k priority: 102 providerName: IEEE |
| Title | BioCNN: A Hardware Inference Engine for EEG-based Emotion Detection |
| URI | https://ieeexplore.ieee.org/document/9151874 https://www.proquest.com/docview/2454641819 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09151874.pdf https://doaj.org/article/0f9dd3aaffb44cc695eef265a5f2799b |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHvgYibFQ5cCStE3_F3NrQMZCoOGzSOFmO_SxNVFk1Ug3467Edt1pBQoJbEr1EL_o9-33Y_j2EXktaCsIMKayfCApvFLTQlNiCliBJDcxYHeqQn5b89Jx-vGAXqeAWz8IAQNx8BpNwGdfyL2H1XUx5FcjT5LSW1M-oPpeX3lnVgk7W1t1FB5z5WHyEDs6Xn2dfQke5ksuCxLXJo0SsOdWxB6FPCiufq8YKDN5zR5G1P7VZ2Ys47226tf5xo1erW87n5BFSW7WHPSdfJ5u-nZifvzE6_v9_PUYPU1yazwZDeoLuQPcUPbjFVniImvnlVbNcvs1neVjvv9HXkH_YnhfMB9Hcx8D5YvG-mHvvaPPF0CQofwd93PLVPUNnJ4uz5rRIPRgKQ3HdF8KnS4RrTRx47UC2RlhRGscMtdwH5hwMo1Ab7FrrrHAONMZgoKqc4BqT52jUXXXwAuVlqXEriCsrbSk3lSY-VcEgLSutwNplqNoioUziJw9tMlYq5ilYqlnTeKNUAT6V4MvQm91L64Ge4-_i8wDxTjRwa8cHHg6VhqrCTlpLtHaupdQYLhmAqzjTzFVCyjZDhwHC3UcSXhk63hqMSvPAN1VRRjn1UZTMULEzoj9UHQxzT9WX_yh_hO6H26E6dIxG_fUGXvl4qW_Hsc4wjkcbx2mA_AIH8A16 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4zA48DUQgQE-cFw6J7bjmlsXOjpYeyrSbpZjP0sTVTqNVBP89dhJGq2AELcosh3b7znvw-_9HsB7xTPJhGWpCz-CNDAFTw1nLuUZKjZGYZ2Jfsj5oph95Z8vxeUeHA-5MIjYBp_hKD62d_lubTfRVXaigngaS34P7gvOueiytQaPSiwhoYTsoYUyqk4mZRlWEYzAPNimrceF7oifFqW_L6uyo2EebOpr8-PWrFZ3hM3ZY5hvp9nFmHwbbZpqZH_-huD4v-t4Ao96rZNMOjZ5CntYP4OHd7AID6E8vVqXi8UHMiHxNv_W3CA532YDkq4pCRoumU4_pVH2OTLtSgCRj9i0AV31c1ieTZflLO0rLKSW03GTymAMscIY5jFIKVSVlU5m1gvLXRHU7gKt4Di21FfOO-k9GkrRYp57WRjKXsB-va7xJZAsM7SSzGe5cbywuWHBEKGonMicpMYnkG_3XdsefTwWwVjp1gqhSnfE0pFYuidWAsdDp-sOfOPfzU8jQYemETm7fRE2X_cHUVOvnGPGeF9xbm3gGESfF8IIn0ulqgQOI8GGQXpaJXC0ZQ_dn_LvOueCFzzoSCqBdGCZP6Zq2tKXO1N99fevvIOD2XJ-oS_OF19ew4PYo3P3HMF-c7PBN0EBaqq3Ld__ApnW_rY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHvgYibCAfOJLWib9ibm3oGEhUHDZpnCLHfpamVVk1Um3jr8d23GoFCQluSfQSvej37Pdh-_cQeqdYISk3NLd-Isi9UbBcM2pzVoCiFXBjdahDfl2I41P25YyfpYJbPAsDAHHzGYzDZVzLP4fljZyIMpCnqUmlmJ9RfS6vvLOqJBuvrLuP9gT3sfgI7Z0uvk2_h45yhVA5jWuTB4lYc6JjD0KfFJY-V40VGLLjjiJrf2qzshNxPlh3K317rZfLO87n6AlqNmoPe04uxuu-HZufvzE6_v9_PUWPU1yKp4MhPUP3oHuOHt1hK9xH9ez8sl4sPuApDuv91_oK8OfNeUE8iGIfA-P5_FM-897R4vnQJAh_hD5u-epeoJOj-Ul9nKceDLlhpOpz6dMlKrSmDrx2oFojrSyM44ZZ4QNzAYYzqAxxrXVWOgeaEDBQlk4KTehLNOouO3iFcFFo0krqilJbJkypqU9VCCjLCyuJdhkqN0g0JvGThzYZyybmKUQ107r2RtkE-JoEX4beb19aDfQcfxefBYi3ooFbOz7wcDRpqDbEKWup1s61jBkjFAdwpeCau1Iq1WZoP0C4_UjCK0OHG4Np0jzwoykZZ4L5KEplKN8a0R-qDoa5o-rrf5Q_QA_D7VAdOkSj_moNb3y81Ldv06D4BXeLC4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioCNN%3A+A+Hardware+Inference+Engine+for+EEG-Based+Emotion+Detection&rft.jtitle=IEEE+access&rft.au=Gonzalez%2C+Hector+A.&rft.au=Muzaffar%2C+Shahzad&rft.au=Yoo%2C+Jerald&rft.au=Elfadel%2C+Ibrahim+M.&rft.date=2020-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=140896&rft.epage=140914&rft_id=info:doi/10.1109%2FACCESS.2020.3012900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3012900 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |