A Hybridized Feature Selection and Extraction Approach for Enhancing Cancer Prediction Based on DNA Methylation
Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges...
Saved in:
| Published in | IEEE access Vol. 6; pp. 15212 - 15223 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2018.2812734 |
Cover
| Abstract | Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called ( F-score ) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly. |
|---|---|
| AbstractList | Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called (F-score) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly. Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called ( F-score ) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly. |
| Author | Badr, Amr Raweh, Abeer A. Nassef, Mohammed |
| Author_xml | – sequence: 1 givenname: Abeer A. orcidid: 0000-0001-8449-5239 surname: Raweh fullname: Raweh, Abeer A. email: abeerraweh81@gmail.com organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt – sequence: 2 givenname: Mohammed surname: Nassef fullname: Nassef, Mohammed organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt – sequence: 3 givenname: Amr surname: Badr fullname: Badr, Amr organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt |
| BookMark | eNptUV1v0zAUjdCQGGO_YC-WeG7xR5zYjyF0bNL4kArP1rVzvboKcXFSQfn1uMtUoQq_3A_fc659zuviYogDFsUNo0vGqH7XtO1qvV5yytSSK8ZrUb4oLjmr9EJIUV38k78qrsdxS_NRuSXryyI25O5gU-jCH-zILcK0T0jW2KObQhwIDB1Z_Z4SzGWz26UIbkN8TGQ1bGBwYXgkbY6YyNeEXZgH38OY-XLy4XNDPuG0OfRwvHhTvPTQj3j9HK-K77erb-3d4uHLx_u2eVi4kqppUVOwinl02tdW8I5VVnms0XItFarOU1H5jkvLnUVbV7zzWngsaYmUOmbFVXE_83YRtmaXwg9IBxMhmKdGTI8G0hRcjwbAslrITkvmM4FQGqASunS0lkxrzFzlzLUfdnD4BX1_ImTUHD0w4ByOozl6YJ49yLC3MyxL9nOP42S2cZ-G_GvDSymVoqykeUrPUy7FcUzojQvTk1RZ9NCfNswun28QZ9jzd_0fdTOjAiKeEErQmkoq_gKGRLPn |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_math10030374 crossref_primary_10_3390_bioengineering11040314 crossref_primary_10_1021_acsomega_4c03640 crossref_primary_10_1007_s10791_025_09497_2 crossref_primary_10_1007_s12652_022_04118_y crossref_primary_10_3389_fcell_2021_696359 crossref_primary_10_1016_j_eswa_2020_113971 crossref_primary_10_1109_ACCESS_2018_2873634 crossref_primary_10_1109_ACCESS_2023_3274696 crossref_primary_10_1109_ACCESS_2018_2871027 crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_1093_comjnl_bxab089 crossref_primary_10_3389_frai_2025_1545851 crossref_primary_10_4018_IJSSCI_312562 crossref_primary_10_1109_ACCESS_2020_3012838 crossref_primary_10_1007_s12652_021_03147_3 crossref_primary_10_1016_j_matpr_2021_03_625 crossref_primary_10_15622_ia_23_2_7 crossref_primary_10_1007_s00521_023_09359_2 crossref_primary_10_1002_ett_4622 crossref_primary_10_1080_23270012_2020_1811789 |
| Cites_doi | 10.1155/2017/5745724 10.1038/nmeth.3115 10.1038/s41598-017-08881-3 10.1016/j.procs.2015.04.060 10.1093/nar/gkt343 10.1007/978-1-4419-7970-4 10.3390/e13010254 10.7763/IJMLC.2012.V2.227 10.1007/978-3-319-22909-6_2 10.1371/journal.pone.0148977 10.1155/2015/198363 10.1214/088342304000000297 10.4236/jbise.2013.65070 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2018.2812734 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 15223 |
| ExternalDocumentID | oai_doaj_org_article_aab1735d951f404389aa6394c075199e 10.1109/access.2018.2812734 10_1109_ACCESS_2018_2812734 8307050 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-70ab81fec9f7b32d16b8fe7eb2958e8df036fd25b2cbeb762df93fe404e00c1b3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:43 EDT 2025 Sun Sep 07 11:00:20 EDT 2025 Sun Jun 29 16:41:21 EDT 2025 Wed Oct 01 02:57:43 EDT 2025 Thu Apr 24 22:57:38 EDT 2025 Wed Aug 27 02:52:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-70ab81fec9f7b32d16b8fe7eb2958e8df036fd25b2cbeb762df93fe404e00c1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8449-5239 |
| OpenAccessLink | https://doaj.org/article/aab1735d951f404389aa6394c075199e |
| PQID | 2455880140 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2018_2812734 proquest_journals_2455880140 unpaywall_primary_10_1109_access_2018_2812734 doaj_primary_oai_doaj_org_article_aab1735d951f404389aa6394c075199e crossref_primary_10_1109_ACCESS_2018_2812734 ieee_primary_8307050 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 sek (ref15) 1999 ref11 ref10 pouliot (ref4) 2015; 35 ref2 ref1 ref17 kaur (ref7) 2016 ref16 ref8 schneider (ref14) 2011 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1155/2017/5745724 – ident: ref11 doi: 10.1038/nmeth.3115 – ident: ref6 doi: 10.1038/s41598-017-08881-3 – ident: ref8 doi: 10.1016/j.procs.2015.04.060 – ident: ref10 doi: 10.1093/nar/gkt343 – start-page: 5 year: 2016 ident: ref7 article-title: Feature extraction techniques using support vector machines in disease prediction publication-title: Proc IJARSE – volume: 35 start-page: 4569 year: 2015 ident: ref4 article-title: The role of methylation in breast cancer susceptibility and treatment publication-title: Anticancer Res – ident: ref17 doi: 10.1007/978-1-4419-7970-4 – ident: ref16 doi: 10.3390/e13010254 – start-page: 1 year: 1999 ident: ref15 publication-title: Frequency Analysis Fast Fourier Transform Frequency Spectrum – ident: ref12 doi: 10.7763/IJMLC.2012.V2.227 – ident: ref1 doi: 10.1007/978-3-319-22909-6_2 – ident: ref2 doi: 10.1371/journal.pone.0148977 – ident: ref5 doi: 10.1155/2015/198363 – ident: ref13 doi: 10.1214/088342304000000297 – year: 2011 ident: ref14 article-title: Survey of peaks/valleys identification in time series – ident: ref9 doi: 10.4236/jbise.2013.65070 |
| SSID | ssj0000816957 |
| Score | 2.2855823 |
| Snippet | Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15212 |
| SubjectTerms | Accuracy Algorithms biomarkers Cancer Cancer prediction Classification Classification algorithms Colon Density Deoxyribonucleic acid DNA DNA methylation epigenetics Fast Fourier transformations Feature extraction Feature selection Prediction algorithms Probes Reliability analysis Software Support vector machines |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKL8ABCgV1S0E-cGy2-bAT-5guW62QtkKCSr1F_gTUVbZKE9H21zOTeKMuVIhblDiJozf2vHE8bwj5mKpceWMwLOEMApSERSq2RcRyj2riJvYWE4WX5_nign2-5Jc75HjMhXHO9ZvP3BQP-3_5dm06XCo7EWigGKA_KUQ-5GqN6ylYQELyIggLJbE8KWcz-AbcvSWmKfixImNbzqfX6A9FVbb45dOuvlZ3v9Rq9cDVnL0ky00nhx0mV9Ou1VNz_4d-4_9-xR55ETgnLQcjeUV2XP2aPH-gRLhP1iVd3GHy1s97Zynywq5x9GtfJAeQo6q2dH7bNkMaBC2DEjkFykvn9Q8U7ai_0xmaUEO_NPj3p294Ck7SUjj4dF7SpQOrGPbevSEXZ_Nvs0UUajFEhsWijYpYaZF4Z6QvdJbaJNfCuwLicsmFE9aDJ_Q25To12mmYYa2XmXcsZi6OTaKzt2S3XtfugFDutUxznljHcgamoqyUQLyYRHID7GpC0g1IlQlC5VgvY1X1AUssqwHZCpGtArITcjzedD3odPy7-SmiPzZFke3-BCBVhTFbKaWTIuMWSKhHESIhlQJCxwzQrERKNyH7iO74kADshBxtbKkKE8JNlTLOBSr1wOVotK-_uqr6KplbXT18_C3vyDNsNawGHZHdtunce-BHrf7QD4zfm-oLGg priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvApiaUE-cCSLk9hJfEyXrVZIXVWClcrJ8pMiVmmVZgXtr2cmcVe7IFVwy8OJHPuz55vY8w0h7zJd6GAtuiWCg4OS8kQzVya8CKgmbllwGCh8sijmS_7pTJxFnW2Mhdlev0-Z_KD7tIG4BauaZGCMypzfJ3uFAOI9InvLxWn9FdPHpYVM8n4h8uCOJ3dsTy_RH3Oq7NDLB-vmUl__1KvVlqU5fjKEcF_1AoW4weTHZN2Zib35Q77xHz_iKXkcGSetB4g8I_d885w82tIh3CcXNZ1fY-jW9xvvKLLCdevp5z5FDvQb1Y2js19dOwRB0DrqkFMgvHTWnKNkR_ONThFALT1tce2nL3gEJtJROPi4qOmJB0wMO-9ekOXx7Mt0nsRMDInlrOqSkmlTpcFbGUqTZy4tTBV8CV65FJWvXAA7GFwmTGaNNzC_uiDz4DnjnjGbmvwlGTUXjX9FqAhGZoVInecFB6BoJyXQLi6R2gC3GpPsto-UjTLlmC1jpXp3hUlVT6eATYWtqWJrjsn7zUOXg0rH3cWPsPM3RVFiu78AnabiiFVam7TMhQMKGlCCqJJaA53jFkhWKqUfk32EzuYlFc6ego3J4S2UVJwOrlTGhahQpwduJxt4_VXVASc7VX39n-UPyEM8HX4SHZJR1679G6BNnXkbh8tv3KgOFQ priority: 102 providerName: Unpaywall |
| Title | A Hybridized Feature Selection and Extraction Approach for Enhancing Cancer Prediction Based on DNA Methylation |
| URI | https://ieeexplore.ieee.org/document/8307050 https://www.proquest.com/docview/2455880140 https://doi.org/10.1109/access.2018.2812734 https://doaj.org/article/aab1735d951f404389aa6394c075199e |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQeAAe0GAgClvlBx4JsxM7sR-z0qlCWjUJKo0nyz8BqcqmrNU2_vrdJVnVahK88BYljuXcXe6-S3zfEfIxt6VN3mNaIgUkKFxkloUqE2VCNnHPUsBC4bN5OVuIrxfyYqvVF-4J6-mBe8EdW-t4VcgASCAhE4zS1kJUFR5iHdc6ovdlSm8lU50PVrzUshpohjjTx_VkAk-Ee7nU5xyiWlWInVDUMfYPLVZ20OazdXNl727scrkVeE73ycsBMdK6X-kr8iQ2r8mLLR7BA3JZ09kdll79_hMDRVS3biP91rW4AblT2wQ6vV21fREDrQcecQqAlU6bX0i50fykEzSAlp63-O-mG3gCIS5QOPgyr-lZBJ32O-fekMXp9Ptklg2dFDIvmFplFbNO8RS9TpUr8sBLp1KsIKvWUkUVEsSxFHLpcu-iA_8Yki5SBHlHxjx3xVuy11w28R2hMjmdl5KHKEoBirZBa4BNQiM0AWw0IvmDUI0faMax28XSdOkG06bXhEFNmEETI_Jpc9NVz7Lx9-EnqK3NUKTI7k6A4ZjBcMy_DGdEDlDXm0kUej_JRuTwQfdmeJ2vTS6kVMizA5ezjT08WqrtelzuLPX9_1jqB_Ic5-y__BySvVW7jkeAhVZu3Jn9uCtbHJOni_l5_eMeissDdA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcoFAQCwV84Nhsk6ydxMd02WqB7gqJVurN8icgVtkqJIL21zOTeKNuQYhblDiJrTfJvLE9bwh5m6pMeWMwLOEMApSERSq2ecQyj2riJvYWE4UXy2x-wT5c8ssdcjTkwjjnus1nboyH3Vq-XZsWp8qOCzRQDNDvccYY77O1hhkVLCEheB6khZJYHJfTKYwC928V4xQ8WT5hW-6nU-kPZVW2GOZeW12p659qtbrlbE4fkcWmm_0ek-_jttFjc3NHwfF_x7FPHgbWScveTB6THVc9IQ9uaREekHVJ59eYvvXtxlmKzLCtHf3clckB7KiqLJ39auo-EYKWQYucAumls-orynZUX-gUjaimn2pc_-kanoCbtBQO3i1LunBgF_3uu6fk4nR2Pp1HoRpDZFhcNFEeK10k3hnhcz1JbZLpwrscInPBC1dYD77Q25Tr1Gin4R9rvZh4x2Lm4tgkevKM7Fbryj0nlHst0own1rGMgbEoKwRQLyaQ3gC_GpF0A5I0QaocK2asZBeyxEL2yEpEVgZkR-RouOmqV-r4d_MTRH9oijLb3QlASoavViqlk3zCLdBQjzJEhVAKKB0zQLQSIdyIHCC6w0MCsCNyuLElGX4JP2TKOC9QqwcuR4N9_dFV1dXJ3Orqi7-_5Q3Zm58vzuTZ--XHl-Q-3tHPDR2S3aZu3StgS41-3X0kvwG1XA5n |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvApiaUE-cCSLk9hJfEyXrVZIXVWClcrJ8pMiVmmVZgXtr2cmcVe7IFVwy8OJHPuz55vY8w0h7zJd6GAtuiWCg4OS8kQzVya8CKgmbllwGCh8sijmS_7pTJxFnW2Mhdlev0-Z_KD7tIG4BauaZGCMypzfJ3uFAOI9InvLxWn9FdPHpYVM8n4h8uCOJ3dsTy_RH3Oq7NDLB-vmUl__1KvVlqU5fjKEcF_1AoW4weTHZN2Zib35Q77xHz_iKXkcGSetB4g8I_d885w82tIh3CcXNZ1fY-jW9xvvKLLCdevp5z5FDvQb1Y2js19dOwRB0DrqkFMgvHTWnKNkR_ONThFALT1tce2nL3gEJtJROPi4qOmJB0wMO-9ekOXx7Mt0nsRMDInlrOqSkmlTpcFbGUqTZy4tTBV8CV65FJWvXAA7GFwmTGaNNzC_uiDz4DnjnjGbmvwlGTUXjX9FqAhGZoVInecFB6BoJyXQLi6R2gC3GpPsto-UjTLlmC1jpXp3hUlVT6eATYWtqWJrjsn7zUOXg0rH3cWPsPM3RVFiu78AnabiiFVam7TMhQMKGlCCqJJaA53jFkhWKqUfk32EzuYlFc6ego3J4S2UVJwOrlTGhahQpwduJxt4_VXVASc7VX39n-UPyEM8HX4SHZJR1679G6BNnXkbh8tv3KgOFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybridized+Feature+Selection+and+Extraction+Approach+for+Enhancing+Cancer+Prediction+Based+on+DNA+Methylation&rft.jtitle=IEEE+access&rft.au=Abeer+A.+Raweh&rft.au=Mohammed+Nassef&rft.au=Amr+Badr&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=15212&rft.epage=15223&rft_id=info:doi/10.1109%2FACCESS.2018.2812734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aab1735d951f404389aa6394c075199e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |