Optimal Location and Sizing of Distributed Generators Based on Renewable Energy Sources Using Modified Moth Flame Optimization Technique

Due to the great impact of the penetration and locations of distributed generators (DG) on the performance of the distribution system, this paper proposes a modified moth flame optimization (MMFO) algorithm. Two modifications are proposed in MMFO to enhance the exploration and exploitation balance a...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 109625 - 109638
Main Authors Elattar, Ehab E., Elsayed, Salah K.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3001758

Cover

More Information
Summary:Due to the great impact of the penetration and locations of distributed generators (DG) on the performance of the distribution system, this paper proposes a modified moth flame optimization (MMFO) algorithm. Two modifications are proposed in MMFO to enhance the exploration and exploitation balance and overcome the shortcomings of the original MFO. The proposed MMFO is used to find the optimal location and sizing of DG units based on renewable energy sources in the distribution system. The main objective function is to minimize the total operating cost of the distribution system by considering the minimization of the total active power loss, voltage deviation of load buses, the DG units cost, and emission. This multi-objective function is converted to a coefficient single objective function with achieving different constraints. Also, the bus location index is employed to introduce the sorting list of locations to accomplish the narrow candidate buses list. Based on the candidate buses, the proposed MMFO is used to get the optimal location and sizing of DG units. The proposed MMFO algorithm has been applied to the IEEE 69-bus test distribution system and the results are compared with other published algorithms to prove its effectiveness and superiority.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3001758