Detection and Classification of Abnormities of First Heart Sound Using Empirical Wavelet Transform
It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1...
Saved in:
| Published in | IEEE access Vol. 7; pp. 139643 - 139652 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2943705 |
Cover
| Abstract | It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and A peak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s. |
|---|---|
| AbstractList | It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and Apeak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s. It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial intelligence diagnosis of some relative cardiovascular disease. Few studies have focused on the detection and classification of the abnormities of S1 and given out in detail the essential differences between abnormal and normal S1. This work applied Empirical Wavelet Transform (EWT) to decompose S1 and extracted the instantaneous frequency (IF) of mitral component (M1) and tricuspid component (T1) by using Hilbert Transform. Firstly, the heart sound signal is preprocessed following these processes: filtering, resampling, normalization and segmentation. Secondly, S1 is decomposed into several modes based on EWT. First two maximal points with a distance greater than 20Hz in Fourier Spectrum of S1 are selected and the nearest minimal points on both sides of the maximal points are found out as the boundaries for segmentation of the spectrum. S1 is decomposed into 5 modes and every mode's IF are calculated through Hilbert transformation. At last, a k-mean cluster algorithm is applied to cluster the IF of different modes. TD and A peak_ratio are calculated for decision tree classifier and S1s are divided into three categories: normal S1, S1 with abnormal split and S1with abnormal amplitude change. When the proposed method is applied to detect normal S1, Se=94.6%, Pp=98.6% and Oa=93.3%; When it is applied to detect S1 with abnormal split, Se=92.6%, Pp=96.9% and Oa=90%; When it is applied to detect S1 with abnormal amplitude change, Se=94.4%, Pp=95.7% and Oa=90.6%; Comparison experiments are carried out between the proposed method and HVD method. The results show Oa of the proposed method is higher than HVD method when detecting the three different S1s. |
| Author | Zhang, Guojun Wang, Renxin Ren, Yongfeng Zhang, Wendong Li, Haixia Cui, Jiangong |
| Author_xml | – sequence: 1 givenname: Haixia orcidid: 0000-0003-0778-4322 surname: Li fullname: Li, Haixia organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China – sequence: 2 givenname: Yongfeng surname: Ren fullname: Ren, Yongfeng organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China – sequence: 3 givenname: Guojun surname: Zhang fullname: Zhang, Guojun email: zhangguojun1977@nuc.edu.cn organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China – sequence: 4 givenname: Renxin orcidid: 0000-0002-3441-9286 surname: Wang fullname: Wang, Renxin organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China – sequence: 5 givenname: Jiangong surname: Cui fullname: Cui, Jiangong organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China – sequence: 6 givenname: Wendong surname: Zhang fullname: Zhang, Wendong organization: State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China |
| BookMark | eNptkUFvGyEQhVdVKjVN8gtyWalnuyywLBytrdNEipSDE_WIxjBEWOvFBdwq_z7YG1mVVS4wT3xvhsfX6mIMI1bVbUPmTUPU90XfL1erOSWNmlPFWUfaT9UlbYSasZaJi3_OX6qblDakLFmktrus1j8wo8k-jDWMtu4HSMk7b-AoBVcv1mOIW589pkN552PK9T1CzPUq7Avykvz4Wi-3Ox8LNtS_4A8OmOvnCGNyhb2uPjsYEt587FfVy93yub-fPT79fOgXjzPDicwzwSxS2XSWOE6cNaQVzDTKMdoBsbKzAAKRMY5guOO8jE-ZNZxLK5xSwK6qh8nXBtjoXfRbiG86gNdHIcRXXab2ZkBNCOW0K-HJjnElpRRUCYVrpnhLOieKF5-89uMO3v7CMJwMG6IPsWswBlPSh9j1R-wF-zZhuxh-7zFlvQn7OJZXa8rbtlVK8IO5mm6ZGFKK6LTx-Rh4juCHU4fpY887sDP2fK7_U7cT5RHxREjJJeta9g4il64p |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1155_2022_9092346 crossref_primary_10_3389_fmedt_2021_666650 crossref_primary_10_1002_admt_202101501 crossref_primary_10_1109_TPEL_2022_3225901 crossref_primary_10_1142_S021951942350046X crossref_primary_10_3390_electronics11060938 crossref_primary_10_1109_ACCESS_2020_3021093 crossref_primary_10_1016_j_bspc_2022_103982 crossref_primary_10_1155_2022_3058835 crossref_primary_10_1121_10_0001220 crossref_primary_10_1109_ACCESS_2022_3206467 |
| Cites_doi | 10.1016/j.amc.2006.07.005 10.1109/TSP.2013.2265222 10.1109/JSEN.2017.2694970 10.1109/TCBB.2014.2351804 10.1016/j.ijcard.2011.06.033 10.3959/1536-1098-74.1.28 10.1109/JBHI.2013.2294399 10.1109/EMBC.2017.8037392 10.3390/app7070690 10.1109/ACCESS.2018.2889437 10.1063/1.5062619 10.1142/S1793524515500783 10.1016/j.cmpb.2015.09.001 10.1016/j.compbiomed.2012.06.002 10.1109/10.142648 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2943705 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 139652 |
| ExternalDocumentID | oai_doaj_org_article_0024271098734988862969eb394507f6 10.1109/access.2019.2943705 10_1109_ACCESS_2019_2943705 8848375 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanxi Province Key Research and Development Plan grantid: 201803D121089 – fundername: China Postdoctoral Science Foundation grantid: 2017T100229 funderid: 10.13039/501100002858 – fundername: National Science Foundation for Distinguished Young Scholars of China grantid: 61525107 – fundername: Fund for Shan xi ‘1311 Project’ Key Subject Construction grantid: 2016M600243 – fundername: Shanxi Medical University grantid: EC2019053008 funderid: 10.13039/501100008549 – fundername: Innovation Special Zone Program grantid: 18-H863-05-ZT-001-018-03 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-63de2817d0f40fdc0563c19f327a0d87daa6ee334eac4f4495723dc448d6f99a3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:49 EDT 2025 Tue Aug 19 16:20:07 EDT 2025 Mon Oct 13 06:49:40 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Wed Oct 01 03:22:49 EDT 2025 Wed Aug 27 02:44:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-63de2817d0f40fdc0563c19f327a0d87daa6ee334eac4f4495723dc448d6f99a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0778-4322 0000-0002-3441-9286 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8848375 |
| PQID | 2455599646 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2943705 crossref_primary_10_1109_ACCESS_2019_2943705 doaj_primary_oai_doaj_org_article_0024271098734988862969eb394507f6 ieee_primary_8848375 unpaywall_primary_10_1109_access_2019_2943705 proquest_journals_2455599646 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 leatham (ref16) 1970 ref11 ref10 ref2 du (ref18) 2004; 13 ref1 ref8 ref7 ref9 ref4 ref3 barbara (ref17) 2003 ref6 ref5 |
| References_xml | – ident: ref4 doi: 10.1016/j.amc.2006.07.005 – ident: ref14 doi: 10.1109/TSP.2013.2265222 – start-page: 1 year: 1970 ident: ref16 publication-title: Auscultation of the Heart and Phonocardiography – ident: ref15 doi: 10.1109/JSEN.2017.2694970 – volume: 13 start-page: 95 year: 2004 ident: ref18 article-title: Time-frequency analysis of the first heart sound based on the Hilbert-Huang transform publication-title: J Yunnan Nationalities Univ China – ident: ref9 doi: 10.1109/TCBB.2014.2351804 – ident: ref12 doi: 10.1016/j.ijcard.2011.06.033 – start-page: 41 year: 2003 ident: ref17 publication-title: Heart Sounds and Murmurs Across the Lifespan – ident: ref11 doi: 10.3959/1536-1098-74.1.28 – ident: ref13 doi: 10.1109/JBHI.2013.2294399 – ident: ref2 doi: 10.1109/EMBC.2017.8037392 – ident: ref7 doi: 10.3390/app7070690 – ident: ref6 doi: 10.1109/ACCESS.2018.2889437 – ident: ref1 doi: 10.1063/1.5062619 – ident: ref10 doi: 10.1142/S1793524515500783 – ident: ref8 doi: 10.1016/j.cmpb.2015.09.001 – ident: ref3 doi: 10.1016/j.compbiomed.2012.06.002 – ident: ref5 doi: 10.1109/10.142648 |
| SSID | ssj0000816957 |
| Score | 2.2110534 |
| Snippet | It is expected that an automatic detection and classification algorithm for the abnormities of first heart sound (S1) can realize computer artificial... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 139643 |
| SubjectTerms | abnormities Algorithms Amplitudes Artificial intelligence Classification Classification algorithms Clusters Decision trees Decomposition empirical wavelet transform (EWT) First heart sound (S1) Heart Hilbert transformation Instantaneous frequency (IF) Mathematical analysis mitral component (M1) Resampling Segmentation Signal processing Sound Stethoscope Time-frequency analysis tricuspid component (T1) Valves Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLpRDxUcRWz7kA8emJLbj2MdlYbVCgktB5WbZsS0hbbMrGoT498w42VVQJbhwTGRbk_HEfmON3yPk1DvYBYoYM1lzmwkVZOY0c5kqS--8VzHXeMH5-kbO7sTVfXk_kPrCmrCOHrhz3FnaRLBgUFVcaMjXJNNSQwqoBUCZmMi2c6UHyVRag1UhdVn1NEPQ-2w8mcAXYS2X_sW04BUK1g22osTY30usvEGbm0_N0r482_l8sPFMt8m3HjHScWfpDvkSml2yNeAR3CPuIrSppKqhtvE0CV1iCVDyOl1EOnbNAm_uQ1qMj9MHwHx0BkHe0t-oq0RT5QC9_Lt8SJQh9I9FQYqW3q5w7XdyN728ncyyXjwhq0Wu2kxyH5gqKp9HkUdfA9DhdaEjZ5XNvaq8tTIEzgWsvCIKyJMqxn0N2ZqXUWvL98lGs2jCAaG5qqViQZUqagEIwIlS8IDHyawIwZUjwlZ-NHXPLI4CF3OTMoxcm875Bp1veuePyM91p2VHrPF-83OcoHVTZMVOLyBWTB8r5qNYGZE9nN71IEohnz6MfbSabtP_wf8MEyWSsUkBvbJ1CPxnqk2ylm9M_fEZph6Srzhmd9hzRDbax6dwDPCndScp0l8BwQv5jQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJGkib9iH7vdrSokVkhsxXKy7NiWKkpaQSpgf_16XLfqgoQEtySyI0czE7-xx-8h9MbZOAvUIRSipaZg0ovCKmILybmzzslQKTjg_P5CzObs3RW_ygtu6SyM9z4Vn_kSLtNe_sIvfzYjQYA8TY0kMKpX9SiGB7Ch83Ltwl10JHjE4gN0NL_4MP4MinK1UAVNe5MvM7HmyCQNQqjnUiVRjDYgWncwHSXW_iyzcgtx3tt0a_Prh1kuDyaf6UOkd8Pe1px8KTe9Ldvr3xgd__-7HqEHGZfi8daRHqM7vnuC7h-wFR4je-b7VLjVYdM5nOQ0odAo2RavAh7bbgX8ADH5htvpIiJLPIuh1OOPoN6EU30CPv-6XiRiEvzJgOxFjy936Pkpmk_PLyezIks0FC2rZF8I6jyRdeOqwKrg2ginaFurQEljKicbZ4zwnlIW_-8ssJiNNYS6NuaETgSlDH2GBt2q888RrmQrJPGSy6BYxBmWcUY9LFqT2nvLh4jsLKXbzF8OMhpLnfKYSunxZBKdVoN5dTbvEL3dd1pv6Tv-3vwUXGDfFLi304NoLp1DWSdYAyWssqFMSRlzQiWUt1SxCK6DGKJjMPH-JdmeQ3Sycyid_xPfNWEcKN8Ei72KvZP9MdSt494a6ot_bH-CBv23jX8VIVRvX-c4uQHDRRRL priority: 102 providerName: Unpaywall |
| Title | Detection and Classification of Abnormities of First Heart Sound Using Empirical Wavelet Transform |
| URI | https://ieeexplore.ieee.org/document/8848375 https://www.proquest.com/docview/2455599646 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848375.pdf https://doaj.org/article/0024271098734988862969eb394507f6 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL3axgPwwNdAFEblBx6XLok_Yj-WsqpC2oTEKsaTZce2NFHSClIh-PX4OmnUAUK8pZGTODp2fO7t9TkAr52Nq0ARQiZqajImvcisKm0mOXfWORlyhRucLy7FYsneXfPrAzgd9sJ471PxmZ_gYfov363rLabKzqRE_XN-CIeVFN1erSGfggYSile9sFCRq7PpbBbfAau31KRUjFZoUbe3-CSN_t5U5Ra_vLttNubHd7Na7S0184dwsetkV2HyebJt7aT--Zt-4_--xSN40HNOMu0GyWM48M0TuL-nRHgM9q1vU1FWQ0zjSLLKxCKihBtZBzK1zRr3_sfAGn_ObyJrJIs4TVryAZ2ZSKo9IOdfNjdJdIR8NGhp0ZKrHTN-Csv5-dVskfX2C1nNctlmgjpfyqJyeWB5cHWkSrQuVKBlZXInK2eM8J5SFr_dLLAYaVUldXWM95wIShn6DI6adeOfA8llLWTpJZdBscghLOOMekxIl4X3lo-g3OGi616bHC0yVjrFKLnSHZgawdQ9mCM4HS7adNIc_27-BgEfmqKudjoRwdH9NNWJsmB5qqwoU1LGeE8J5S1VLBLnIEZwjIAON-mxHMHJbvjo_hvwTZeMo5ybYPGqbBhSf3TVJGPMW1198fenvIR72KpLAJ3AUft1619FStTacUoljNOMGMOd5eX76adf-SoI5g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwGP00xmHswK-BKAzwgePSpfGP2MdSVhVYd6ETu1l2bEsTJa1GKgR_Pf6cNOoAIW5JFCe2nh2_z_n8HsAbZ-MsMAohExU1GZNeZFYVNpOcO-ucDLnCDc7zCzG7ZB-u-NUenPR7Ybz3KfnMD_Ew_ct3q2qDS2WnUqL-Ob8DdzljjLe7tfoVFbSQULzspIVGuTodTyaxFZi_pYaFYrREk7qd6Sep9He2KrcY5sGmXpsf381yuTPZTB_AfFvNNsfky3DT2GH18zcFx_9tx0O437FOMm67ySPY8_VjONzRIjwC-843KS2rJqZ2JJllYhpRQo6sAhnbeoW7_2NojafT68gbySwOlIZ8Qm8mkrIPyNnX9XWSHSGfDZpaNGSx5cZP4HJ6tpjMss6AIatYLptMUOcLOSpdHlgeXBXJEq1GKtCiNLmTpTNGeE8pi19vFliMtcqCuipGfE4EpQx9Cvv1qvbPgOSyErLwksugWGQRlnFGPS5JFyPvLR9AscVFV506OZpkLHWKUnKlWzA1gqk7MAdw0hdat-Ic_779LQLe34rK2ulCBEd3A1Un0oIJqrKkTEkZIz4llLdUsUidgxjAEQLaP6TDcgDH2-6ju6_AN10wjoJugsVSWd-l_qiqSdaYt6r6_O9veQ0Hs8X8XJ-_v_j4Au5hiXY56Bj2m5uNfxkJUmNfpXHxC23kCY4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQhQX5wJGkib9iH7vdrSokVkhsxXKy7NiWKkpaQSpgf_16XLfqgoQEtySyI0czE7-xx-8h9MbZOAvUIRSipaZg0ovCKmILybmzzslQKTjg_P5CzObs3RW_ygtu6SyM9z4Vn_kSLtNe_sIvfzYjQYA8TY0kMKpX9SiGB7Ch83Ltwl10JHjE4gN0NL_4MP4MinK1UAVNe5MvM7HmyCQNQqjnUiVRjDYgWncwHSXW_iyzcgtx3tt0a_Prh1kuDyaf6UOkd8Pe1px8KTe9Ldvr3xgd__-7HqEHGZfi8daRHqM7vnuC7h-wFR4je-b7VLjVYdM5nOQ0odAo2RavAh7bbgX8ADH5htvpIiJLPIuh1OOPoN6EU30CPv-6XiRiEvzJgOxFjy936Pkpmk_PLyezIks0FC2rZF8I6jyRdeOqwKrg2ginaFurQEljKicbZ4zwnlIW_-8ssJiNNYS6NuaETgSlDH2GBt2q888RrmQrJPGSy6BYxBmWcUY9LFqT2nvLh4jsLKXbzF8OMhpLnfKYSunxZBKdVoN5dTbvEL3dd1pv6Tv-3vwUXGDfFLi304NoLp1DWSdYAyWssqFMSRlzQiWUt1SxCK6DGKJjMPH-JdmeQ3Sycyid_xPfNWEcKN8Ei72KvZP9MdSt494a6ot_bH-CBv23jX8VIVRvX-c4uQHDRRRL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Classification+of+Abnormities+of+First+Heart+Sound+Using+Empirical+Wavelet+Transform&rft.jtitle=IEEE+access&rft.au=Li%2C+Haixia&rft.au=Ren%2C+Yongfeng&rft.au=Zhang%2C+Guojun&rft.au=Wang%2C+Renxin&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=139643&rft.epage=139652&rft_id=info:doi/10.1109%2FACCESS.2019.2943705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2943705 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |