BioCNN: A Hardware Inference Engine for EEG-based Emotion Detection

EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-p...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; p. 1
Main Authors Gonzalez, Hector A., Muzaffar, Shahzad, Yoo, Jerald, Elfadel, Ibrahim M.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3012900

Cover

Abstract EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this paper, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors.
AbstractList EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this paper, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors.
EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer's disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this article, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of 11 GOps/W, a throughput of 1.65 GOps that is in line with the real-time specification of a wearable device, and a latency of less than 1 ms, which is smaller than the 150 ms required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors.
EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis or the acute stages of Alzheimer’s disease. Emotion classifiers have historically used software on general-purpose computers and operating under off-line conditions. Yet the wearability of such classifiers is a must if they are to enable the socialization of critical-care patients. Such wearability requires the use of low-power hardware accelerators that would enable near real-time classification and extended periods of operations. In this article, we architect, design, implement, and test a handcrafted, hardware Convolutional Neural Network, named BioCNN, optimized for EEG-based emotion detection and other bio-medical applications. The EEG signals are generated using a low-cost, off-the-shelf device, namely, Emotiv Epoc+, and then denoised and pre-processed ahead of their use by BioCNN. For training and testing, BioCNN uses three repositories of emotion classification datasets, including the publicly available DEAP and DREAMER datasets, along with an original dataset collected in-house from 5 healthy subjects using standard visual stimuli. A subject-specific training approach is used under TensorFlow to train BioCNN, which is implemented using the Digilent Atlys Board with a low-cost Spartan-6 FPGA. The experimental results show a competitive energy efficiency of [Formula Omitted], a throughput of [Formula Omitted] that is in line with the real-time specification of a wearable device, and a latency of less than [Formula Omitted], which is smaller than the [Formula Omitted] required for human interaction times. Its emotion inference accuracy is competitive with the top software-based emotion detectors.
Author Yoo, Jerald
Gonzalez, Hector A.
Elfadel, Ibrahim M.
Muzaffar, Shahzad
Author_xml – sequence: 1
  givenname: Hector A.
  surname: Gonzalez
  fullname: Gonzalez, Hector A.
  organization: Chair of Highly-Parallel VLSI-Systems and Neuro-Microelectronics, Technische Universität Dresden, Germany
– sequence: 2
  givenname: Shahzad
  surname: Muzaffar
  fullname: Muzaffar, Shahzad
  organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 3
  givenname: Jerald
  surname: Yoo
  fullname: Yoo, Jerald
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore and Singapore Institute for Neurotechnology (SINAPSE), Singapore
– sequence: 4
  givenname: Ibrahim M.
  surname: Elfadel
  fullname: Elfadel, Ibrahim M.
  organization: Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates and Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, United Arab Emirates. (e-mail: ibrahim.elfadel@ku.ac.ae)
BookMark eNptkU1r3DAQhk1JoWmaX5CLoWdv9WXL6m3ruslCSA7JXYylUdDiSFvJS8i_j7cOS1kyFw3DPO9o3vlanIUYsCiuKFlRStSPddf1Dw8rRhhZcUKZIuRTcc5ooype8-bsv_xLcZnzlszRzqVanhfdLx-7u7uf5bq8gWRfIGG5CQ4TBoNlH558wNLFVPb9dTVARlv2z3HyMZS_cUJzyL4Vnx2MGS_f34vi8U__2N1Ut_fXm259WxlB2qmSVLS8AeAOWyFRDUZaSY2rjbCNZKpBUwtsDXGDdVY6h0AIGmTMyQYIvyg2i6yNsNW75J8hveoIXv8rxPSkIU3ejKiJU9ZyAOcGIYyZV0V0rKmhdkwqNcxaYtHahx28vsA4HgUp0QdbNRiDOeuDrfrd1hn7vmC7FP_uMU96G_cpzEtrJmrRCNpSNXeppcukmHNCp42f4ODUlMCPxwnL4U4n8BP29F8fU1cL5RHxSCha01YK_gaUU6Or
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_micpro_2021_104105
crossref_primary_10_1109_JSEN_2024_3514094
crossref_primary_10_1007_s12204_022_2426_5
crossref_primary_10_3390_bios12121097
crossref_primary_10_1109_ACCESS_2022_3180829
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_1109_TBCAS_2021_3113613
crossref_primary_10_1109_ACCESS_2023_3306022
crossref_primary_10_1016_j_compbiomed_2021_104428
crossref_primary_10_1109_TBCAS_2020_3039353
crossref_primary_10_3390_s23218976
crossref_primary_10_1109_JIOT_2022_3232481
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1038_s41598_021_00812_7
crossref_primary_10_1109_TAFFC_2021_3100868
crossref_primary_10_1007_s13534_022_00232_0
crossref_primary_10_1155_2022_3749413
crossref_primary_10_1016_j_bspc_2023_105318
crossref_primary_10_1109_TAFFC_2021_3114123
crossref_primary_10_1109_TAFFC_2022_3220484
crossref_primary_10_1109_TBCAS_2021_3089132
Cites_doi 10.1109/JETCAS.2019.2951232
10.1109/T-AFFC.2011.15
10.1145/3195970.3196120
10.1109/EMBC.2019.8857248
10.1109/TBCAS.2020.2974154
10.1109/JPROC.2017.2761740
10.1109/TAFFC.2015.2436926
10.1109/TCAD.2018.2857078
10.1109/BIBM.2016.7822545
10.1109/T-AFFC.2011.25
10.1145/3079856.3080254
10.1109/BIBE.2008.4696823
10.1109/ACCESS.2020.2978163
10.3390/s19214736
10.1109/NER.2013.6695876
10.1109/ASICON.2017.8252656
10.1109/IJCNN.2018.8489331
10.1145/3125502.3125534
10.1016/0005-7916(94)90063-9
10.1111/1469-8986.00067
10.1109/TAFFC.2015.2392932
10.1109/IJCNN.2018.8489715
10.1109/JBHI.2017.2688239
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3012900
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_0f9dd3aaffb44cc695eef265a5f2799b
10.1109/access.2020.3012900
10_1109_ACCESS_2020_3012900
9151874
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-714836aa3fe847e9bc7d71cf5c4d67296ec54e8c0fbdfd7ffea00ece22f76a03
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:07 EDT 2025
Tue Aug 19 18:48:41 EDT 2025
Mon Jun 30 04:52:19 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Oct 01 03:37:25 EDT 2025
Wed Aug 27 02:33:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-714836aa3fe847e9bc7d71cf5c4d67296ec54e8c0fbdfd7ffea00ece22f76a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7312-1389
0000-0001-9237-1148
0000-0002-3150-1727
0000-0003-3220-9987
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09151874.pdf
PQID 2454641819
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_0f9dd3aaffb44cc695eef265a5f2799b
proquest_journals_2454641819
ieee_primary_9151874
crossref_citationtrail_10_1109_ACCESS_2020_3012900
crossref_primary_10_1109_ACCESS_2020_3012900
unpaywall_primary_10_1109_access_2020_3012900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
anderson (ref17) 1997; 8
ref12
ref14
ref31
scherer (ref16) 2005
ref30
ref11
ref10
ref2
ref1
ref19
ref18
qiu (ref28) 2016
lavin (ref25) 2015
ref24
abadi (ref23) 2016
ref26
ref20
ref22
ref21
ref27
ref29
ref8
gonzalez (ref15) 0
ref7
ref4
ref3
ref5
petrantonakis (ref9) 2015
tripathi (ref6) 2017
References_xml – ident: ref14
  doi: 10.1109/JETCAS.2019.2951232
– ident: ref1
  doi: 10.1109/T-AFFC.2011.15
– start-page: 265
  year: 2016
  ident: ref23
  article-title: Tensorflow: A system for large-scale machine learning on heterogeneous systems
  publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)
– start-page: 539
  year: 2005
  ident: ref16
  article-title: Trends and developments: Research on emotions
  publication-title: Social Science Information
– ident: ref26
  doi: 10.1145/3195970.3196120
– ident: ref12
  doi: 10.1109/EMBC.2019.8857248
– ident: ref13
  doi: 10.1109/TBCAS.2020.2974154
– ident: ref27
  doi: 10.1109/JPROC.2017.2761740
– ident: ref21
  doi: 10.1109/TAFFC.2015.2436926
– ident: ref31
  doi: 10.1109/TCAD.2018.2857078
– ident: ref2
  doi: 10.1109/BIBM.2016.7822545
– ident: ref11
  doi: 10.1109/T-AFFC.2011.25
– start-page: 269
  year: 2015
  ident: ref9
  publication-title: EEG-Based Emotion Recognition Using Advanced Signal Processing Techniques
– year: 2015
  ident: ref25
  article-title: Fast algorithms for convolutional neural networks
  publication-title: arXiv 1509 09308
– ident: ref24
  doi: 10.1145/3079856.3080254
– ident: ref19
  doi: 10.1109/BIBE.2008.4696823
– ident: ref5
  doi: 10.1109/ACCESS.2020.2978163
– start-page: 4746
  year: 2017
  ident: ref6
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
  publication-title: Proc Innov Appl Artif Intell 29th IAAI Conf
– ident: ref4
  doi: 10.3390/s19214736
– ident: ref8
  doi: 10.1109/NER.2013.6695876
– ident: ref30
  doi: 10.1109/ASICON.2017.8252656
– ident: ref3
  doi: 10.1109/IJCNN.2018.8489331
– volume: 8
  start-page: 359
  year: 1997
  ident: ref17
  article-title: Circumplex models of personality and emotion
  publication-title: Amer Psych Assoc
– year: 0
  ident: ref15
  article-title: An inference hardware accelerator for EEG-based emotion detection
  publication-title: Proc 53th IEEE Int Symp Circuits Syst (ISCAS)
– ident: ref29
  doi: 10.1145/3125502.3125534
– ident: ref18
  doi: 10.1016/0005-7916(94)90063-9
– ident: ref20
  doi: 10.1111/1469-8986.00067
– ident: ref22
  doi: 10.1109/TAFFC.2015.2392932
– start-page: 26
  year: 2016
  ident: ref28
  article-title: Going deeper with embedded FPGA platform for convolutional neural network
  publication-title: Proc ACM/SIGDA Int'l Symp Field-Programmable Gate Arrays
– ident: ref7
  doi: 10.1109/IJCNN.2018.8489715
– ident: ref10
  doi: 10.1109/JBHI.2017.2688239
SSID ssj0000816957
Score 2.3025687
Snippet EEG-based emotion classifiers have the potential of significantly improving the social integration of patients suffering from neurological disorders such as...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accelerators
Artificial neural networks
Classification
Classifiers
Convolutional Neural Networks
Datasets
Edge AI
EEG
Electroencephalography
Emotion Recognition
Emotions
Engines
Feature extraction
FPGA
Hardware
Hardware Accelerator
Hardware Parallelism
Human relations
Inference
Low cost
Machine learning
Neurological diseases
Noise reduction
Pipelining
Real-time systems
Software
Training
Visual stimuli
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhl6aHkjYpdZIGHXqMiL5l9bbrbpIWsqcEchOyNILC4oTNhtB_X8n2LrsU2kuvZizGM-OZN7L8BqEvVjIjVBAk5kRAclBI4qWIRDKwogYVoi_7kLdzfXMvfzyoh61RX-VM2EAPPBjukiYbo_A-pVbKELRVAIlr5VXixtq2ZF9a261mqs_BNcuSZqQZYtReTpomP1FuCHnuU_vdF7pTinrG_nHEyg7afPPSPflfr36x2Co8V4fo3YgY8WTQ9D3ag-4DervFI3iEmunPx2Y-_4onuHyJf_VLwN_Xf_LhQRRndIpns2syzXUr4tkwvgd_g1V_GKs7RndXs7vmhozTEUiQtF4RkxsZob0XCXKFAdsGEw0LSQUZdYbMGoKSUAea2piiSQk8pRCA82S0p-Ij2u8eO_iEMGOetkYkxn2UOnAvchNBwUbFoqE-VYiv7eTCyBxeBlgsXN9BUOsG47piXDcat0IXm5ueBuKMv4tPiwM2ooX1ur-QY8GNseD-FQsVOiru2yxiM5ypjazQ2dqdbnxDnx2XSmqZ8Y2tENm4-A9VfT-2ckfVk_-h6ik6KGsOmzlnaH-1fIHPGd6s2vM-kn8DlMLzgg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UJAPHJut42fMbRu2FKTuqUi9RY49lhCrbFWyquDXYyfZqAsIcYuiSWJ7xpmHZ74BeGdEobl0PPfxR5BHoRC5FdznokDDS5TO2xSHvFyqiy_i87W83oOTqRYGEfvkM5yly_4s36_dJoXKTk1UT6UW-7CvSzXUak3xlNRAwkg9AgsV1JzOqyrOIbqALHqmfbyF7iifHqN_bKqyY18-2LQ39sedXa3uqZrzJ3C5HeSQYfJttumamfv5G37j_87iKTwebU4yH4TkGexh-xwe3UMiPITq7Ou6Wi7fkzlJZ_l39hbJp20tIBlISbRvyWLxMU-az5PF0ACIfMCuT-dqX8DV-eKqusjH_gq5E7Tsch1dIa6s5QGjjkLTOO114YJ0wqtodCt0UmDpaGh88DoEtJSiQ8aCVpbyl3DQrls8AlIUljaah4JZL5Rjlkc3hKLxsvCa2pAB26577Ubs8dQCY1X3Pgg19cCsOjGrHpmVwcn00M0AvfFv8rPE0Ik04Wb3N-Li1-M2rGkw3nNrQ2iEcC5KDGJgSloZmDamyeAwMWx6ycirDI634lGPe_x7zYQUSkQLyWSQTyLzx1Bt3_hyZ6iv_v6V1_AwUQ0BnmM46G43-CaaPF3ztpf1X01A-2k
  priority: 102
  providerName: IEEE
Title BioCNN: A Hardware Inference Engine for EEG-based Emotion Detection
URI https://ieeexplore.ieee.org/document/9151874
https://www.proquest.com/docview/2454641819
https://ieeexplore.ieee.org/ielx7/6287639/8948470/09151874.pdf
https://doaj.org/article/0f9dd3aaffb44cc695eef265a5f2799b
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHvgYibFQ5cCStE3_F3NrQMZCoOGzSOFmO_SxNVFk1Ug3467Edt1pBQoJbEr1EL_o9-33Y_j2EXktaCsIMKayfCApvFLTQlNiCliBJDcxYHeqQn5b89Jx-vGAXqeAWz8IAQNx8BpNwGdfyL2H1XUx5FcjT5LSW1M-oPpeX3lnVgk7W1t1FB5z5WHyEDs6Xn2dfQke5ksuCxLXJo0SsOdWxB6FPCiufq8YKDN5zR5G1P7VZ2Ys47226tf5xo1erW87n5BFSW7WHPSdfJ5u-nZifvzE6_v9_PUYPU1yazwZDeoLuQPcUPbjFVniImvnlVbNcvs1neVjvv9HXkH_YnhfMB9Hcx8D5YvG-mHvvaPPF0CQofwd93PLVPUNnJ4uz5rRIPRgKQ3HdF8KnS4RrTRx47UC2RlhRGscMtdwH5hwMo1Ab7FrrrHAONMZgoKqc4BqT52jUXXXwAuVlqXEriCsrbSk3lSY-VcEgLSutwNplqNoioUziJw9tMlYq5ilYqlnTeKNUAT6V4MvQm91L64Ge4-_i8wDxTjRwa8cHHg6VhqrCTlpLtHaupdQYLhmAqzjTzFVCyjZDhwHC3UcSXhk63hqMSvPAN1VRRjn1UZTMULEzoj9UHQxzT9WX_yh_hO6H26E6dIxG_fUGXvl4qW_Hsc4wjkcbx2mA_AIH8A16
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4zA48DUQgQE-cFw6J7bjmlsXOjpYeyrSbpZjP0sTVTqNVBP89dhJGq2AELcosh3b7znvw-_9HsB7xTPJhGWpCz-CNDAFTw1nLuUZKjZGYZ2Jfsj5oph95Z8vxeUeHA-5MIjYBp_hKD62d_lubTfRVXaigngaS34P7gvOueiytQaPSiwhoYTsoYUyqk4mZRlWEYzAPNimrceF7oifFqW_L6uyo2EebOpr8-PWrFZ3hM3ZY5hvp9nFmHwbbZpqZH_-huD4v-t4Ao96rZNMOjZ5CntYP4OHd7AID6E8vVqXi8UHMiHxNv_W3CA532YDkq4pCRoumU4_pVH2OTLtSgCRj9i0AV31c1ieTZflLO0rLKSW03GTymAMscIY5jFIKVSVlU5m1gvLXRHU7gKt4Di21FfOO-k9GkrRYp57WRjKXsB-va7xJZAsM7SSzGe5cbywuWHBEKGonMicpMYnkG_3XdsefTwWwVjp1gqhSnfE0pFYuidWAsdDp-sOfOPfzU8jQYemETm7fRE2X_cHUVOvnGPGeF9xbm3gGESfF8IIn0ulqgQOI8GGQXpaJXC0ZQ_dn_LvOueCFzzoSCqBdGCZP6Zq2tKXO1N99fevvIOD2XJ-oS_OF19ew4PYo3P3HMF-c7PBN0EBaqq3Ld__ApnW_rY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegOwAHvgYibCAfOJLWib9ibm3oGEhUHDZpnCLHfpamVVk1Um3jr8d23GoFCQluSfQSvej37Pdh-_cQeqdYISk3NLd-Isi9UbBcM2pzVoCiFXBjdahDfl2I41P25YyfpYJbPAsDAHHzGYzDZVzLP4fljZyIMpCnqUmlmJ9RfS6vvLOqJBuvrLuP9gT3sfgI7Z0uvk2_h45yhVA5jWuTB4lYc6JjD0KfFJY-V40VGLLjjiJrf2qzshNxPlh3K317rZfLO87n6AlqNmoPe04uxuu-HZufvzE6_v9_PUWPU1yKp4MhPUP3oHuOHt1hK9xH9ez8sl4sPuApDuv91_oK8OfNeUE8iGIfA-P5_FM-897R4vnQJAh_hD5u-epeoJOj-Ul9nKceDLlhpOpz6dMlKrSmDrx2oFojrSyM44ZZ4QNzAYYzqAxxrXVWOgeaEDBQlk4KTehLNOouO3iFcFFo0krqilJbJkypqU9VCCjLCyuJdhkqN0g0JvGThzYZyybmKUQ107r2RtkE-JoEX4beb19aDfQcfxefBYi3ooFbOz7wcDRpqDbEKWup1s61jBkjFAdwpeCau1Iq1WZoP0C4_UjCK0OHG4Np0jzwoykZZ4L5KEplKN8a0R-qDoa5o-rrf5Q_QA_D7VAdOkSj_moNb3y81Ldv06D4BXeLC4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioCNN%3A+A+Hardware+Inference+Engine+for+EEG-Based+Emotion+Detection&rft.jtitle=IEEE+access&rft.au=Gonzalez%2C+Hector+A.&rft.au=Muzaffar%2C+Shahzad&rft.au=Yoo%2C+Jerald&rft.au=Elfadel%2C+Ibrahim+M.&rft.date=2020-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=140896&rft.epage=140914&rft_id=info:doi/10.1109%2FACCESS.2020.3012900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3012900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon