A Hybridized Feature Selection and Extraction Approach for Enhancing Cancer Prediction Based on DNA Methylation

Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 15212 - 15223
Main Authors Raweh, Abeer A., Nassef, Mohammed, Badr, Amr
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2812734

Cover

Abstract Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called ( F-score ) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly.
AbstractList Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called (F-score) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly.
Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in the recent years for early detection and diagnosis. With the advent of the high-throughput technologies, there are still several challenges to achieve the classification process using the DNA methylation data. The high-dimensionality and high-noisiness of the DNA methylation data may lead to the degradation of the prediction accuracy. Thus, it becomes increasingly important in a wide range to employ robust computational tools such as feature selection and extraction methods to extract the informative features amongst thousands of them, and hence improving cancer prediction. By using the DNA methylation degree in promoters and probes regions, this paper aims at predicting cancer with a hybridized approach based on the feature selection and feature extraction techniques. The suggested approach exploits a filter feature selection method called ( F-score ) to overcome the high-dimensionality problem of the DNA methylation data, and proposes an extraction model which employs the peaks of the mean methylation density, the fast Fourier transform algorithm, and the symmetry between the methylation density of a sample and the mean methylation density of both sample types normal and cancer as novel feature extraction methods, in order to accurate cancer classification and reduce training time. To evaluate the reliability of our approach, The naïve base, random forest, and support vector machine algorithms are introduced to predict different cancer types like: breast, colon, head, kidney, lung, thyroid, and uterine with and without the hybridized approach. The results show that, the classification accuracy improves in all most cases and it also proves the reliability indirectly.
Author Badr, Amr
Raweh, Abeer A.
Nassef, Mohammed
Author_xml – sequence: 1
  givenname: Abeer A.
  orcidid: 0000-0001-8449-5239
  surname: Raweh
  fullname: Raweh, Abeer A.
  email: abeerraweh81@gmail.com
  organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt
– sequence: 2
  givenname: Mohammed
  surname: Nassef
  fullname: Nassef, Mohammed
  organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt
– sequence: 3
  givenname: Amr
  surname: Badr
  fullname: Badr, Amr
  organization: Faculty of Computers and Information, Cairo University, Cairo, Egypt
BookMark eNptUV1v0zAUjdCQGGO_YC-WeG7xR5zYjyF0bNL4kArP1rVzvboKcXFSQfn1uMtUoQq_3A_fc659zuviYogDFsUNo0vGqH7XtO1qvV5yytSSK8ZrUb4oLjmr9EJIUV38k78qrsdxS_NRuSXryyI25O5gU-jCH-zILcK0T0jW2KObQhwIDB1Z_Z4SzGWz26UIbkN8TGQ1bGBwYXgkbY6YyNeEXZgH38OY-XLy4XNDPuG0OfRwvHhTvPTQj3j9HK-K77erb-3d4uHLx_u2eVi4kqppUVOwinl02tdW8I5VVnms0XItFarOU1H5jkvLnUVbV7zzWngsaYmUOmbFVXE_83YRtmaXwg9IBxMhmKdGTI8G0hRcjwbAslrITkvmM4FQGqASunS0lkxrzFzlzLUfdnD4BX1_ImTUHD0w4ByOozl6YJ49yLC3MyxL9nOP42S2cZ-G_GvDSymVoqykeUrPUy7FcUzojQvTk1RZ9NCfNswun28QZ9jzd_0fdTOjAiKeEErQmkoq_gKGRLPn
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_math10030374
crossref_primary_10_3390_bioengineering11040314
crossref_primary_10_1021_acsomega_4c03640
crossref_primary_10_1007_s10791_025_09497_2
crossref_primary_10_1007_s12652_022_04118_y
crossref_primary_10_3389_fcell_2021_696359
crossref_primary_10_1016_j_eswa_2020_113971
crossref_primary_10_1109_ACCESS_2018_2873634
crossref_primary_10_1109_ACCESS_2023_3274696
crossref_primary_10_1109_ACCESS_2018_2871027
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1093_comjnl_bxab089
crossref_primary_10_3389_frai_2025_1545851
crossref_primary_10_4018_IJSSCI_312562
crossref_primary_10_1109_ACCESS_2020_3012838
crossref_primary_10_1007_s12652_021_03147_3
crossref_primary_10_1016_j_matpr_2021_03_625
crossref_primary_10_15622_ia_23_2_7
crossref_primary_10_1007_s00521_023_09359_2
crossref_primary_10_1002_ett_4622
crossref_primary_10_1080_23270012_2020_1811789
Cites_doi 10.1155/2017/5745724
10.1038/nmeth.3115
10.1038/s41598-017-08881-3
10.1016/j.procs.2015.04.060
10.1093/nar/gkt343
10.1007/978-1-4419-7970-4
10.3390/e13010254
10.7763/IJMLC.2012.V2.227
10.1007/978-3-319-22909-6_2
10.1371/journal.pone.0148977
10.1155/2015/198363
10.1214/088342304000000297
10.4236/jbise.2013.65070
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2018.2812734
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 15223
ExternalDocumentID oai_doaj_org_article_aab1735d951f404389aa6394c075199e
10.1109/access.2018.2812734
10_1109_ACCESS_2018_2812734
8307050
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-70ab81fec9f7b32d16b8fe7eb2958e8df036fd25b2cbeb762df93fe404e00c1b3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:43 EDT 2025
Sun Sep 07 11:00:20 EDT 2025
Sun Jun 29 16:41:21 EDT 2025
Wed Oct 01 02:57:43 EDT 2025
Thu Apr 24 22:57:38 EDT 2025
Wed Aug 27 02:52:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-70ab81fec9f7b32d16b8fe7eb2958e8df036fd25b2cbeb762df93fe404e00c1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8449-5239
OpenAccessLink https://doaj.org/article/aab1735d951f404389aa6394c075199e
PQID 2455880140
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2018_2812734
proquest_journals_2455880140
unpaywall_primary_10_1109_access_2018_2812734
doaj_primary_oai_doaj_org_article_aab1735d951f404389aa6394c075199e
crossref_primary_10_1109_ACCESS_2018_2812734
ieee_primary_8307050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
sek (ref15) 1999
ref11
ref10
pouliot (ref4) 2015; 35
ref2
ref1
ref17
kaur (ref7) 2016
ref16
ref8
schneider (ref14) 2011
ref9
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1155/2017/5745724
– ident: ref11
  doi: 10.1038/nmeth.3115
– ident: ref6
  doi: 10.1038/s41598-017-08881-3
– ident: ref8
  doi: 10.1016/j.procs.2015.04.060
– ident: ref10
  doi: 10.1093/nar/gkt343
– start-page: 5
  year: 2016
  ident: ref7
  article-title: Feature extraction techniques using support vector machines in disease prediction
  publication-title: Proc IJARSE
– volume: 35
  start-page: 4569
  year: 2015
  ident: ref4
  article-title: The role of methylation in breast cancer susceptibility and treatment
  publication-title: Anticancer Res
– ident: ref17
  doi: 10.1007/978-1-4419-7970-4
– ident: ref16
  doi: 10.3390/e13010254
– start-page: 1
  year: 1999
  ident: ref15
  publication-title: Frequency Analysis Fast Fourier Transform Frequency Spectrum
– ident: ref12
  doi: 10.7763/IJMLC.2012.V2.227
– ident: ref1
  doi: 10.1007/978-3-319-22909-6_2
– ident: ref2
  doi: 10.1371/journal.pone.0148977
– ident: ref5
  doi: 10.1155/2015/198363
– ident: ref13
  doi: 10.1214/088342304000000297
– year: 2011
  ident: ref14
  article-title: Survey of peaks/valleys identification in time series
– ident: ref9
  doi: 10.4236/jbise.2013.65070
SSID ssj0000816957
Score 2.2855823
Snippet Due to the vital role of the aberrant DNA methylation during the disease development such as cancer, the comprehension of its mechanism had become essential in...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15212
SubjectTerms Accuracy
Algorithms
biomarkers
Cancer
Cancer prediction
Classification
Classification algorithms
Colon
Density
Deoxyribonucleic acid
DNA
DNA methylation
epigenetics
Fast Fourier transformations
Feature extraction
Feature selection
Prediction algorithms
Probes
Reliability analysis
Software
Support vector machines
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKL8ABCgV1S0E-cGy2-bAT-5guW62QtkKCSr1F_gTUVbZKE9H21zOTeKMuVIhblDiJozf2vHE8bwj5mKpceWMwLOEMApSERSq2RcRyj2riJvYWE4WX5_nign2-5Jc75HjMhXHO9ZvP3BQP-3_5dm06XCo7EWigGKA_KUQ-5GqN6ylYQELyIggLJbE8KWcz-AbcvSWmKfixImNbzqfX6A9FVbb45dOuvlZ3v9Rq9cDVnL0ky00nhx0mV9Ou1VNz_4d-4_9-xR55ETgnLQcjeUV2XP2aPH-gRLhP1iVd3GHy1s97Zynywq5x9GtfJAeQo6q2dH7bNkMaBC2DEjkFykvn9Q8U7ai_0xmaUEO_NPj3p294Ck7SUjj4dF7SpQOrGPbevSEXZ_Nvs0UUajFEhsWijYpYaZF4Z6QvdJbaJNfCuwLicsmFE9aDJ_Q25To12mmYYa2XmXcsZi6OTaKzt2S3XtfugFDutUxznljHcgamoqyUQLyYRHID7GpC0g1IlQlC5VgvY1X1AUssqwHZCpGtArITcjzedD3odPy7-SmiPzZFke3-BCBVhTFbKaWTIuMWSKhHESIhlQJCxwzQrERKNyH7iO74kADshBxtbKkKE8JNlTLOBSr1wOVotK-_uqr6KplbXT18_C3vyDNsNawGHZHdtunce-BHrf7QD4zfm-oLGg
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvApiaUE-cCSLk9hJfEyXrVZIXVWClcrJ8pMiVmmVZgXtr2cmcVe7IFVwy8OJHPuz55vY8w0h7zJd6GAtuiWCg4OS8kQzVya8CKgmbllwGCh8sijmS_7pTJxFnW2Mhdlev0-Z_KD7tIG4BauaZGCMypzfJ3uFAOI9InvLxWn9FdPHpYVM8n4h8uCOJ3dsTy_RH3Oq7NDLB-vmUl__1KvVlqU5fjKEcF_1AoW4weTHZN2Zib35Q77xHz_iKXkcGSetB4g8I_d885w82tIh3CcXNZ1fY-jW9xvvKLLCdevp5z5FDvQb1Y2js19dOwRB0DrqkFMgvHTWnKNkR_ONThFALT1tce2nL3gEJtJROPi4qOmJB0wMO-9ekOXx7Mt0nsRMDInlrOqSkmlTpcFbGUqTZy4tTBV8CV65FJWvXAA7GFwmTGaNNzC_uiDz4DnjnjGbmvwlGTUXjX9FqAhGZoVInecFB6BoJyXQLi6R2gC3GpPsto-UjTLlmC1jpXp3hUlVT6eATYWtqWJrjsn7zUOXg0rH3cWPsPM3RVFiu78AnabiiFVam7TMhQMKGlCCqJJaA53jFkhWKqUfk32EzuYlFc6ego3J4S2UVJwOrlTGhahQpwduJxt4_VXVASc7VX39n-UPyEM8HX4SHZJR1679G6BNnXkbh8tv3KgOFQ
  priority: 102
  providerName: Unpaywall
Title A Hybridized Feature Selection and Extraction Approach for Enhancing Cancer Prediction Based on DNA Methylation
URI https://ieeexplore.ieee.org/document/8307050
https://www.proquest.com/docview/2455880140
https://doi.org/10.1109/access.2018.2812734
https://doaj.org/article/aab1735d951f404389aa6394c075199e
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQeAAe0GAgClvlBx4JsxM7sR-z0qlCWjUJKo0nyz8BqcqmrNU2_vrdJVnVahK88BYljuXcXe6-S3zfEfIxt6VN3mNaIgUkKFxkloUqE2VCNnHPUsBC4bN5OVuIrxfyYqvVF-4J6-mBe8EdW-t4VcgASCAhE4zS1kJUFR5iHdc6ovdlSm8lU50PVrzUshpohjjTx_VkAk-Ee7nU5xyiWlWInVDUMfYPLVZ20OazdXNl727scrkVeE73ycsBMdK6X-kr8iQ2r8mLLR7BA3JZ09kdll79_hMDRVS3biP91rW4AblT2wQ6vV21fREDrQcecQqAlU6bX0i50fykEzSAlp63-O-mG3gCIS5QOPgyr-lZBJ32O-fekMXp9Ptklg2dFDIvmFplFbNO8RS9TpUr8sBLp1KsIKvWUkUVEsSxFHLpcu-iA_8Yki5SBHlHxjx3xVuy11w28R2hMjmdl5KHKEoBirZBa4BNQiM0AWw0IvmDUI0faMax28XSdOkG06bXhEFNmEETI_Jpc9NVz7Lx9-EnqK3NUKTI7k6A4ZjBcMy_DGdEDlDXm0kUej_JRuTwQfdmeJ2vTS6kVMizA5ezjT08WqrtelzuLPX9_1jqB_Ic5-y__BySvVW7jkeAhVZu3Jn9uCtbHJOni_l5_eMeissDdA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcoFAQCwV84Nhsk6ydxMd02WqB7gqJVurN8icgVtkqJIL21zOTeKNuQYhblDiJrTfJvLE9bwh5m6pMeWMwLOEMApSERSq2ecQyj2riJvYWE4UXy2x-wT5c8ssdcjTkwjjnus1nboyH3Vq-XZsWp8qOCzRQDNDvccYY77O1hhkVLCEheB6khZJYHJfTKYwC928V4xQ8WT5hW-6nU-kPZVW2GOZeW12p659qtbrlbE4fkcWmm_0ek-_jttFjc3NHwfF_x7FPHgbWScveTB6THVc9IQ9uaREekHVJ59eYvvXtxlmKzLCtHf3clckB7KiqLJ39auo-EYKWQYucAumls-orynZUX-gUjaimn2pc_-kanoCbtBQO3i1LunBgF_3uu6fk4nR2Pp1HoRpDZFhcNFEeK10k3hnhcz1JbZLpwrscInPBC1dYD77Q25Tr1Gin4R9rvZh4x2Lm4tgkevKM7Fbryj0nlHst0own1rGMgbEoKwRQLyaQ3gC_GpF0A5I0QaocK2asZBeyxEL2yEpEVgZkR-RouOmqV-r4d_MTRH9oijLb3QlASoavViqlk3zCLdBQjzJEhVAKKB0zQLQSIdyIHCC6w0MCsCNyuLElGX4JP2TKOC9QqwcuR4N9_dFV1dXJ3Orqi7-_5Q3Zm58vzuTZ--XHl-Q-3tHPDR2S3aZu3StgS41-3X0kvwG1XA5n
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvApiaUE-cCSLk9hJfEyXrVZIXVWClcrJ8pMiVmmVZgXtr2cmcVe7IFVwy8OJHPuz55vY8w0h7zJd6GAtuiWCg4OS8kQzVya8CKgmbllwGCh8sijmS_7pTJxFnW2Mhdlev0-Z_KD7tIG4BauaZGCMypzfJ3uFAOI9InvLxWn9FdPHpYVM8n4h8uCOJ3dsTy_RH3Oq7NDLB-vmUl__1KvVlqU5fjKEcF_1AoW4weTHZN2Zib35Q77xHz_iKXkcGSetB4g8I_d885w82tIh3CcXNZ1fY-jW9xvvKLLCdevp5z5FDvQb1Y2js19dOwRB0DrqkFMgvHTWnKNkR_ONThFALT1tce2nL3gEJtJROPi4qOmJB0wMO-9ekOXx7Mt0nsRMDInlrOqSkmlTpcFbGUqTZy4tTBV8CV65FJWvXAA7GFwmTGaNNzC_uiDz4DnjnjGbmvwlGTUXjX9FqAhGZoVInecFB6BoJyXQLi6R2gC3GpPsto-UjTLlmC1jpXp3hUlVT6eATYWtqWJrjsn7zUOXg0rH3cWPsPM3RVFiu78AnabiiFVam7TMhQMKGlCCqJJaA53jFkhWKqUfk32EzuYlFc6ego3J4S2UVJwOrlTGhahQpwduJxt4_VXVASc7VX39n-UPyEM8HX4SHZJR1679G6BNnXkbh8tv3KgOFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybridized+Feature+Selection+and+Extraction+Approach+for+Enhancing+Cancer+Prediction+Based+on+DNA+Methylation&rft.jtitle=IEEE+access&rft.au=Abeer+A.+Raweh&rft.au=Mohammed+Nassef&rft.au=Amr+Badr&rft.date=2018-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=15212&rft.epage=15223&rft_id=info:doi/10.1109%2FACCESS.2018.2812734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aab1735d951f404389aa6394c075199e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon