Data Simulation by Resampling-A Practical Data Augmentation Algorithm for Periodical Signal Analysis-Based Fault Diagnosis

In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 125133 - 125145
Main Authors Hu, Tianhao, Tang, Tang, Chen, Ming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2937838

Cover

Abstract In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature, a practical algorithm named Data Simulation by Resampling (DSR) is proposed for data augmentation to alleviate the two problems in fault diagnosis. In essence, as a form of Vicinal Risk Minimization (VRM), DSR utilizes a two-stage resampling operation to simulate vicinal examples in both time domain and frequency domain. By doing so, DSR can both increase the sample diversity and the quantity of training set, which regularizes machine learning and deep learning based methods to achieve a higher generalization performance. Our experiments verify the effectiveness of DSR and show the possibility of combining it with other augmentation algorithms.
AbstractList In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature, a practical algorithm named Data Simulation by Resampling (DSR) is proposed for data augmentation to alleviate the two problems in fault diagnosis. In essence, as a form of Vicinal Risk Minimization (VRM), DSR utilizes a two-stage resampling operation to simulate vicinal examples in both time domain and frequency domain. By doing so, DSR can both increase the sample diversity and the quantity of training set, which regularizes machine learning and deep learning based methods to achieve a higher generalization performance. Our experiments verify the effectiveness of DSR and show the possibility of combining it with other augmentation algorithms.
Author Chen, Ming
Hu, Tianhao
Tang, Tang
Author_xml – sequence: 1
  givenname: Tianhao
  orcidid: 0000-0003-0670-6744
  surname: Hu
  fullname: Hu, Tianhao
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Tang
  surname: Tang
  fullname: Tang, Tang
  email: tang.tang@tongji.edu.cn
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-7593-1411
  surname: Chen
  fullname: Chen, Ming
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
BookMark eNptUU1r3DAUNCWFpml-QS6Gnr3Vk_whHd1N0gYCDd32LJ4l2dWitbaSTdj--irrsJSlOkhimJn3Me-zi9GPJstugKwAiPjUrtd3m82KEhArKljDGX-TXVKoRcEqVl_883-XXce4JenwBFXNZfbnFifMN3Y3O5ysH_PukH83EXd7Z8ehaPOngGqyCl1-ZLbzsDPjtHBbN_hgp1-7vPchfzLBen2kbuwwpqdN1yHaWHzGaHR-j7Ob8luLw-gT-iF726OL5vr1vcp-3t_9WH8tHr99eVi3j4UqCZ-KuqGQRiI9I0A0MZqn9rum5F3HFIFeU6KAomACkSmhgeua6g7AVB0HothV9rD4ao9buQ92h-EgPVp5BHwYJIY0ojNSNyBAUaZoVZZ1n0r1pjFoakxwL3TyKhevedzj4RmdOxkCkS9xSFTKxChf4pCvcSTZx0W2D_73bOIkt34OaTuJV1ZVDbRqSGKJhaWCjzGYXiq7bHoKaN2pwhL4eQV2pj3v6_-qm0VljTEnBedQNUDZXyECt-w
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_isatra_2020_11_005
crossref_primary_10_3390_machines10070521
crossref_primary_10_1016_j_measurement_2024_116505
crossref_primary_10_1155_2022_2386523
crossref_primary_10_1016_j_epsr_2021_107363
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1049_elp2_12059
crossref_primary_10_1109_ACCESS_2021_3063736
crossref_primary_10_1109_TIE_2021_3111567
crossref_primary_10_1109_TIM_2020_3043959
crossref_primary_10_3390_app10238481
crossref_primary_10_1002_cjce_24818
crossref_primary_10_1016_j_ymssp_2020_107043
crossref_primary_10_1103_PhysRevA_109_023501
crossref_primary_10_1109_TIM_2025_3548066
crossref_primary_10_1007_s10845_024_02458_4
crossref_primary_10_1016_j_ymssp_2023_110449
crossref_primary_10_1016_j_ymssp_2021_108480
crossref_primary_10_1007_s40857_021_00236_3
crossref_primary_10_1016_j_ress_2024_110667
Cites_doi 10.1109/TIE.2018.2793271
10.1109/TIE.2016.2627020
10.1109/TIM.2011.2179819
10.1109/ACCESS.2017.2731945
10.1006/mssp.1996.0056
10.1109/ACCESS.2017.2661967
10.1109/TIE.2015.2417501
10.1016/j.ymssp.2006.06.010
10.1109/TNN.2010.2091281
10.1016/j.ymssp.2018.03.025
10.1016/j.jsv.2016.05.027
10.1109/TIE.2017.2767540
10.1016/j.ymssp.2004.05.001
10.1016/j.ymssp.2015.10.025
10.1016/j.knosys.2018.07.017
10.1109/I2MTC.2018.8409574
10.21595/jve.2017.18454
10.1109/TII.2017.2672988
10.1007/3-540-49430-8_13
10.1049/cje.2015.04.006
10.1109/TIE.2017.2774777
10.1016/j.ymssp.2017.06.012
10.1109/ACCESS.2017.2728010
10.1109/ICCV.2013.274
10.1109/ICEMI.2015.7494195
10.1109/ICMTMA.2010.417
10.1109/TIM.2017.2698738
10.1016/j.ymssp.2017.06.022
10.3390/s17020425
10.1109/ACCESS.2017.2675940
10.1016/0022-460X(84)90595-9
10.1016/j.measurement.2016.04.007
10.1016/j.jmsy.2018.01.003
10.1109/5.726791
10.1109/CCDC.2018.8407418
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2937838
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 125145
ExternalDocumentID oai_doaj_org_article_d7191c23c25446fd80fe7eae6a91cf9d
10.1109/access.2019.2937838
10_1109_ACCESS_2019_2937838
8815712
Genre orig-research
GrantInformation_xml – fundername: Application of New Mode for Intelligent Manufacturing of Lifting Equipment for Large-scale Marine Engineering 2017
– fundername: Project of Remote Operation and Maintenance Standards and Test Verification for Integrated Circuit Packaging Key Equipment 2018 in the Ministry of Industry and Information Technology, China
– fundername: Tongji University
  grantid: 2016KJ020
  funderid: 10.13039/501100004204
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-67218380f3010d0ed8000b748bb3c01fd20c12a939aa3c9d18d62db11e5b810c3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Tue Oct 14 19:03:22 EDT 2025
Wed Oct 01 15:59:35 EDT 2025
Mon Jun 30 04:31:41 EDT 2025
Wed Oct 01 03:22:41 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Aug 27 02:41:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-67218380f3010d0ed8000b748bb3c01fd20c12a939aa3c9d18d62db11e5b810c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7593-1411
0000-0003-0670-6744
OpenAccessLink https://doaj.org/article/d7191c23c25446fd80fe7eae6a91cf9d
PQID 2455612570
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_2455612570
crossref_primary_10_1109_ACCESS_2019_2937838
crossref_citationtrail_10_1109_ACCESS_2019_2937838
ieee_primary_8815712
unpaywall_primary_10_1109_access_2019_2937838
doaj_primary_oai_doaj_org_article_d7191c23c25446fd80fe7eae6a91cf9d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
zhong (ref39) 2017
ref34
szegedy (ref10) 2014
ref12
ref37
ref36
hannun (ref40) 2014
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref17
ref38
ref16
ref19
ref18
amodei (ref41) 2016
pereyra (ref43) 2017
(ref45) 0
ref24
ref23
zhang (ref15) 2018
ref26
ref25
ref20
ref22
ref44
ref21
ref28
ref27
ref29
ref8
wang (ref6) 2017; 19
szegedy (ref42) 2015
ref4
ref3
ref5
zhang (ref9) 2017
chapelle (ref7) 2000
kingma (ref46) 2014
References_xml – year: 2015
  ident: ref42
  article-title: Rethinking the inception architecture for computer vision
  publication-title: arXiv 1512 00567 [cs]
– ident: ref25
  doi: 10.1109/TIE.2018.2793271
– ident: ref13
  doi: 10.1109/TIE.2016.2627020
– ident: ref16
  doi: 10.1109/TIM.2011.2179819
– ident: ref3
  doi: 10.1109/ACCESS.2017.2731945
– ident: ref18
  doi: 10.1006/mssp.1996.0056
– ident: ref17
  doi: 10.1109/ACCESS.2017.2661967
– ident: ref1
  doi: 10.1109/TIE.2015.2417501
– year: 0
  ident: ref45
  publication-title: Case Western Reserve University Bearing Data Center
– ident: ref22
  doi: 10.1016/j.ymssp.2006.06.010
– ident: ref11
  doi: 10.1109/TNN.2010.2091281
– ident: ref5
  doi: 10.1016/j.ymssp.2018.03.025
– year: 2018
  ident: ref15
  article-title: Mixup: Beyond empirical risk minimization
  publication-title: arXiv 1710 09412
– ident: ref38
  doi: 10.1016/j.jsv.2016.05.027
– ident: ref29
  doi: 10.1109/TIE.2017.2767540
– year: 2017
  ident: ref39
  article-title: Random erasing data augmentation
  publication-title: arXiv 1708 04896
– start-page: 1
  year: 2014
  ident: ref10
  article-title: Intriguing properties of neural networks
  publication-title: Proc ICLR
– ident: ref19
  doi: 10.1016/j.ymssp.2004.05.001
– ident: ref32
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref31
  doi: 10.1016/j.knosys.2018.07.017
– ident: ref34
  doi: 10.1109/I2MTC.2018.8409574
– volume: 19
  start-page: 3429
  year: 2017
  ident: ref6
  article-title: Condition monitoring and fault diagnosis methods for low-speed and heavy-load slewing bearings: A literature review
  publication-title: J Vibroeng
  doi: 10.21595/jve.2017.18454
– ident: ref27
  doi: 10.1109/TII.2017.2672988
– ident: ref14
  doi: 10.1007/3-540-49430-8_13
– ident: ref21
  doi: 10.1049/cje.2015.04.006
– ident: ref26
  doi: 10.1109/TIE.2017.2774777
– ident: ref2
  doi: 10.1016/j.ymssp.2017.06.012
– ident: ref36
  doi: 10.1109/ACCESS.2017.2728010
– start-page: 1
  year: 2017
  ident: ref9
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: Proc ICLR
– ident: ref12
  doi: 10.1109/ICCV.2013.274
– ident: ref37
  doi: 10.1109/ICEMI.2015.7494195
– ident: ref23
  doi: 10.1109/ICMTMA.2010.417
– ident: ref35
  doi: 10.1109/TIM.2017.2698738
– start-page: 173
  year: 2016
  ident: ref41
  article-title: Deep speech 2: End-to-end speech recognition in English and Mandarin
  publication-title: Proc ICML
– year: 2014
  ident: ref40
  article-title: Deep speech: Scaling up end-to-end speech recognition
  publication-title: arXiv 1412 5567
– ident: ref28
  doi: 10.1016/j.ymssp.2017.06.022
– ident: ref30
  doi: 10.3390/s17020425
– ident: ref24
  doi: 10.1109/ACCESS.2017.2675940
– year: 2017
  ident: ref43
  article-title: Regularizing neural networks by penalizing confident output distributions
  publication-title: arXiv 1701 06548
– ident: ref44
  doi: 10.1016/0022-460X(84)90595-9
– ident: ref33
  doi: 10.1016/j.measurement.2016.04.007
– ident: ref4
  doi: 10.1016/j.jmsy.2018.01.003
– year: 2014
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref8
  doi: 10.1109/5.726791
– start-page: 416
  year: 2000
  ident: ref7
  article-title: Vicinal risk minimization
  publication-title: Proc NIPS
– ident: ref20
  doi: 10.1109/CCDC.2018.8407418
SSID ssj0000816957
Score 2.3014898
Snippet In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125133
SubjectTerms Algorithms
Convolution
Data augmentation
Data models
Data simulation
Deep learning
Fault diagnosis
generalization
Machine learning
Resampling
Signal analysis
Simulation
Training
Training data
Vibrations
vicinal risk minimization
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV0EECvKBY711nraP6ZZVhVSEgEq9RePXsuputuomQu2vx3a80RYQ4mZZE8fWjGfG9sw3CH3QtpTCZDmRAiritSSRJXAiAbJcc6cBwScKn3-uzi6KT5fl5R46GnNhjDEh-MxMfDO85eu16v1V2THnacl8SeEHjFdDrtZ4n-ILSIiSRWChlIrjejp1a_DRW2LijBrjPgdlx_gEjP5YVOWef_mwb6_h9icslzumZvYUnW8nOUSYXE36Tk7U3W_4jf-7imfoSfQ5cT0IyXO0Z9oX6PEOEuEBujuFDvC3xSpW88LyFn81G_Dx5u2c1HjANXIMxYGy7uermLXU4no5X98suh8r7Dxg_MUNuQ6vP268efhxBD4hJ85kajyDftnh0yHGb7F5iS5mH79Pz0gsy0BUQXlHKubdKk6t0w1UU6Odz0klK7iUuaKp1RlVaQYiFwC5Ejrlusq0TFNTSp5Slb9C--26Na8Rds6PZXkB3Oala7qjHytskWrrvDRQlCco2_KrURGz3JfOWDbh7EJFMzC58UxuIpMTdDR-dD1Advyb_MQLwkjq8bZDh2NaE7dvo5k716osVx7RrbJuydYwA6YC122FTtCBZ_Q4SORxgg63YtVE3bBpsiKUJC0ZTRAZRe2PqUIomHlvqm_-_pe36JGnGi6GDtF-d9Obd85V6uT7sEd-AbNeD-U
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELYgPSAO_BVEoCAfOLKJvb_2cZsSVUhUFRCpnCx7bYeIzaZqdkVbceAheEKehLHXiVKQkOC2sma9tmZsf7Oe-QahV9pmips4iRSXeeR2yUhlkkVKyjjRDHZA6RKF353kx7P07Vl2Fn64-VwYY4wPPjMj9-jv8hemvizGeezI0_iYOUZ1QsewPGhWUPALtb2N9vIMsPgA7c1OTstPrqIczXmU-LvJ54FYcyx9DUIXz8VHcMwVzGWl7BxHnrU_lFm5gTjvdM25vPoq63rn8JneR2Iz7D7m5Muoa9Wouv6N0fH_5_UA3Qu4FJe9IT1Et0zzCN3dYSvcR9-OZCvxh8UyVPzC6gq_N2vpYtKb-c_vP0rcsx-B2rGXLbv5MuQ2Nbis56uLRft5iQEn41PodOXviKDHuf90oEeJDuFg1Xgqu7rFR30k4GL9GM2mbz5OjqNQvCGqUsLaKC8c-GLEwg5CNDEakClRRcqUSipCrY5JRWPJEy5lUnFNmc5jrSg1mWKUVMkTNGhWjXmKMEAkWySpZDbJ4BEcxCK1KdUWsJysCBuieKNDUQVmc1dgoxbewyFclJMJmLNwihdB8UP0evvSeU_s8XfxQ2ccW1HHyu0bQJEiLHKhC_B-qzipHO9bbmHK1hRGmlxCs-V6iPad8redBE0P0cHG1ETYQdYiTn3h0qwgQxRtze-PofYmfWOoz_5R_gAN2ovOvABw1aqXYQX9AuVMH88
  priority: 102
  providerName: Unpaywall
Title Data Simulation by Resampling-A Practical Data Augmentation Algorithm for Periodical Signal Analysis-Based Fault Diagnosis
URI https://ieeexplore.ieee.org/document/8815712
https://www.proquest.com/docview/2455612570
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08815712.pdf
https://doaj.org/article/d7191c23c25446fd80fe7eae6a91cf9d
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOQAHBBREoKx84EionT_bx3TLqkKiqoCVyikax86yUjZbdbNClXroQ_CEPAljx12lQoILt8hynMnM2DOTzHxDyFvT5FrZJI21giJ2p2Ssc5CxBkhSI_EEBFco_Om0OJlnH8_z81GrL5cTNsADD4w7NAIjijpJa4elVTRGssYKC7YAHG6Ucacvk2oUTPkzWPJC5SLADHGmDsvpFN_I5XKp92jihHQVKSNT5BH7Q4uVO97mg213AVc_oG1Hhmf2hDwOHiMtB0qfknu2e0YejXAE98n1MfRAvyxXoRcX1Vf0s92AyxbvFr9ufpZ0wCVCgVA_t9wuVqHqqKNlu1hfLvvvK4oeLD3DRdf-7w2uuPCPDsAl8RGaPENnsG17ejzk6C03z8l89uHr9CQObRXiOmOyjwvh3CLkI-5tZphFljKmRSa1TmvGG5OwmiegUgWQ1spwaYrEaM5triVndfqC7HXrzr4kFJ2XRqQZyCbN8RJDN5E1GTcNellQMxmR5JbDVR0wx13ri7bysQdT1SCWyomlCmKJyLvdTRcD5Mbfpx850e2mOrxsP4BaVAUtqv6lRRHZd4LfLSIlzwVPInJwqwhV2NubKsl8S9FcsIjEO-X4g1TwDS_vkPrqf5D6mjx0aw6fgQ7IXn-5tW_QMer1xO-Bia9hnJD789Oz8ttvXRsL1w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoIAPHJutk9iJc0y3rBboVghaqTfLz-2KbLbqJkLtr8d2vNEWEOJmWX5qxjNje-YbAD4oQ0Sp0ywWJc9jJyVjQTiNBedppqiVgNwFCs_O8ukF_nxJLnfA4RALo7X2zmd65Ir-L1-tZOeeyo4oTUjhUgo_IBhj0kdrDS8qLoVESYoALZSg8qgaj-0unP9WObJqraAuCmVL_XiU_pBW5Z6Fudc11_z2J6_rLWUzeQJmm2X2PiY_Rl0rRvLuNwTH_93HU_A4WJ2w6tnkGdjRzXPwaAuLcB_cnfCWw--LZcjnBcUt_KbX3HmcN_O4gj2ykSUp9C2rbr4McUsNrOr56mbRXi2htYHhVzvkyv__2PHmfuIAfRIfW6Wp4IR3dQtPei-_xfoFuJh8PB9P45CYIZYY0TbOC2dYUWSsdEAKaWWtTiQKTIXIJEqMSpFMUl5mJeeZLFVCVZ4qkSSaCJogmb0Eu82q0a8AtOaPKTLMqcmILdrLX4ENTpSxdhqXiEYg3dCLyYBa7pJn1MzfXlDJeiIzR2QWiByBw6HTdQ_a8e_mx44RhqYOcdtXWKKxcICZKuzNVqaZdJhuubFbNrrQXOfcVptSRWDfEXoYJNA4AgcbtmJBOqxZin1SUlKgCMQDq_2xVO5TZt5b6uu_z_Ie7E3PZ6fs9NPZlzfgoevRPxMdgN32ptNvreHUinf-vPwCC4QTMg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELYgPSAO_BVEoCAfOLKJvb_2cZsSVUhUFRCpnCx7bYeIzaZqdkVbceAheEKehLHXiVKQkOC2sma9tmZsf7Oe-QahV9pmips4iRSXeeR2yUhlkkVKyjjRDHZA6RKF353kx7P07Vl2Fn64-VwYY4wPPjMj9-jv8hemvizGeezI0_iYOUZ1QsewPGhWUPALtb2N9vIMsPgA7c1OTstPrqIczXmU-LvJ54FYcyx9DUIXz8VHcMwVzGWl7BxHnrU_lFm5gTjvdM25vPoq63rn8JneR2Iz7D7m5Muoa9Wouv6N0fH_5_UA3Qu4FJe9IT1Et0zzCN3dYSvcR9-OZCvxh8UyVPzC6gq_N2vpYtKb-c_vP0rcsx-B2rGXLbv5MuQ2Nbis56uLRft5iQEn41PodOXviKDHuf90oEeJDuFg1Xgqu7rFR30k4GL9GM2mbz5OjqNQvCGqUsLaKC8c-GLEwg5CNDEakClRRcqUSipCrY5JRWPJEy5lUnFNmc5jrSg1mWKUVMkTNGhWjXmKMEAkWySpZDbJ4BEcxCK1KdUWsJysCBuieKNDUQVmc1dgoxbewyFclJMJmLNwihdB8UP0evvSeU_s8XfxQ2ccW1HHyu0bQJEiLHKhC_B-qzipHO9bbmHK1hRGmlxCs-V6iPad8redBE0P0cHG1ETYQdYiTn3h0qwgQxRtze-PofYmfWOoz_5R_gAN2ovOvABw1aqXYQX9AuVMH88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Simulation+by+Resampling-A+Practical+Data+Augmentation+Algorithm+for+Periodical+Signal+Analysis-Based+Fault+Diagnosis&rft.jtitle=IEEE+access&rft.au=Hu%2C+Tianhao&rft.au=Tang%2C+Tang&rft.au=Chen%2C+Ming&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=125133&rft.epage=125145&rft_id=info:doi/10.1109%2FACCESS.2019.2937838&rft.externalDocID=8815712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon