A Hybrid Nested Genetic-Fuzzy Algorithm Framework for Intrusion Detection and Attacks
Intrusion Detection System (IDS) plays a very important role in security systems. Among its different types, Network Intrusion Detection System (NIDS) has an effective role in monitoring computer networks systems for malicious and illegal activities. In the literature, the detection of DoS and Probe...
Saved in:
| Published in | IEEE access Vol. 8; pp. 98218 - 98233 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2020.2996226 |
Cover
| Abstract | Intrusion Detection System (IDS) plays a very important role in security systems. Among its different types, Network Intrusion Detection System (NIDS) has an effective role in monitoring computer networks systems for malicious and illegal activities. In the literature, the detection of DoS and Probe attacks were with reasonable accuracy in most of the NIDS researches. However, the detection accuracy of other categories of attacks is still low, such as the R2L and U2R in KDDCUP99 dataset along with the Backdoors and Worms in UNSW-NB15 dataset. Computational Intelligence (CI) techniques have the characteristics to address such imprecision problem. In this research, a Hybrid Nested Genetic-Fuzzy Algorithm (HNGFA) framework has been developed to produce highly optimized outputs for security experts in classifying both major and minor categories of attacks. The adaptive model is evolved using two-nested Genetic-Fuzzy Algorithms (GFA). Each GFA consists of two-nested Genetic Algorithms (GA). The outer is to evolve fuzzy sets and the inner is to evolve fuzzy rules. The outer GFA assists the inner GFA in training phase, where the best individual in outer GFA interacts with the weak individual in inner GFA to generate new solutions that enhance the prediction of mutated attacks. Both GFA interact together to evolve the best rules for normal, major and minor categories of attacks through the optimization process. Several experiments have been conducted with different settings over different datasets. The obtained results show that the developed model has good accuracy and is more efficient compared with several state-of-the-art techniques. |
|---|---|
| AbstractList | Intrusion Detection System (IDS) plays a very important role in security systems. Among its different types, Network Intrusion Detection System (NIDS) has an effective role in monitoring computer networks systems for malicious and illegal activities. In the literature, the detection of DoS and Probe attacks were with reasonable accuracy in most of the NIDS researches. However, the detection accuracy of other categories of attacks is still low, such as the R2L and U2R in KDDCUP99 dataset along with the Backdoors and Worms in UNSW-NB15 dataset. Computational Intelligence (CI) techniques have the characteristics to address such imprecision problem. In this research, a Hybrid Nested Genetic-Fuzzy Algorithm (HNGFA) framework has been developed to produce highly optimized outputs for security experts in classifying both major and minor categories of attacks. The adaptive model is evolved using two-nested Genetic-Fuzzy Algorithms (GFA). Each GFA consists of two-nested Genetic Algorithms (GA). The outer is to evolve fuzzy sets and the inner is to evolve fuzzy rules. The outer GFA assists the inner GFA in training phase, where the best individual in outer GFA interacts with the weak individual in inner GFA to generate new solutions that enhance the prediction of mutated attacks. Both GFA interact together to evolve the best rules for normal, major and minor categories of attacks through the optimization process. Several experiments have been conducted with different settings over different datasets. The obtained results show that the developed model has good accuracy and is more efficient compared with several state-of-the-art techniques. |
| Author | Elhefnawy, Ramy Badr, Amr Abounaser, Hassan |
| Author_xml | – sequence: 1 givenname: Ramy orcidid: 0000-0002-8660-0036 surname: Elhefnawy fullname: Elhefnawy, Ramy email: relhefnawy@outlook.com organization: Department of Computer Engineering, Arab Academy for Science, Technology & Maritime Transport-Cairo, Cairo, Egypt – sequence: 2 givenname: Hassan surname: Abounaser fullname: Abounaser, Hassan organization: Department of Computer Engineering, Arab Academy for Science, Technology & Maritime Transport-Cairo, Cairo, Egypt – sequence: 3 givenname: Amr surname: Badr fullname: Badr, Amr organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt |
| BookMark | eNptkU1v2zAMho2hA9Z1_QW9GNg5maxvH42saQMU66HtWaAlunPqWJkko0h_fe25CIZgvIgg-L4UH37NznrfY5ZdFWRZFKT8Ua1W1w8PS0ooWdKylJTKT9k5LWS5YILJs3_yL9lljFsyhh5LQp1nT1V-e6hD6_JfGBO6_AZ7TK1drIe3t0Nedc8-tOn3Ll8H2OGrDy9540O-6VMYYuv7_CcmtGnKoHd5lRLYl_gt-9xAF_Hy473IntbXj6vbxd39zWZV3S0sJzotpCikAEs1AUDBGlmDEjXXrhZKMqWJEwQYUJAKtRKKSFZYLhoLtmmo1Owi28y-zsPW7EO7g3AwHlrzt-DDs4EwbtOhUYCl0IxJRxy3QmnHdVFAzQnqxnExevHZa-j3cHiFrjsaFsRMpA1YizGaibT5ID3Kvs-yffB_hpGh2foh9OPWhnLB-QSbj13l3GWDjzFgY2ybYMKWArTdccJ8y9MJ7ER7-q__q65mVYuIR0VJSqUlYe8U5an1 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s10922_021_09589_6 crossref_primary_10_3390_app13042629 crossref_primary_10_1007_s12046_024_02535_7 crossref_primary_10_1155_2021_9938586 crossref_primary_10_32604_csse_2023_026776 crossref_primary_10_3390_app122211752 crossref_primary_10_4236_cn_2022_144009 crossref_primary_10_1080_23742917_2022_2070345 crossref_primary_10_1002_cpe_6918 crossref_primary_10_1016_j_cose_2025_104372 crossref_primary_10_1109_TFUZZ_2021_3117441 crossref_primary_10_1007_s42979_023_01865_3 crossref_primary_10_1109_TEM_2023_3304409 crossref_primary_10_1016_j_ins_2024_120964 |
| Cites_doi | 10.1109/IAS.2008.35 10.1007/s12065-007-0001-5 10.1142/3904 10.1109/BADGERS.2015.014 10.1109/MilCIS.2015.7348942 10.1007/978-3-540-24677-0_65 10.1016/j.ins.2008.02.012 10.1016/j.fss.2015.05.009 10.3141/1822-05 10.1016/j.eswa.2010.09.067 10.1016/S0165-0114(83)80081-5 10.1007/s11277-019-06986-8 10.1145/967900.967989 10.1007/s00500-008-0323-y 10.5937/vojtehg66-16670 10.1109/CINTI.2014.7028702 10.1007/s10462-011-9270-6 10.1007/978-3-540-73297-6_1 10.1109/ACCESS.2018.2810267 10.1016/j.patcog.2006.12.009 10.1109/JSEN.2020.2973677 10.1016/S0967-0661(02)00081-3 10.1145/1656274.1656278 10.1109/TSMCC.2008.2007252 10.1109/TC.2016.2519914 10.1109/COMST.2015.2494502 10.5120/13608-1412 10.1016/S0019-9958(65)90241-X 10.1186/s42400-019-0038-7 10.1007/978-3-642-25507-6_13 10.1007/s11277-019-06485-w 10.1007/978-1-4471-0819-1_23 10.1109/CCCS.2018.8586840 10.1109/ICOIN.2013.6496342 10.1109/TIM.2009.2021643 10.1109/TSMCB.2004.842257 10.1109/ACCESS.2018.2820092 10.1109/ACCESS.2018.2805680 10.1049/iet-com.2019.0172 10.1109/ICRTIT.2011.5972372 10.1016/j.asoc.2014.01.028 10.1109/3477.790443 10.1002/9780470512517 10.1186/1687-1499-2013-271 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2020.2996226 |
| DatabaseName | Accès Toulouse INP et ENVT - IEEE Xplore ASPP 2005 IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 98233 |
| ExternalDocumentID | oai_doaj_org_article_7ae958336d0d4c578d4811ab40e8fd45 10.1109/access.2020.2996226 10_1109_ACCESS_2020_2996226 9097860 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-65165ac280aae53f6ba75b48db5763780d50a3a2a67e87570631c45fcacff2683 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:05 EDT 2025 Wed Oct 01 15:16:17 EDT 2025 Sun Jun 29 15:59:51 EDT 2025 Wed Oct 01 03:37:09 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 02:39:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-65165ac280aae53f6ba75b48db5763780d50a3a2a67e87570631c45fcacff2683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8660-0036 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097860.pdf |
| PQID | 2454400004 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_9097860 proquest_journals_2454400004 crossref_citationtrail_10_1109_ACCESS_2020_2996226 doaj_primary_oai_doaj_org_article_7ae958336d0d4c578d4811ab40e8fd45 unpaywall_primary_10_1109_access_2020_2996226 crossref_primary_10_1109_ACCESS_2020_2996226 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 chou (ref51) 2008; 4 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 jaisankar (ref39) 2012 ref50 ref46 ref45 ref48 ref41 ref44 ref49 ibrahim (ref47) 2013; 8 ref8 ref7 ref9 ref3 ref6 ref5 ref40 van veldhuizen (ref18) 1999 (ref42) 2015 shanmugavadivu (ref36) 2011; 2 ref35 ref34 ref37 ref31 ref30 ref33 ref2 ref1 ref38 janikow (ref21) 1991 nawir (ref32) 2018; 96 yu (ref43) 2003; 20 hodo (ref4) 2017 ref23 ref26 ref25 ref20 yager (ref24) 2012; 165 ref22 ref27 ref29 smith (ref28) 2007; 6570 |
| References_xml | – ident: ref50 doi: 10.1109/IAS.2008.35 – ident: ref14 doi: 10.1007/s12065-007-0001-5 – ident: ref19 doi: 10.1142/3904 – ident: ref48 doi: 10.1109/BADGERS.2015.014 – ident: ref44 doi: 10.1109/MilCIS.2015.7348942 – ident: ref52 doi: 10.1007/978-3-540-24677-0_65 – ident: ref25 doi: 10.1016/j.ins.2008.02.012 – ident: ref26 doi: 10.1016/j.fss.2015.05.009 – ident: ref53 doi: 10.3141/1822-05 – ident: ref16 doi: 10.1016/j.eswa.2010.09.067 – volume: 2 start-page: 101 year: 2011 ident: ref36 article-title: Network intrusion detection system using fuzzy logic publication-title: Indian J Comput Sci Eng – ident: ref27 doi: 10.1016/S0165-0114(83)80081-5 – ident: ref7 doi: 10.1007/s11277-019-06986-8 – ident: ref31 doi: 10.1145/967900.967989 – ident: ref56 doi: 10.1007/s00500-008-0323-y – ident: ref45 doi: 10.5937/vojtehg66-16670 – ident: ref12 doi: 10.1109/CINTI.2014.7028702 – ident: ref29 doi: 10.1007/s10462-011-9270-6 – ident: ref30 doi: 10.1007/978-3-540-73297-6_1 – ident: ref11 doi: 10.1109/ACCESS.2018.2810267 – volume: 4 start-page: 196 year: 2008 ident: ref51 article-title: Network intrusion detection design using feature selection of soft computing paradigms publication-title: Int J Comput Intell – ident: ref10 doi: 10.1016/j.patcog.2006.12.009 – ident: ref1 doi: 10.1109/JSEN.2020.2973677 – ident: ref15 doi: 10.1016/S0967-0661(02)00081-3 – ident: ref49 doi: 10.1145/1656274.1656278 – ident: ref17 doi: 10.1109/TSMCC.2008.2007252 – year: 2015 ident: ref42 publication-title: The UNSW-NB15 data set description – ident: ref33 doi: 10.1109/TC.2016.2519914 – ident: ref8 doi: 10.1109/COMST.2015.2494502 – ident: ref9 doi: 10.5120/13608-1412 – volume: 8 start-page: 107 year: 2013 ident: ref47 article-title: A comparison study for intrusion database (Kdd99, Nsl-Kdd) based on self-organization map (SOM) artificial neural network publication-title: J Eng Sci Technol – year: 1999 ident: ref18 article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations – ident: ref23 doi: 10.1016/S0019-9958(65)90241-X – ident: ref2 doi: 10.1186/s42400-019-0038-7 – start-page: 596 year: 2012 ident: ref39 article-title: Intelligent intrusion detection system using fuzzy rough set based C4. 5 algorithm publication-title: ICAC Proc – volume: 96 start-page: 5094 year: 2018 ident: ref32 article-title: Multi-classification of UNSW-NB15 dataset for network anomaly detection system publication-title: J Theor Appl Inf Technol – ident: ref38 doi: 10.1007/978-3-642-25507-6_13 – ident: ref35 doi: 10.1007/s11277-019-06485-w – ident: ref22 doi: 10.1007/978-1-4471-0819-1_23 – ident: ref46 doi: 10.1109/CCCS.2018.8586840 – ident: ref40 doi: 10.1109/ICOIN.2013.6496342 – volume: 20 start-page: 856 year: 2003 ident: ref43 article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution publication-title: Proc 20th ICML Conf – start-page: 31 year: 1991 ident: ref21 article-title: An experimental comparison of binary and floating point representations in genetic algorithms publication-title: Proc ICGA – ident: ref20 doi: 10.1109/TIM.2009.2021643 – volume: 6570 year: 2007 ident: ref28 article-title: Genetic program-based data mining of fuzzy decision trees and methods of improving convergence and reducing bloat publication-title: Proc SPIE – year: 2017 ident: ref4 article-title: Shallow and deep networks intrusion detection system: A taxonomy and survey publication-title: arXiv 1701 02145 – ident: ref54 doi: 10.1109/TSMCB.2004.842257 – ident: ref5 doi: 10.1109/ACCESS.2018.2820092 – ident: ref3 doi: 10.1109/ACCESS.2018.2805680 – ident: ref41 doi: 10.1049/iet-com.2019.0172 – ident: ref37 doi: 10.1109/ICRTIT.2011.5972372 – ident: ref34 doi: 10.1016/j.asoc.2014.01.028 – ident: ref55 doi: 10.1109/3477.790443 – volume: 165 year: 2012 ident: ref24 publication-title: An Introduction to Fuzzy Logic Applications in Intelligent Systems – ident: ref13 doi: 10.1002/9780470512517 – ident: ref6 doi: 10.1186/1687-1499-2013-271 |
| SSID | ssj0000816957 |
| Score | 2.328245 |
| Snippet | Intrusion Detection System (IDS) plays a very important role in security systems. Among its different types, Network Intrusion Detection System (NIDS) has an... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 98218 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Biological cells Categories classification algorithms Computer networks Datasets evolutionary computation Fuzzy logic fuzzy logic systems Fuzzy sets Genetic algorithms hybrid intelligent systems Intrusion detection Intrusion detection system Intrusion detection systems Model accuracy Optimization Security systems System effectiveness Uncertainty |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlRZE2oJ84IipHT9iH8PCasuhJ1bqLRq_AGlJK0hVbX89tpNdpUKCC9fEsSYzY3s-a-YbhN6GyJzUNhLOjSLCUUmsDJ6wxgavIGoWS5bvpVqtxecreTVr9ZVzwkZ64FFx5w0EkyuDlKdeuORfXmjGwAoadPSisJdSbWZgquzBmikjm4lmiFFz3i4W6Y8SIKzp-7QFqzrTKcyOosLYP7VYeRBtPr7tb2B7B5vN7OBZHqJnU8SI21HS5-hR6I_Q0xmP4DFat3i1zaVX-LJcX-JMJp2Gk-Xt_f0Wt5uv1z-_D99-4OUuFQunWBVf9LniIhkGfwxDScnqMfQet8OQK-9foPXy05fFikz9EogTVA9ESaYkuFpTgCB5VBYaaYX2NoEK3mjqJQUONagmZB77FJ0wJ2R04GKsleYv0UF_3YdXCKcXTnoPDedcSAvGxbT8PShrlE3YtUL1TnWdm8jEc0-LTVdABTXdqO8u67ub9F2hd_uPbkYujb8P_5Btsh-aibDLg-Qe3eQe3b_co0LH2aL7SUyuW1G0Qmc7C3fTov3V1UIKUUBThcje6n-ICqWT5QNRT_6HqKfoSZ5zvN85QwfJBcLrFPEM9k1x7t-32vj8 priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8ChBQoitCAfONZbJ37EOYaF1YJET6zUm-UnIJZs1WZV7f56bMcbbQEhTomSSWLr82NmMvMNAG-dLw0T2iNCGo6owQxp5iwqa-0sV16UPkX5XvL5gn66YlcH4HzMhXHOpeAzN4mn6V--XZl1dJVdNDHpgAcD_UE4DLlaoz8lFpBoWJ2JhUrcXLTTaehDMAErPAmLLq8igcLe5pM4-nNRlXv65cN1d602d2q53NtqZsfg866RQ4TJj8m61xOz_Y2_8X978QQcZZ0TtsMgeQoOXPcMPN5jIjwBixbONzF5C14mByiMdNRBHM3W2-0Gtsuvq5vv_befcLYL5oJB24Ufu5izEaCF712fgro6qDoL276PufvPwWL24ct0jnLFBWQoFj3irORMmUpgpRwjnmtVM02F1cEsIbXAlmFFVKV47SITftBvSkOZN8p4X3FBXoDDbtW5lwCGG4ZZq2pCCGVaNcaHBcQqrhuug_VbgGoHhTSZjjxWxVjKZJbgRg74yYifzPgV4Hx86Hpg4_i3-LuI8SgaqbTThYCHzDNT1so1MfWMW2ypCQuYpaIslabYCW8pK8BJxHB8SYavAGe7ESPztL-VFWWUJrOrAGgcRX80VaVamPea-urvXzkFj6LU4PM5A4cBVPc6aEG9fpOG_y8hEQLM priority: 102 providerName: IEEE |
| Title | A Hybrid Nested Genetic-Fuzzy Algorithm Framework for Intrusion Detection and Attacks |
| URI | https://ieeexplore.ieee.org/document/9097860 https://www.proquest.com/docview/2454400004 https://ieeexplore.ieee.org/ielx7/6287639/8948470/09097860.pdf https://doaj.org/article/7ae958336d0d4c578d4811ab40e8fd45 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AclseCCCyVDxxxmsSPOMdQqAqHigOVlpPlJ6w2ZCtItbS_Htt1qy5ISHCLkknk6BuPZ-yZbwB4ZV2pKVcOYdwwRHRBkaLWoLJW1jDpeOlilu-CzZfkwwW9SBtusRbGWhuTz2weLuNZ_qXtftYTVgXytGbCG-Itqo_lm1CCwIp8ZdxdcMKo98VH4GS5-Nh-Dh3lStYgHM8mXyRizYmMPQh9UFgVuTfDrAqUCkfLUWTtT21Wbnmc99b9Sm5uZNcdLT6zB0Dsh73LObnK14PK9fY3Rsf__6-H4DT5pbDdKdIjcMf2j8H9I7bCM7Bs4XwTCrzgIm6SwkBZ7cXRbL3dbmDbfbn-fjl8_QZn-4Qv6D1i-L4PdR0efvjWDjHxq4eyN7AdhlDf_wQsZ-8-TecodWVAmhR8QIyWjEpd8UJKS7FjStZUEW6UD11wzQtDC4llJVltA1u-94FKTajTUjtXMY6fglF_3dtnAPoHmhoja4wxoUo22nkjYyRTDVM-Qs5AtQdH6ERZHjpndCKGLkUj2unU66kIiIqEaAZeH15a7Rg7_i7-JqB-EA102_GGR0ik2StqaZtQnsZMYYj2Rs4QXpZSkcJyZwjNwFlA9fCRBGEGzvc6JJJp-CEqQgmJoVkG0EGv_hjqTldvDfX5P8qfg5EH2L70XtOgxnG3YRwLHMdpmvwC-4sS-g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH6atsPgwICBCBvgA8elcxLbcY6hUHWw9bRKu1n-CYiSTpAKtX_9bCeNOkCIW5TYia3v2X7v5b3vAby1LtOUK5cWRcVSojFNFbUmzUplDZOOZy5G-c7YdE4-3tCbPTgbcmGstTH4zI7CZfyXb5Z6FVxl51VIOmDeQD-ghBDaZWsNHpVQQqKiZU8tlOHqvB6P_Sy8EZjjkd92WR4oFHaOn8jS35dVuadhHq6aW7n-JReLncNmcgRX22F2MSbfRqtWjfTmNwbH_53HY3jUa52o7sTkCezZ5ik83OEiPIZ5jabrkL6FZtEFigIhtW-eTlabzRrVi8_LH1_bL9_RZBvOhby-iy6akLXhwUXvbRvDuhokG4Pqtg3Z-89gPvlwPZ6mfc2FVBPM25TRjFGpc46ltLRwTMmSKsKN8oZJUXJsKJaFzCUrbeDC9xpOpgl1WmrncsaL57DfLBv7ApB_oKkxsiyKglAlK-38FmIkUxVT3v5NIN9CIXRPSB7qYixENExwJTr8RMBP9PglcDZ0uu34OP7d_F3AeGgayLTjDY-H6NemKKWtQvIZM9gQ7bcwQ3iWSUWw5c4QmsBxwHB4SQ9fAqdbiRH9wv8pcuJFMxpeCaSDFP0xVBmrYd4b6su_f-UNHE6vry7F5cXs0wk8CD06D9Ap7HuA7SuvE7XqdVwKd86OBhk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJ84IhbJ37EOYZCVThUHKi0nCw_YUXIVpBqt_312K5bdUFCgluUTCJH33g8Y898A8Ar50vDhPaIkIYjajBDmjmLylo7y5UXpU9Zvgs-X9IP5-w8b7ilWhjnXEo-c-N4mc7yL1x3XU94FcnTmoloaLCoIZZvYgkCx-OV9bfBCWfBFx-Bk-XiY_s5dpQreYNIOpt8nok1Jyr1IAxBYYXHwQzzKlIqHC1HibU_t1m54XHeWfcrtblSXXe0-MzuA7kf9i7n5Nt4Peix2f7G6Pj___UA3Mt-KWx3ivQQ3HL9I3D3iK3wFCxbON_EAi-4SJukMFJWB3E0W2-3G9h2Xy5_XAxfv8PZPuELBo8Yvu9jXUeAH751Q0r86qHqLWyHIdb3PwbL2btP0znKXRmQoVgMiLOSM2UqgZVyjHiuVc00FVaH0IXUAluGFVGV4rWLbPnBByoNZd4o433FBXkCRv1l754CGB4YZq2qCSGUadUYH4yMVVw3XIcIuQDVHhxpMmV57JzRyRS64Ea202nQUxkRlRnRArw-vLTaMXb8XfxNRP0gGum2042AkMyzV9bKNbE8jVtsqQlGzlJRlkpT7IS3lBXgNKJ6-EiGsABnex2S2TT8lBVllKbQrADooFd_DHWnqzeG-uwf5c_AKADsXgSvadAv89T4BSk1EQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Nested+Genetic-Fuzzy+Algorithm+Framework+for+Intrusion+Detection+and+Attacks&rft.jtitle=IEEE+access&rft.au=Elhefnawy%2C+Ramy&rft.au=Abounaser%2C+Hassan&rft.au=Badr%2C+Amr&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=98218&rft.epage=98233&rft_id=info:doi/10.1109%2FACCESS.2020.2996226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2996226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |