Detection and Classification of Abnormities of First Heart Sound Using Empirical Wavelet Transform

It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 139643 - 139652
Main Authors Li, Haixia, Ren, Yongfeng, Zhang, Guojun, Wang, Renxin, Cui, Jiangong, Zhang, Wendong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2943705

Cover

Abstract It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and A peak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s.
AbstractList It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and Apeak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s.
It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and A peak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s.
Author Zhang, Guojun
Wang, Renxin
Ren, Yongfeng
Zhang, Wendong
Li, Haixia
Cui, Jiangong
Author_xml – sequence: 1
  givenname: Haixia
  orcidid: 0000-0003-0778-4322
  surname: Li
  fullname: Li, Haixia
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
– sequence: 2
  givenname: Yongfeng
  surname: Ren
  fullname: Ren, Yongfeng
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
– sequence: 3
  givenname: Guojun
  surname: Zhang
  fullname: Zhang, Guojun
  email: zhangguojun1977@nuc.edu.cn
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
– sequence: 4
  givenname: Renxin
  orcidid: 0000-0002-3441-9286
  surname: Wang
  fullname: Wang, Renxin
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
– sequence: 5
  givenname: Jiangong
  surname: Cui
  fullname: Cui, Jiangong
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
– sequence: 6
  givenname: Wendong
  surname: Zhang
  fullname: Zhang, Wendong
  organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
BookMark eNptkUFvGyEQhVdVKjVN8gtyWalnuyywLBytrdNEipSDE_WIxjBEWOvFBdwq_z7YG1mVVS4wT3xvhsfX6mIMI1bVbUPmTUPU90XfL1erOSWNmlPFWUfaT9UlbYSasZaJi3_OX6qblDakLFmktrus1j8wo8k-jDWMtu4HSMk7b-AoBVcv1mOIW589pkN552PK9T1CzPUq7Avykvz4Wi-3Ox8LNtS_4A8OmOvnCGNyhb2uPjsYEt587FfVy93yub-fPT79fOgXjzPDicwzwSxS2XSWOE6cNaQVzDTKMdoBsbKzAAKRMY5guOO8jE-ZNZxLK5xSwK6qh8nXBtjoXfRbiG86gNdHIcRXXab2ZkBNCOW0K-HJjnElpRRUCYVrpnhLOieKF5-89uMO3v7CMJwMG6IPsWswBlPSh9j1R-wF-zZhuxh-7zFlvQn7OJZXa8rbtlVK8IO5mm6ZGFKK6LTx-Rh4juCHU4fpY887sDP2fK7_U7cT5RHxREjJJeta9g4il64p
CODEN IAECCG
CitedBy_id crossref_primary_10_1155_2022_9092346
crossref_primary_10_3389_fmedt_2021_666650
crossref_primary_10_1002_admt_202101501
crossref_primary_10_1109_TPEL_2022_3225901
crossref_primary_10_1142_S021951942350046X
crossref_primary_10_3390_electronics11060938
crossref_primary_10_1109_ACCESS_2020_3021093
crossref_primary_10_1016_j_bspc_2022_103982
crossref_primary_10_1155_2022_3058835
crossref_primary_10_1121_10_0001220
crossref_primary_10_1109_ACCESS_2022_3206467
Cites_doi 10.1016/j.amc.2006.07.005
10.1109/TSP.2013.2265222
10.1109/JSEN.2017.2694970
10.1109/TCBB.2014.2351804
10.1016/j.ijcard.2011.06.033
10.3959/1536-1098-74.1.28
10.1109/JBHI.2013.2294399
10.1109/EMBC.2017.8037392
10.3390/app7070690
10.1109/ACCESS.2018.2889437
10.1063/1.5062619
10.1142/S1793524515500783
10.1016/j.cmpb.2015.09.001
10.1016/j.compbiomed.2012.06.002
10.1109/10.142648
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2943705
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 139652
ExternalDocumentID oai_doaj_org_article_0024271098734988862969eb394507f6
10.1109/access.2019.2943705
10_1109_ACCESS_2019_2943705
8848375
Genre orig-research
GrantInformation_xml – fundername: Shanxi Province Key Research and Development Plan
  grantid: 201803D121089
– fundername: China Postdoctoral Science Foundation
  grantid: 2017T100229
  funderid: 10.13039/501100002858
– fundername: National Science Foundation for Distinguished Young Scholars of China
  grantid: 61525107
– fundername: Fund for Shan xi ‘1311 Project’ Key Subject Construction
  grantid: 2016M600243
– fundername: Shanxi Medical University
  grantid: EC2019053008
  funderid: 10.13039/501100008549
– fundername: Innovation Special Zone Program
  grantid: 18-H863-05-ZT-001-018-03
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-63de2817d0f40fdc0563c19f327a0d87daa6ee334eac4f4495723dc448d6f99a3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:49 EDT 2025
Tue Aug 19 16:20:07 EDT 2025
Mon Oct 13 06:49:40 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Wed Oct 01 03:22:49 EDT 2025
Wed Aug 27 02:44:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-63de2817d0f40fdc0563c19f327a0d87daa6ee334eac4f4495723dc448d6f99a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0778-4322
0000-0002-3441-9286
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8848375
PQID 2455599646
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2943705
crossref_primary_10_1109_ACCESS_2019_2943705
doaj_primary_oai_doaj_org_article_0024271098734988862969eb394507f6
ieee_primary_8848375
unpaywall_primary_10_1109_access_2019_2943705
proquest_journals_2455599646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
leatham (ref16) 1970
ref11
ref10
ref2
du (ref18) 2004; 13
ref1
ref8
ref7
ref9
ref4
ref3
barbara (ref17) 2003
ref6
ref5
References_xml – ident: ref4
  doi: 10.1016/j.amc.2006.07.005
– ident: ref14
  doi: 10.1109/TSP.2013.2265222
– start-page: 1
  year: 1970
  ident: ref16
  publication-title: Auscultation of the Heart and Phonocardiography
– ident: ref15
  doi: 10.1109/JSEN.2017.2694970
– volume: 13
  start-page: 95
  year: 2004
  ident: ref18
  article-title: Time-frequency analysis of the first heart sound based on the Hilbert-Huang transform
  publication-title: J Yunnan Nationalities Univ China
– ident: ref9
  doi: 10.1109/TCBB.2014.2351804
– ident: ref12
  doi: 10.1016/j.ijcard.2011.06.033
– start-page: 41
  year: 2003
  ident: ref17
  publication-title: Heart Sounds and Murmurs Across the Lifespan
– ident: ref11
  doi: 10.3959/1536-1098-74.1.28
– ident: ref13
  doi: 10.1109/JBHI.2013.2294399
– ident: ref2
  doi: 10.1109/EMBC.2017.8037392
– ident: ref7
  doi: 10.3390/app7070690
– ident: ref6
  doi: 10.1109/ACCESS.2018.2889437
– ident: ref1
  doi: 10.1063/1.5062619
– ident: ref10
  doi: 10.1142/S1793524515500783
– ident: ref8
  doi: 10.1016/j.cmpb.2015.09.001
– ident: ref3
  doi: 10.1016/j.compbiomed.2012.06.002
– ident: ref5
  doi: 10.1109/10.142648
SSID ssj0000816957
Score 2.2110534
Snippet It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139643
SubjectTerms abnormities
Algorithms
Amplitudes
Artificial intelligence
Classification
Classification algorithms
Clusters
Decision trees
Decomposition
empirical wavelet transform (EWT)
First heart sound (S1)
Heart
Hilbert transformation
Instantaneous frequency (IF)
Mathematical analysis
mitral component (M1)
Resampling
Segmentation
Signal processing
Sound
Stethoscope
Time-frequency analysis
tricuspid component (T1)
Valves
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLpRDxUcRWz7kA8emJLbj2MdlYbVCgktB5WbZsS0hbbMrGoT498w42VVQJbhwTGRbk_HEfmON3yPk1DvYBYoYM1lzmwkVZOY0c5kqS--8VzHXeMH5-kbO7sTVfXk_kPrCmrCOHrhz3FnaRLBgUFVcaMjXJNNSQwqoBUCZmMi2c6UHyVRag1UhdVn1NEPQ-2w8mcAXYS2X_sW04BUK1g22osTY30usvEGbm0_N0r482_l8sPFMt8m3HjHScWfpDvkSml2yNeAR3CPuIrSppKqhtvE0CV1iCVDyOl1EOnbNAm_uQ1qMj9MHwHx0BkHe0t-oq0RT5QC9_Lt8SJQh9I9FQYqW3q5w7XdyN728ncyyXjwhq0Wu2kxyH5gqKp9HkUdfA9DhdaEjZ5XNvaq8tTIEzgWsvCIKyJMqxn0N2ZqXUWvL98lGs2jCAaG5qqViQZUqagEIwIlS8IDHyawIwZUjwlZ-NHXPLI4CF3OTMoxcm875Bp1veuePyM91p2VHrPF-83OcoHVTZMVOLyBWTB8r5qNYGZE9nN71IEohnz6MfbSabtP_wf8MEyWSsUkBvbJ1CPxnqk2ylm9M_fEZph6Srzhmd9hzRDbax6dwDPCndScp0l8BwQv5jQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJGkib9iH7vdrSokVkhsxXKy7NiWKkpaQSpgf_16XLfqgoQEtySyI0czE7-xx-8h9MbZOAvUIRSipaZg0ovCKmILybmzzslQKTjg_P5CzObs3RW_ygtu6SyM9z4Vn_kSLtNe_sIvfzYjQYA8TY0kMKpX9SiGB7Ch83Ltwl10JHjE4gN0NL_4MP4MinK1UAVNe5MvM7HmyCQNQqjnUiVRjDYgWncwHSXW_iyzcgtx3tt0a_Prh1kuDyaf6UOkd8Pe1px8KTe9Ldvr3xgd__-7HqEHGZfi8daRHqM7vnuC7h-wFR4je-b7VLjVYdM5nOQ0odAo2RavAh7bbgX8ADH5htvpIiJLPIuh1OOPoN6EU30CPv-6XiRiEvzJgOxFjy936Pkpmk_PLyezIks0FC2rZF8I6jyRdeOqwKrg2ginaFurQEljKicbZ4zwnlIW_-8ssJiNNYS6NuaETgSlDH2GBt2q888RrmQrJPGSy6BYxBmWcUY9LFqT2nvLh4jsLKXbzF8OMhpLnfKYSunxZBKdVoN5dTbvEL3dd1pv6Tv-3vwUXGDfFLi304NoLp1DWSdYAyWssqFMSRlzQiWUt1SxCK6DGKJjMPH-JdmeQ3Sycyid_xPfNWEcKN8Ei72KvZP9MdSt494a6ot_bH-CBv23jX8VIVRvX-c4uQHDRRRL
  priority: 102
  providerName: Unpaywall
Title Detection and Classification of Abnormities of First Heart Sound Using Empirical Wavelet Transform
URI https://ieeexplore.ieee.org/document/8848375
https://www.proquest.com/docview/2455599646
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848375.pdf
https://doaj.org/article/0024271098734988862969eb394507f6
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL3axgPwwNdAFEblBx6XLok_Yj-WsqpC2oTEKsaTZce2NFHSClIh-PX4OmnUAUK8pZGTODp2fO7t9TkAr52Nq0ARQiZqajImvcisKm0mOXfWORlyhRucLy7FYsneXfPrAzgd9sJ471PxmZ_gYfov363rLabKzqRE_XN-CIeVFN1erSGfggYSile9sFCRq7PpbBbfAau31KRUjFZoUbe3-CSN_t5U5Ra_vLttNubHd7Na7S0184dwsetkV2HyebJt7aT--Zt-4_--xSN40HNOMu0GyWM48M0TuL-nRHgM9q1vU1FWQ0zjSLLKxCKihBtZBzK1zRr3_sfAGn_ObyJrJIs4TVryAZ2ZSKo9IOdfNjdJdIR8NGhp0ZKrHTN-Csv5-dVskfX2C1nNctlmgjpfyqJyeWB5cHWkSrQuVKBlZXInK2eM8J5SFr_dLLAYaVUldXWM95wIShn6DI6adeOfA8llLWTpJZdBscghLOOMekxIl4X3lo-g3OGi616bHC0yVjrFKLnSHZgawdQ9mCM4HS7adNIc_27-BgEfmqKudjoRwdH9NNWJsmB5qqwoU1LGeE8J5S1VLBLnIEZwjIAON-mxHMHJbvjo_hvwTZeMo5ybYPGqbBhSf3TVJGPMW1198fenvIR72KpLAJ3AUft1619FStTacUoljNOMGMOd5eX76adf-SoI5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwGP00xmHswK-BKAzwgePSpfGP2MdSVhVYd6ETu1l2bEsTJa1GKgR_Pf6cNOoAIW5JFCe2nh2_z_n8HsAbZ-MsMAohExU1GZNeZFYVNpOcO-ucDLnCDc7zCzG7ZB-u-NUenPR7Ybz3KfnMD_Ew_ct3q2qDS2WnUqL-Ob8DdzljjLe7tfoVFbSQULzspIVGuTodTyaxFZi_pYaFYrREk7qd6Sep9He2KrcY5sGmXpsf381yuTPZTB_AfFvNNsfky3DT2GH18zcFx_9tx0O437FOMm67ySPY8_VjONzRIjwC-843KS2rJqZ2JJllYhpRQo6sAhnbeoW7_2NojafT68gbySwOlIZ8Qm8mkrIPyNnX9XWSHSGfDZpaNGSx5cZP4HJ6tpjMss6AIatYLptMUOcLOSpdHlgeXBXJEq1GKtCiNLmTpTNGeE8pi19vFliMtcqCuipGfE4EpQx9Cvv1qvbPgOSyErLwksugWGQRlnFGPS5JFyPvLR9AscVFV506OZpkLHWKUnKlWzA1gqk7MAdw0hdat-Ic_779LQLe34rK2ulCBEd3A1Un0oIJqrKkTEkZIz4llLdUsUidgxjAEQLaP6TDcgDH2-6ju6_AN10wjoJugsVSWd-l_qiqSdaYt6r6_O9veQ0Hs8X8XJ-_v_j4Au5hiXY56Bj2m5uNfxkJUmNfpXHxC23kCY4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJGkib9iH7vdrSokVkhsxXKy7NiWKkpaQSpgf_16XLfqgoQEtySyI0czE7-xx-8h9MbZOAvUIRSipaZg0ovCKmILybmzzslQKTjg_P5CzObs3RW_ygtu6SyM9z4Vn_kSLtNe_sIvfzYjQYA8TY0kMKpX9SiGB7Ch83Ltwl10JHjE4gN0NL_4MP4MinK1UAVNe5MvM7HmyCQNQqjnUiVRjDYgWncwHSXW_iyzcgtx3tt0a_Prh1kuDyaf6UOkd8Pe1px8KTe9Ldvr3xgd__-7HqEHGZfi8daRHqM7vnuC7h-wFR4je-b7VLjVYdM5nOQ0odAo2RavAh7bbgX8ADH5htvpIiJLPIuh1OOPoN6EU30CPv-6XiRiEvzJgOxFjy936Pkpmk_PLyezIks0FC2rZF8I6jyRdeOqwKrg2ginaFurQEljKicbZ4zwnlIW_-8ssJiNNYS6NuaETgSlDH2GBt2q888RrmQrJPGSy6BYxBmWcUY9LFqT2nvLh4jsLKXbzF8OMhpLnfKYSunxZBKdVoN5dTbvEL3dd1pv6Tv-3vwUXGDfFLi304NoLp1DWSdYAyWssqFMSRlzQiWUt1SxCK6DGKJjMPH-JdmeQ3Sycyid_xPfNWEcKN8Ei72KvZP9MdSt494a6ot_bH-CBv23jX8VIVRvX-c4uQHDRRRL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Classification+of+Abnormities+of+First+Heart+Sound+Using+Empirical+Wavelet+Transform&rft.jtitle=IEEE+access&rft.au=Li%2C+Haixia&rft.au=Ren%2C+Yongfeng&rft.au=Zhang%2C+Guojun&rft.au=Wang%2C+Renxin&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=139643&rft.epage=139652&rft_id=info:doi/10.1109%2FACCESS.2019.2943705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2943705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon