Data Simulation by Resampling-A Practical Data Augmentation Algorithm for Periodical Signal Analysis-Based Fault Diagnosis
In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature...
Saved in:
| Published in | IEEE access Vol. 7; pp. 125133 - 125145 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2937838 |
Cover
| Abstract | In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature, a practical algorithm named Data Simulation by Resampling (DSR) is proposed for data augmentation to alleviate the two problems in fault diagnosis. In essence, as a form of Vicinal Risk Minimization (VRM), DSR utilizes a two-stage resampling operation to simulate vicinal examples in both time domain and frequency domain. By doing so, DSR can both increase the sample diversity and the quantity of training set, which regularizes machine learning and deep learning based methods to achieve a higher generalization performance. Our experiments verify the effectiveness of DSR and show the possibility of combining it with other augmentation algorithms. |
|---|---|
| AbstractList | In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a) inadequate faulty examples and b) various working conditions of industrial data. In this literature, a practical algorithm named Data Simulation by Resampling (DSR) is proposed for data augmentation to alleviate the two problems in fault diagnosis. In essence, as a form of Vicinal Risk Minimization (VRM), DSR utilizes a two-stage resampling operation to simulate vicinal examples in both time domain and frequency domain. By doing so, DSR can both increase the sample diversity and the quantity of training set, which regularizes machine learning and deep learning based methods to achieve a higher generalization performance. Our experiments verify the effectiveness of DSR and show the possibility of combining it with other augmentation algorithms. |
| Author | Chen, Ming Hu, Tianhao Tang, Tang |
| Author_xml | – sequence: 1 givenname: Tianhao orcidid: 0000-0003-0670-6744 surname: Hu fullname: Hu, Tianhao organization: School of Mechanical Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Tang surname: Tang fullname: Tang, Tang email: tang.tang@tongji.edu.cn organization: School of Mechanical Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Ming orcidid: 0000-0002-7593-1411 surname: Chen fullname: Chen, Ming organization: School of Mechanical Engineering, Tongji University, Shanghai, China |
| BookMark | eNptUU1r3DAUNCWFpml-QS6Gnr3Vk_whHd1N0gYCDd32LJ4l2dWitbaSTdj--irrsJSlOkhimJn3Me-zi9GPJstugKwAiPjUrtd3m82KEhArKljDGX-TXVKoRcEqVl_883-XXce4JenwBFXNZfbnFifMN3Y3O5ysH_PukH83EXd7Z8ehaPOngGqyCl1-ZLbzsDPjtHBbN_hgp1-7vPchfzLBen2kbuwwpqdN1yHaWHzGaHR-j7Ob8luLw-gT-iF726OL5vr1vcp-3t_9WH8tHr99eVi3j4UqCZ-KuqGQRiI9I0A0MZqn9rum5F3HFIFeU6KAomACkSmhgeua6g7AVB0HothV9rD4ao9buQ92h-EgPVp5BHwYJIY0ojNSNyBAUaZoVZZ1n0r1pjFoakxwL3TyKhevedzj4RmdOxkCkS9xSFTKxChf4pCvcSTZx0W2D_73bOIkt34OaTuJV1ZVDbRqSGKJhaWCjzGYXiq7bHoKaN2pwhL4eQV2pj3v6_-qm0VljTEnBedQNUDZXyECt-w |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_isatra_2020_11_005 crossref_primary_10_3390_machines10070521 crossref_primary_10_1016_j_measurement_2024_116505 crossref_primary_10_1155_2022_2386523 crossref_primary_10_1016_j_epsr_2021_107363 crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_1049_elp2_12059 crossref_primary_10_1109_ACCESS_2021_3063736 crossref_primary_10_1109_TIE_2021_3111567 crossref_primary_10_1109_TIM_2020_3043959 crossref_primary_10_3390_app10238481 crossref_primary_10_1002_cjce_24818 crossref_primary_10_1016_j_ymssp_2020_107043 crossref_primary_10_1103_PhysRevA_109_023501 crossref_primary_10_1109_TIM_2025_3548066 crossref_primary_10_1007_s10845_024_02458_4 crossref_primary_10_1016_j_ymssp_2023_110449 crossref_primary_10_1016_j_ymssp_2021_108480 crossref_primary_10_1007_s40857_021_00236_3 crossref_primary_10_1016_j_ress_2024_110667 |
| Cites_doi | 10.1109/TIE.2018.2793271 10.1109/TIE.2016.2627020 10.1109/TIM.2011.2179819 10.1109/ACCESS.2017.2731945 10.1006/mssp.1996.0056 10.1109/ACCESS.2017.2661967 10.1109/TIE.2015.2417501 10.1016/j.ymssp.2006.06.010 10.1109/TNN.2010.2091281 10.1016/j.ymssp.2018.03.025 10.1016/j.jsv.2016.05.027 10.1109/TIE.2017.2767540 10.1016/j.ymssp.2004.05.001 10.1016/j.ymssp.2015.10.025 10.1016/j.knosys.2018.07.017 10.1109/I2MTC.2018.8409574 10.21595/jve.2017.18454 10.1109/TII.2017.2672988 10.1007/3-540-49430-8_13 10.1049/cje.2015.04.006 10.1109/TIE.2017.2774777 10.1016/j.ymssp.2017.06.012 10.1109/ACCESS.2017.2728010 10.1109/ICCV.2013.274 10.1109/ICEMI.2015.7494195 10.1109/ICMTMA.2010.417 10.1109/TIM.2017.2698738 10.1016/j.ymssp.2017.06.022 10.3390/s17020425 10.1109/ACCESS.2017.2675940 10.1016/0022-460X(84)90595-9 10.1016/j.measurement.2016.04.007 10.1016/j.jmsy.2018.01.003 10.1109/5.726791 10.1109/CCDC.2018.8407418 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2937838 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 125145 |
| ExternalDocumentID | oai_doaj_org_article_d7191c23c25446fd80fe7eae6a91cf9d 10.1109/access.2019.2937838 10_1109_ACCESS_2019_2937838 8815712 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Application of New Mode for Intelligent Manufacturing of Lifting Equipment for Large-scale Marine Engineering 2017 – fundername: Project of Remote Operation and Maintenance Standards and Test Verification for Integrated Circuit Packaging Key Equipment 2018 in the Ministry of Industry and Information Technology, China – fundername: Tongji University grantid: 2016KJ020 funderid: 10.13039/501100004204 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-67218380f3010d0ed8000b748bb3c01fd20c12a939aa3c9d18d62db11e5b810c3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 19:03:22 EDT 2025 Wed Oct 01 15:59:35 EDT 2025 Mon Jun 30 04:31:41 EDT 2025 Wed Oct 01 03:22:41 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Aug 27 02:41:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-67218380f3010d0ed8000b748bb3c01fd20c12a939aa3c9d18d62db11e5b810c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7593-1411 0000-0003-0670-6744 |
| OpenAccessLink | https://doaj.org/article/d7191c23c25446fd80fe7eae6a91cf9d |
| PQID | 2455612570 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2455612570 crossref_primary_10_1109_ACCESS_2019_2937838 crossref_citationtrail_10_1109_ACCESS_2019_2937838 ieee_primary_8815712 unpaywall_primary_10_1109_access_2019_2937838 doaj_primary_oai_doaj_org_article_d7191c23c25446fd80fe7eae6a91cf9d |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 zhong (ref39) 2017 ref34 szegedy (ref10) 2014 ref12 ref37 ref36 hannun (ref40) 2014 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref17 ref38 ref16 ref19 ref18 amodei (ref41) 2016 pereyra (ref43) 2017 (ref45) 0 ref24 ref23 zhang (ref15) 2018 ref26 ref25 ref20 ref22 ref44 ref21 ref28 ref27 ref29 ref8 wang (ref6) 2017; 19 szegedy (ref42) 2015 ref4 ref3 ref5 zhang (ref9) 2017 chapelle (ref7) 2000 kingma (ref46) 2014 |
| References_xml | – year: 2015 ident: ref42 article-title: Rethinking the inception architecture for computer vision publication-title: arXiv 1512 00567 [cs] – ident: ref25 doi: 10.1109/TIE.2018.2793271 – ident: ref13 doi: 10.1109/TIE.2016.2627020 – ident: ref16 doi: 10.1109/TIM.2011.2179819 – ident: ref3 doi: 10.1109/ACCESS.2017.2731945 – ident: ref18 doi: 10.1006/mssp.1996.0056 – ident: ref17 doi: 10.1109/ACCESS.2017.2661967 – ident: ref1 doi: 10.1109/TIE.2015.2417501 – year: 0 ident: ref45 publication-title: Case Western Reserve University Bearing Data Center – ident: ref22 doi: 10.1016/j.ymssp.2006.06.010 – ident: ref11 doi: 10.1109/TNN.2010.2091281 – ident: ref5 doi: 10.1016/j.ymssp.2018.03.025 – year: 2018 ident: ref15 article-title: Mixup: Beyond empirical risk minimization publication-title: arXiv 1710 09412 – ident: ref38 doi: 10.1016/j.jsv.2016.05.027 – ident: ref29 doi: 10.1109/TIE.2017.2767540 – year: 2017 ident: ref39 article-title: Random erasing data augmentation publication-title: arXiv 1708 04896 – start-page: 1 year: 2014 ident: ref10 article-title: Intriguing properties of neural networks publication-title: Proc ICLR – ident: ref19 doi: 10.1016/j.ymssp.2004.05.001 – ident: ref32 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref31 doi: 10.1016/j.knosys.2018.07.017 – ident: ref34 doi: 10.1109/I2MTC.2018.8409574 – volume: 19 start-page: 3429 year: 2017 ident: ref6 article-title: Condition monitoring and fault diagnosis methods for low-speed and heavy-load slewing bearings: A literature review publication-title: J Vibroeng doi: 10.21595/jve.2017.18454 – ident: ref27 doi: 10.1109/TII.2017.2672988 – ident: ref14 doi: 10.1007/3-540-49430-8_13 – ident: ref21 doi: 10.1049/cje.2015.04.006 – ident: ref26 doi: 10.1109/TIE.2017.2774777 – ident: ref2 doi: 10.1016/j.ymssp.2017.06.012 – ident: ref36 doi: 10.1109/ACCESS.2017.2728010 – start-page: 1 year: 2017 ident: ref9 article-title: Understanding deep learning requires rethinking generalization publication-title: Proc ICLR – ident: ref12 doi: 10.1109/ICCV.2013.274 – ident: ref37 doi: 10.1109/ICEMI.2015.7494195 – ident: ref23 doi: 10.1109/ICMTMA.2010.417 – ident: ref35 doi: 10.1109/TIM.2017.2698738 – start-page: 173 year: 2016 ident: ref41 article-title: Deep speech 2: End-to-end speech recognition in English and Mandarin publication-title: Proc ICML – year: 2014 ident: ref40 article-title: Deep speech: Scaling up end-to-end speech recognition publication-title: arXiv 1412 5567 – ident: ref28 doi: 10.1016/j.ymssp.2017.06.022 – ident: ref30 doi: 10.3390/s17020425 – ident: ref24 doi: 10.1109/ACCESS.2017.2675940 – year: 2017 ident: ref43 article-title: Regularizing neural networks by penalizing confident output distributions publication-title: arXiv 1701 06548 – ident: ref44 doi: 10.1016/0022-460X(84)90595-9 – ident: ref33 doi: 10.1016/j.measurement.2016.04.007 – ident: ref4 doi: 10.1016/j.jmsy.2018.01.003 – year: 2014 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref8 doi: 10.1109/5.726791 – start-page: 416 year: 2000 ident: ref7 article-title: Vicinal risk minimization publication-title: Proc NIPS – ident: ref20 doi: 10.1109/CCDC.2018.8407418 |
| SSID | ssj0000816957 |
| Score | 2.3014898 |
| Snippet | In recent years, machine learning and deep learning based fault diagnosis methods have been studied, however, most of them remain at the experimental stage... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125133 |
| SubjectTerms | Algorithms Convolution Data augmentation Data models Data simulation Deep learning Fault diagnosis generalization Machine learning Resampling Signal analysis Simulation Training Training data Vibrations vicinal risk minimization |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV0EECvKBY711nraP6ZZVhVSEgEq9RePXsuputuomQu2vx3a80RYQ4mZZE8fWjGfG9sw3CH3QtpTCZDmRAiritSSRJXAiAbJcc6cBwScKn3-uzi6KT5fl5R46GnNhjDEh-MxMfDO85eu16v1V2THnacl8SeEHjFdDrtZ4n-ILSIiSRWChlIrjejp1a_DRW2LijBrjPgdlx_gEjP5YVOWef_mwb6_h9icslzumZvYUnW8nOUSYXE36Tk7U3W_4jf-7imfoSfQ5cT0IyXO0Z9oX6PEOEuEBujuFDvC3xSpW88LyFn81G_Dx5u2c1HjANXIMxYGy7uermLXU4no5X98suh8r7Dxg_MUNuQ6vP268efhxBD4hJ85kajyDftnh0yHGb7F5iS5mH79Pz0gsy0BUQXlHKubdKk6t0w1UU6Odz0klK7iUuaKp1RlVaQYiFwC5Ejrlusq0TFNTSp5Slb9C--26Na8Rds6PZXkB3Oala7qjHytskWrrvDRQlCco2_KrURGz3JfOWDbh7EJFMzC58UxuIpMTdDR-dD1Advyb_MQLwkjq8bZDh2NaE7dvo5k716osVx7RrbJuydYwA6YC122FTtCBZ_Q4SORxgg63YtVE3bBpsiKUJC0ZTRAZRe2PqUIomHlvqm_-_pe36JGnGi6GDtF-d9Obd85V6uT7sEd-AbNeD-U priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELYgPSAO_BVEoCAfOLKJvb_2cZsSVUhUFRCpnCx7bYeIzaZqdkVbceAheEKehLHXiVKQkOC2sma9tmZsf7Oe-QahV9pmips4iRSXeeR2yUhlkkVKyjjRDHZA6RKF353kx7P07Vl2Fn64-VwYY4wPPjMj9-jv8hemvizGeezI0_iYOUZ1QsewPGhWUPALtb2N9vIMsPgA7c1OTstPrqIczXmU-LvJ54FYcyx9DUIXz8VHcMwVzGWl7BxHnrU_lFm5gTjvdM25vPoq63rn8JneR2Iz7D7m5Muoa9Wouv6N0fH_5_UA3Qu4FJe9IT1Et0zzCN3dYSvcR9-OZCvxh8UyVPzC6gq_N2vpYtKb-c_vP0rcsx-B2rGXLbv5MuQ2Nbis56uLRft5iQEn41PodOXviKDHuf90oEeJDuFg1Xgqu7rFR30k4GL9GM2mbz5OjqNQvCGqUsLaKC8c-GLEwg5CNDEakClRRcqUSipCrY5JRWPJEy5lUnFNmc5jrSg1mWKUVMkTNGhWjXmKMEAkWySpZDbJ4BEcxCK1KdUWsJysCBuieKNDUQVmc1dgoxbewyFclJMJmLNwihdB8UP0evvSeU_s8XfxQ2ccW1HHyu0bQJEiLHKhC_B-qzipHO9bbmHK1hRGmlxCs-V6iPad8redBE0P0cHG1ETYQdYiTn3h0qwgQxRtze-PofYmfWOoz_5R_gAN2ovOvABw1aqXYQX9AuVMH88 priority: 102 providerName: Unpaywall |
| Title | Data Simulation by Resampling-A Practical Data Augmentation Algorithm for Periodical Signal Analysis-Based Fault Diagnosis |
| URI | https://ieeexplore.ieee.org/document/8815712 https://www.proquest.com/docview/2455612570 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08815712.pdf https://doaj.org/article/d7191c23c25446fd80fe7eae6a91cf9d |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQOQAHBBREoKx84EionT_bx3TLqkKiqoCVyikax86yUjZbdbNClXroQ_CEPAljx12lQoILt8hynMnM2DOTzHxDyFvT5FrZJI21giJ2p2Ssc5CxBkhSI_EEBFco_Om0OJlnH8_z81GrL5cTNsADD4w7NAIjijpJa4elVTRGssYKC7YAHG6Ucacvk2oUTPkzWPJC5SLADHGmDsvpFN_I5XKp92jihHQVKSNT5BH7Q4uVO97mg213AVc_oG1Hhmf2hDwOHiMtB0qfknu2e0YejXAE98n1MfRAvyxXoRcX1Vf0s92AyxbvFr9ufpZ0wCVCgVA_t9wuVqHqqKNlu1hfLvvvK4oeLD3DRdf-7w2uuPCPDsAl8RGaPENnsG17ejzk6C03z8l89uHr9CQObRXiOmOyjwvh3CLkI-5tZphFljKmRSa1TmvGG5OwmiegUgWQ1spwaYrEaM5triVndfqC7HXrzr4kFJ2XRqQZyCbN8RJDN5E1GTcNellQMxmR5JbDVR0wx13ri7bysQdT1SCWyomlCmKJyLvdTRcD5Mbfpx850e2mOrxsP4BaVAUtqv6lRRHZd4LfLSIlzwVPInJwqwhV2NubKsl8S9FcsIjEO-X4g1TwDS_vkPrqf5D6mjx0aw6fgQ7IXn-5tW_QMer1xO-Bia9hnJD789Oz8ttvXRsL1w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoIAPHJutk9iJc0y3rBboVghaqTfLz-2KbLbqJkLtr8d2vNEWEOJmWX5qxjNje-YbAD4oQ0Sp0ywWJc9jJyVjQTiNBedppqiVgNwFCs_O8ukF_nxJLnfA4RALo7X2zmd65Ir-L1-tZOeeyo4oTUjhUgo_IBhj0kdrDS8qLoVESYoALZSg8qgaj-0unP9WObJqraAuCmVL_XiU_pBW5Z6Fudc11_z2J6_rLWUzeQJmm2X2PiY_Rl0rRvLuNwTH_93HU_A4WJ2w6tnkGdjRzXPwaAuLcB_cnfCWw--LZcjnBcUt_KbX3HmcN_O4gj2ykSUp9C2rbr4McUsNrOr56mbRXi2htYHhVzvkyv__2PHmfuIAfRIfW6Wp4IR3dQtPei-_xfoFuJh8PB9P45CYIZYY0TbOC2dYUWSsdEAKaWWtTiQKTIXIJEqMSpFMUl5mJeeZLFVCVZ4qkSSaCJogmb0Eu82q0a8AtOaPKTLMqcmILdrLX4ENTpSxdhqXiEYg3dCLyYBa7pJn1MzfXlDJeiIzR2QWiByBw6HTdQ_a8e_mx44RhqYOcdtXWKKxcICZKuzNVqaZdJhuubFbNrrQXOfcVptSRWDfEXoYJNA4AgcbtmJBOqxZin1SUlKgCMQDq_2xVO5TZt5b6uu_z_Ie7E3PZ6fs9NPZlzfgoevRPxMdgN32ptNvreHUinf-vPwCC4QTMg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELYgPSAO_BVEoCAfOLKJvb_2cZsSVUhUFRCpnCx7bYeIzaZqdkVbceAheEKehLHXiVKQkOC2sma9tmZsf7Oe-QahV9pmips4iRSXeeR2yUhlkkVKyjjRDHZA6RKF353kx7P07Vl2Fn64-VwYY4wPPjMj9-jv8hemvizGeezI0_iYOUZ1QsewPGhWUPALtb2N9vIMsPgA7c1OTstPrqIczXmU-LvJ54FYcyx9DUIXz8VHcMwVzGWl7BxHnrU_lFm5gTjvdM25vPoq63rn8JneR2Iz7D7m5Muoa9Wouv6N0fH_5_UA3Qu4FJe9IT1Et0zzCN3dYSvcR9-OZCvxh8UyVPzC6gq_N2vpYtKb-c_vP0rcsx-B2rGXLbv5MuQ2Nbis56uLRft5iQEn41PodOXviKDHuf90oEeJDuFg1Xgqu7rFR30k4GL9GM2mbz5OjqNQvCGqUsLaKC8c-GLEwg5CNDEakClRRcqUSipCrY5JRWPJEy5lUnFNmc5jrSg1mWKUVMkTNGhWjXmKMEAkWySpZDbJ4BEcxCK1KdUWsJysCBuieKNDUQVmc1dgoxbewyFclJMJmLNwihdB8UP0evvSeU_s8XfxQ2ccW1HHyu0bQJEiLHKhC_B-qzipHO9bbmHK1hRGmlxCs-V6iPad8redBE0P0cHG1ETYQdYiTn3h0qwgQxRtze-PofYmfWOoz_5R_gAN2ovOvABw1aqXYQX9AuVMH88 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Simulation+by+Resampling-A+Practical+Data+Augmentation+Algorithm+for+Periodical+Signal+Analysis-Based+Fault+Diagnosis&rft.jtitle=IEEE+access&rft.au=Hu%2C+Tianhao&rft.au=Tang%2C+Tang&rft.au=Chen%2C+Ming&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=125133&rft.epage=125145&rft_id=info:doi/10.1109%2FACCESS.2019.2937838&rft.externalDocID=8815712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |