An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection

Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 180235 - 180243
Main Authors Javeed, Ashir, Zhou, Shijie, Yongjian, Liao, Qasim, Iqbal, Noor, Adeeb, Nour, Redhwan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2952107

Cover

Abstract Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different intelligent systems for automated detection of heart failure. However, most of these methods are facing the problem of overfitting i.e. the recently proposed methods improved heart failure detection accuracy on testing data while compromising heart failure detection accuracy on training data. Consequently, the constructed models overfit to the testing data. In order, to come up with an intelligent system that would show good performance on both training and testing data, in this paper we develop a novel diagnostic system. The proposed diagnostic system uses random search algorithm (RSA) for features selection and random forest model for heart failure prediction. The proposed diagnostic system is optimized using grid search algorithm. Two types of experiments are performed to evaluate the precision of the proposed method. In the first experiment, only random forest model is developed while in the second experiment the proposed RSA based random forest model is developed. Experiments are performed using an online heart failure database namely Cleveland dataset. The proposed method is efficient and less complex than conventional random forest model as it produces 3.3% higher accuracy than conventional random forest model while using only 7 features. Moreover, the proposed method shows better performance than five other state of the art machine learning models. In addition, the proposed method achieved classification accuracy of 93.33% while improving the training accuracy as well. Finally, the proposed method shows better performance than eleven recently proposed methods for heart failure detection.
AbstractList Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different intelligent systems for automated detection of heart failure. However, most of these methods are facing the problem of overfitting i.e. the recently proposed methods improved heart failure detection accuracy on testing data while compromising heart failure detection accuracy on training data. Consequently, the constructed models overfit to the testing data. In order, to come up with an intelligent system that would show good performance on both training and testing data, in this paper we develop a novel diagnostic system. The proposed diagnostic system uses random search algorithm (RSA) for features selection and random forest model for heart failure prediction. The proposed diagnostic system is optimized using grid search algorithm. Two types of experiments are performed to evaluate the precision of the proposed method. In the first experiment, only random forest model is developed while in the second experiment the proposed RSA based random forest model is developed. Experiments are performed using an online heart failure database namely Cleveland dataset. The proposed method is efficient and less complex than conventional random forest model as it produces 3.3% higher accuracy than conventional random forest model while using only 7 features. Moreover, the proposed method shows better performance than five other state of the art machine learning models. In addition, the proposed method achieved classification accuracy of 93.33% while improving the training accuracy as well. Finally, the proposed method shows better performance than eleven recently proposed methods for heart failure detection.
Author Yongjian, Liao
Javeed, Ashir
Zhou, Shijie
Qasim, Iqbal
Nour, Redhwan
Noor, Adeeb
Author_xml – sequence: 1
  givenname: Ashir
  surname: Javeed
  fullname: Javeed, Ashir
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Shijie
  surname: Zhou
  fullname: Zhou, Shijie
  email: sjzhou@uestc.edu.cn
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Liao
  orcidid: 0000-0003-3139-8528
  surname: Yongjian
  fullname: Yongjian, Liao
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Iqbal
  orcidid: 0000-0002-4786-7299
  surname: Qasim
  fullname: Qasim, Iqbal
  organization: Department of Computer Science, University of Science and Technology at Bannu, Bannu, Pakistan
– sequence: 5
  givenname: Adeeb
  surname: Noor
  fullname: Noor, Adeeb
  organization: Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 6
  givenname: Redhwan
  surname: Nour
  fullname: Nour, Redhwan
  organization: Department of Computer Science, Taibah University, Medina, Saudi Arabia
BookMark eNptUc1uGyEYXFWJ1DTJE-SC1LNdWFgWjq6TNJZcRaqTM2L5cbB2wQXcyn2APndx17Iqq1xAw8x8P_OhuvDBm6q6Q3CKEOSfZvP5w2o1rSHi05o3NYLtu-qqRpRPcIPpxT_v99VtShtYDitQ015Vv2ceLHw2fe_WxmewNDJ659dgtU_ZDOCzTEaD4ME36XUYwKr8qzcw69chuvw2gAKD5212g_tViEfWY4gmZfA1aNMDGyJYDNsYfhTCU9FncO-SKcbg3mSjsgv-prq0sk_m9nhfV6-PDy_zp8ny-ctiPltOFIEsT2jNGsmwJJrTlsG2QZQqSjS0mHSdrRHqTFPmt9wqzTiCtKFMW4s7S6RqW3xdLUZfHeRGbKMbZNyLIJ34C4S4FqU_p3ojKEIE8VYq3lEitea2oajDhEKtGSG4eJHRa-e3cv9T9v3JEEFxiEZIpUxK4hCNOEZTZB9HWdnI911Zk9iEXfRlalGTpqEEtzUvLD6yVAwpRWOFclkeVpWjdP2pwhj-eQV8pj3v6_-qu1HljDEnBWOcoJrhPwCeu08
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_127550
crossref_primary_10_1007_s10489_020_01948_1
crossref_primary_10_1016_j_measurement_2022_112166
crossref_primary_10_1515_bams_2020_0033
crossref_primary_10_1016_j_rineng_2024_101894
crossref_primary_10_3390_biomedicines11020439
crossref_primary_10_3390_diagnostics11101863
crossref_primary_10_1016_j_istruc_2023_05_136
crossref_primary_10_3390_math11061457
crossref_primary_10_15232_aas_2023_02504
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1016_j_bspc_2021_103456
crossref_primary_10_1109_ACCESS_2023_3339225
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_1038_s41598_023_29395_1
crossref_primary_10_1155_2022_1901735
crossref_primary_10_1007_s10462_023_10493_5
crossref_primary_10_1115_1_4065777
crossref_primary_10_4108_eetiot_5326
crossref_primary_10_1007_s11276_024_03807_0
crossref_primary_10_1109_ACCESS_2025_3532385
crossref_primary_10_1177_00405175211040869
crossref_primary_10_1016_j_orp_2024_100308
crossref_primary_10_32604_csse_2023_021469
crossref_primary_10_3390_app13010118
crossref_primary_10_1080_10255842_2024_2310075
crossref_primary_10_1007_s11831_023_10005_2
crossref_primary_10_56977_jicce_2024_22_1_56
crossref_primary_10_1016_j_ibmed_2025_100199
crossref_primary_10_1016_j_jobe_2023_107904
crossref_primary_10_1109_ACCESS_2020_3016116
crossref_primary_10_3389_fnagi_2021_828214
crossref_primary_10_1109_ACCESS_2023_3289584
crossref_primary_10_1088_1742_6596_2040_1_012051
crossref_primary_10_48084_etasr_4854
crossref_primary_10_4018_IJHISI_334021
crossref_primary_10_59717_j_xinn_med_2023_100023
crossref_primary_10_3390_app13085188
crossref_primary_10_1051_e3sconf_202130901042
crossref_primary_10_1115_1_4056227
crossref_primary_10_2174_18741207_v16_e221227_2022_HT27_3589_14
crossref_primary_10_1016_j_engappai_2024_109389
crossref_primary_10_1049_smc2_12003
crossref_primary_10_4018_IJSIR_313665
crossref_primary_10_1038_s41598_024_67973_z
crossref_primary_10_1016_j_cmpb_2020_105770
crossref_primary_10_1155_2022_9288452
crossref_primary_10_1080_21681163_2022_2156927
crossref_primary_10_1007_s10916_023_01906_7
crossref_primary_10_1109_ACCESS_2022_3228176
crossref_primary_10_1007_s12145_024_01398_0
crossref_primary_10_1016_j_eswa_2024_123534
crossref_primary_10_1109_JIOT_2023_3247452
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1080_21681163_2022_2032361
crossref_primary_10_3233_JIFS_224298
crossref_primary_10_1007_s41870_021_00671_5
crossref_primary_10_1007_s00500_023_08388_2
crossref_primary_10_1016_j_compbiomed_2025_109958
crossref_primary_10_3390_life12071097
crossref_primary_10_1016_j_asoc_2022_109371
crossref_primary_10_3390_electronics11244081
crossref_primary_10_32604_cmc_2023_041031
crossref_primary_10_31083_j_fbl2902082
crossref_primary_10_1007_s11042_024_19169_w
crossref_primary_10_1016_j_advengsoft_2022_103297
crossref_primary_10_3390_s23104949
crossref_primary_10_1038_s41598_024_79127_2
crossref_primary_10_1007_s13042_022_01573_z
crossref_primary_10_1016_j_eswa_2022_117882
crossref_primary_10_3390_make6020046
crossref_primary_10_1177_11769351221147244
crossref_primary_10_1016_j_bspc_2024_107070
crossref_primary_10_3233_WEB_220118
crossref_primary_10_1109_ACCESS_2023_3325681
crossref_primary_10_3390_math11224667
crossref_primary_10_1016_j_jebo_2024_03_018
crossref_primary_10_1016_j_asoc_2024_111273
crossref_primary_10_1016_j_compbiolchem_2025_108394
crossref_primary_10_1007_s11042_023_16562_9
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_1109_ACCESS_2022_3153047
crossref_primary_10_1007_s42979_023_02081_9
crossref_primary_10_1038_s41598_024_55991_w
crossref_primary_10_1002_ett_4679
crossref_primary_10_1007_s11042_021_11259_3
crossref_primary_10_3390_a16060293
crossref_primary_10_1080_10255842_2022_2116577
crossref_primary_10_1016_j_procs_2023_01_107
crossref_primary_10_1109_TVT_2024_3395535
crossref_primary_10_1109_ACCESS_2020_3022854
crossref_primary_10_1111_exsy_13002
crossref_primary_10_3390_math11061467
crossref_primary_10_1016_j_bspc_2022_104019
crossref_primary_10_3390_math11194065
crossref_primary_10_1016_j_compeleceng_2023_109068
crossref_primary_10_1016_j_mehy_2020_110072
crossref_primary_10_1016_j_knosys_2022_109709
crossref_primary_10_1080_03235408_2021_2003054
crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8
crossref_primary_10_1109_ACCESS_2024_3470537
crossref_primary_10_32604_cmc_2023_036141
Cites_doi 10.1016/j.physa.2017.04.113
10.1109/ICSEng.2011.80
10.1016/j.cmpb.2016.10.011
10.1007/s11042-017-5515-y
10.1016/j.eswa.2005.07.022
10.1016/j.jacc.2013.11.053
10.1016/j.jacc.2008.08.049
10.1377/hlthaff.27.4.1064
10.1016/j.eswa.2019.06.052
10.4236/jsea.2014.712093
10.1109/ICACSIS.2018.8618166
10.1109/TITB.2009.2019637
10.1016/j.eswa.2008.09.013
10.1016/j.jksuci.2011.09.002
10.1007/s40265-013-0057-8
10.1016/j.tele.2018.11.007
10.1016/j.eswa.2013.01.030
10.3390/app9112356
10.1007/s10489-017-1037-6
10.1109/ICIEV.2016.7759984
10.1016/j.eswa.2007.06.004
10.1109/ACCESS.2019.2904800
10.1056/NEJMsa050467
10.1016/j.eswa.2009.09.064
10.1109/ACCESS.2019.2909969
10.1016/j.eswa.2006.01.027
10.1038/nrcardio.2010.165
10.1007/s00521-016-2604-1
10.1007/s10916-016-0536-z
10.1109/ACCESS.2019.2932037
10.1016/j.eswa.2016.10.020
10.1016/j.knosys.2017.06.003
10.5815/ijisa.2015.12.08
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2952107
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 180243
ExternalDocumentID oai_doaj_org_article_6114197ac9b64add9f561b3460dd8443
10.1109/access.2019.2952107
10_1109_ACCESS_2019_2952107
8894128
Genre orig-research
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: DF-608-611-1441
  funderid: 10.13039/501100004054
– fundername: Sichuan Science and Technology Program
  grantid: 2018GZ0085; 2019YFG0399
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-6285a83a4d9678075166c64d0f34bbf211be5107f9fcd89106568dff3bf4ac773
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:08 EDT 2025
Wed Oct 01 15:25:33 EDT 2025
Sun Jun 29 15:45:27 EDT 2025
Thu Apr 24 23:44:01 EDT 2025
Wed Oct 01 02:05:46 EDT 2025
Wed Aug 27 02:47:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-6285a83a4d9678075166c64d0f34bbf211be5107f9fcd89106568dff3bf4ac773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4786-7299
0000-0003-3139-8528
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8894128
PQID 2455643729
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2952107
ieee_primary_8894128
doaj_primary_oai_doaj_org_article_6114197ac9b64add9f561b3460dd8443
unpaywall_primary_10_1109_access_2019_2952107
crossref_primary_10_1109_ACCESS_2019_2952107
proquest_journals_2455643729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
cheung (ref47) 2001
ref14
ref31
ref30
ref33
ref32
ref10
kumar (ref40) 2011
jankowski (ref41) 1997
ref2
patil (ref15) 2009; 31
ref17
ref38
ref16
ref19
šter (ref45) 1996
polat (ref44) 2005
liu (ref37) 2015; 51
paschalidis (ref26) 2017
ref24
ref23
ref25
vanisree (ref11) 2011; 19
ref20
ref42
ref22
ref21
ref43
ref28
ref27
tomov (ref18) 2018
ref29
bergstra (ref36) 2012; 13
ref8
ref7
ref9
kurnar (ref39) 2012
ref4
ref3
ref6
ref5
bonow (ref1) 2011
(ref46) 2007
References_xml – ident: ref31
  doi: 10.1016/j.physa.2017.04.113
– ident: ref28
  doi: 10.1109/ICSEng.2011.80
– ident: ref20
  doi: 10.1016/j.cmpb.2016.10.011
– ident: ref19
  doi: 10.1007/s11042-017-5515-y
– year: 2007
  ident: ref46
  publication-title: Datasets Used for Classification Comparison of Results
– start-page: 427
  year: 1996
  ident: ref45
  article-title: Neural networks in medical diagnosis: Comparison with other methods
  publication-title: Proc Conf Eng Appl Neural Networks
– ident: ref10
  doi: 10.1016/j.eswa.2005.07.022
– ident: ref4
  doi: 10.1016/j.jacc.2013.11.053
– ident: ref5
  doi: 10.1016/j.jacc.2008.08.049
– year: 2011
  ident: ref1
  publication-title: Braunwald's Heart Disease E-Book A Textbook of Cardiovascular Medicine
– ident: ref7
  doi: 10.1377/hlthaff.27.4.1064
– ident: ref22
  doi: 10.1016/j.eswa.2019.06.052
– ident: ref27
  doi: 10.4236/jsea.2014.712093
– ident: ref38
  doi: 10.1109/ICACSIS.2018.8618166
– start-page: 91
  year: 2011
  ident: ref40
  article-title: Adaptive neuro-fuzzy inference system for heart disease diagnosis
  publication-title: Proc Int Conf Inf Syst Comput Eng Appl (ICISCEA)
– ident: ref43
  doi: 10.1109/TITB.2009.2019637
– ident: ref2
  doi: 10.1016/j.eswa.2008.09.013
– ident: ref13
  doi: 10.1016/j.jksuci.2011.09.002
– ident: ref6
  doi: 10.1007/s40265-013-0057-8
– ident: ref33
  doi: 10.1016/j.tele.2018.11.007
– ident: ref12
  doi: 10.1016/j.eswa.2013.01.030
– year: 2001
  ident: ref47
  article-title: Machine learning techniques for medical analysis. school of information technology and electrical engineering
– year: 2005
  ident: ref44
  article-title: A new classification method to diagnosis heart disease: Supervised artificial immune system (AIRS)
  publication-title: Proc Turkish Symp Artif Intell Neural Netw
– ident: ref23
  doi: 10.3390/app9112356
– year: 2018
  ident: ref18
  article-title: On deep neural networks for detecting heart disease
  publication-title: arXiv 1808 07168
– ident: ref35
  doi: 10.1007/s10489-017-1037-6
– volume: 13
  start-page: 281
  year: 2012
  ident: ref36
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2012
  ident: ref39
  article-title: Diagnosis of heart disease using fuzzy resolution mechanism
  publication-title: J Artif Intell
– volume: 19
  start-page: 6
  year: 2011
  ident: ref11
  article-title: Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks
  publication-title: Int J Comput Appl
– ident: ref29
  doi: 10.1109/ICIEV.2016.7759984
– ident: ref42
  doi: 10.1016/j.eswa.2007.06.004
– ident: ref25
  doi: 10.1109/ACCESS.2019.2904800
– ident: ref8
  doi: 10.1056/NEJMsa050467
– ident: ref14
  doi: 10.1016/j.eswa.2009.09.064
– ident: ref9
  doi: 10.1109/ACCESS.2019.2909969
– start-page: 385
  year: 1997
  ident: ref41
  article-title: Statistical control of RBF-like networks for classification
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref16
  doi: 10.1016/j.eswa.2006.01.027
– ident: ref3
  doi: 10.1038/nrcardio.2010.165
– ident: ref32
  doi: 10.1007/s00521-016-2604-1
– ident: ref30
  doi: 10.1007/s10916-016-0536-z
– volume: 51
  start-page: 126
  year: 2015
  ident: ref37
  article-title: Number of trees in random forest
  publication-title: Comput Eng Appl
– ident: ref21
  doi: 10.1109/ACCESS.2019.2932037
– ident: ref34
  doi: 10.1016/j.eswa.2016.10.020
– volume: 31
  start-page: 642
  year: 2009
  ident: ref15
  article-title: Intelligent and effective heart attack prediction system using data mining and artificial neural network
  publication-title: Eur J Sci Res
– year: 2017
  ident: ref26
  article-title: How machine learning is helping us predict heart disease and diabetes
  publication-title: Harvard Bus Rev
– ident: ref24
  doi: 10.1016/j.knosys.2017.06.003
– ident: ref17
  doi: 10.5815/ijisa.2015.12.08
SSID ssj0000816957
Score 2.5792313
Snippet Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 180235
SubjectTerms Accuracy
Algorithms
Developing countries
Diagnostic systems
Diseases
Failure detection
Feature extraction
feature selection
grid search algorithm
Heart
Heart diseases
Heart failure
hyperparameters optimization
LDCs
Machine learning
Model accuracy
Prediction algorithms
random search algorithm
Search algorithms
Solid modeling
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABFQoiUCofOBKaxI5jH7dbqgUJkBCVerP8LJWy2apNVbU_gN_N-NEoVSW4cLXG1sQz9jdjO98g9J4bUnsA5pK5xkOCQkTJnQ_ceIQIQCBt4u35129sdUy_nLQns1Jf4U1YogdOE7fPIGCvRaeM0IzCYhQeEF8TyiprOaWR57PiYpZMxT2Y10y0XaYZqiuxv1gu4YvCWy7xsREAWqGA7AyKImN_LrFyL9p8fDWcq5tr1fcz4DnaRs9yxIgXSdPn6JEbXqCnMx7BHfR7MeDPE7fmiDNp6ilOfOT4AKDK4s2Af6jBbtY4vTHGi_50c3E2_lpjaMbfYfNYn92CYJYKVTsvRxyqpfUYYlucDiBAYAX9R3yY7nbwoRvje67hJTo--vRzuSpzgYXS0IqPZfh9UnGiqBWAWRA81IwZRm3lCdXaQ26oHazZzgtvLIfAAoI_br0n2lNluo68QlvDZnCvEdatt8R1ndHOUc-89q3qOPVdJbhqhCpQczfX0mT28VAEo5cxC6mETAaSwUAyG6hAH6ZO54l84-_iB8GIk2hgzo4N4E8y-5P8lz8VaCe4wDQI54IChhdo984lZF7ll7KhbZsuPgtUTm7yQFUVS1_eU_XN_1D1LXoSxkwHQrtoa7y4cu8gRBr1XlwNfwDNMAl0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwEA-cCRpGjuOfcw6poLEQIhK4xTZsb1VpGm1pdrYH8DfzbPjRh1ISHCLrOfIkT_7fc57_h5Cb3hNJhYcc8xMZuGAQkTMjXXaeIQI8ECq9tHzjydsNqcfTvPT8MPN34UxxvjkM5O4Rx_LX5jmuhizzImniTF3iurpZOzycyjsrsla27toj-XAxUdob37yufzmKspNmIiJj02-DMKaY-lrELp8LpFkAhyXKyK74468an8os3KLcd7btGv540o2zY7zOX6Iqu2w-5yT78mmU0l985ui4_9_1yP0IPBSXPZAeozumPYJur-jVriPfpYtfj8oeHY4SLOe4V71HB-CQ9R41eIvstWrJe4zmXHZnK0uFt35EkMz_gRb1HJxA4bBytUGveywq8nWYGDQuP_NAQYz6N_hoz6ChI9M57PG2qdofvzu63QWhzIOcU1T3sXukqbkRFItwDMCRZkwVjOqU0uoUhZOoMrAzlBYYWvNgb4AxeTaWqIslXVRkGdo1K5a8xxhlVtNTFHUyhhqmVU2lwWntkgFl5mQEcq2s1nVQePcldpoKn_WSUVVTqcA7MpBoAoQiNDbodO6l_j4u_mhg8lg6vS5fQNMaRWWe8XgmDkRhayFYhRciLDAUxWhLNWaU0oitO9gMLwkzHmEDragq8JeclllNM_78GqE4gGIfwy1B_etob74R_sDNOouNuYV0KxOvQ5r6Rc-ryGv
  priority: 102
  providerName: Unpaywall
Title An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection
URI https://ieeexplore.ieee.org/document/8894128
https://www.proquest.com/docview/2455643729
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08894128.pdf
https://doaj.org/article/6114197ac9b64add9f561b3460dd8443
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacgAOvAoiUFY-cGy22dhJ7GO6pVqQWhBipXKK_GwrdpOqzQrRH8DvZvzYaAsIcYuicWJrxp6nv0HoLVNkYkExp6XJLTgohKfMWIeNRwgHDSSVz56fnJazOf1wVpxtof3hLowxxhefmbF79Ll83amVC5UdMMYpnKfbaLtiZbirNcRTXAMJXlQRWGiS8YN6OoU1uOotPs45qCnXMnZD-XiM_thU5Y59eX_VXokf38VisaFqjh-jk_UkQ4XJt_Gql2N1-xt-4_-u4gl6FG1OXAcheYq2TPsMPdxAItxFP-sWvx_QOXscYVfPcUA0x4eg7DTuWvxZtLpb4lCljOvFeXd92V8sMbzGH-H4WV7eAmGkcn0_b3rs-q0tMFjHOIQwgGAG43t8FLJD-Mj0viKsfY7mx---TGdpbNGQKpqxPnUXMAUjgmoOWg_Mj0lZqpLqzBIqpQXvUhrY9ZXlVmkGpgmYj0xbS6SlQlUVeYF22q41LxGWhdXEVJWSxlBbWmkLUTFqq4wzkXORoHzNu0ZF_HLXRmPReD8m401geOMY3kSGJ2h_GHQV4Dv-TX7ohGIgddjb_gUwsIlbuSnBhZzwSiguSwrqgVuwQSWhZaY1o5QkaNcxffhI5HeC9tYi1sRz4qbJaVGE1GmC0kHs_piq8M0z70z11d__8ho9cFQhSLSHdvrrlXkDZlMvRz7cMPK7ZoTuzU8_1V9_AaDgFks
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvAoiUMAHjs02GzuJfdxuqbbQLRJqpd4sP0tFNqnarBD9AfxuxrE32gJC3KJonNiasefpbxB6zzQZO1DMaWlzBw4K4SmzzmPjEcJBAyndZ8_nJ-XsjH48L8430O5wF8Za2xef2ZF_7HP5ptVLHyrbY4xTOE_vofsFpbQIt7WGiIpvIcGLKkILjTO-N5lOYRW-fouPcg6KyjeNXVM_PUp_bKtyx8LcWjZX8sd3WddryubwMZqvphlqTL6Nlp0a6dvfEBz_dx1P0KNodeJJEJOnaMM2z9DDNSzCbfRz0uCjAZ-zwxF49QIHTHO8D-rO4LbBX2Rj2gUOdcp4Ul-015fd1wWG1_gzHECLy1sgjFS-8-dNh33HtRqDfYxDEAMIZjC-wwchP4QPbNfXhDXP0dnhh9PpLI1NGlJNM9al_gqmZERSw0HvgQEyLktdUpM5QpVy4F8qC_u-ctxpw8A4AQOSGeeIclTqqiIv0GbTNvYlwqpwhtiq0spa6kqnXCErRl2VcSZzLhOUr3gndEQw9400atF7MhkXgeHCM1xEhidodxh0FQA8_k2-74ViIPXo2_0LYKCIm1mU4ESOeSU1VyUFBcEdWKGK0DIzhlFKErTtmT58JPI7QTsrERPxpLgROS2KkDxNUDqI3R9TlX37zDtTffX3v7xDW7PT-bE4Pjr59Bo98CNCyGgHbXbXS_sGjKhOve33zi8GHBbz
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwEA-cCRpGjuOfcw6poLEQIhK4xTZsb1VpGm1pdrYH8DfzbPjRh1ISHCLrOfIkT_7fc57_h5Cb3hNJhYcc8xMZuGAQkTMjXXaeIQI8ECq9tHzjydsNqcfTvPT8MPN34UxxvjkM5O4Rx_LX5jmuhizzImniTF3iurpZOzycyjsrsla27toj-XAxUdob37yufzmKspNmIiJj02-DMKaY-lrELp8LpFkAhyXKyK74468an8os3KLcd7btGv540o2zY7zOX6Iqu2w-5yT78mmU0l985ui4_9_1yP0IPBSXPZAeozumPYJur-jVriPfpYtfj8oeHY4SLOe4V71HB-CQ9R41eIvstWrJe4zmXHZnK0uFt35EkMz_gRb1HJxA4bBytUGveywq8nWYGDQuP_NAQYz6N_hoz6ChI9M57PG2qdofvzu63QWhzIOcU1T3sXukqbkRFItwDMCRZkwVjOqU0uoUhZOoMrAzlBYYWvNgb4AxeTaWqIslXVRkGdo1K5a8xxhlVtNTFHUyhhqmVU2lwWntkgFl5mQEcq2s1nVQePcldpoKn_WSUVVTqcA7MpBoAoQiNDbodO6l_j4u_mhg8lg6vS5fQNMaRWWe8XgmDkRhayFYhRciLDAUxWhLNWaU0oitO9gMLwkzHmEDragq8JeclllNM_78GqE4gGIfwy1B_etob74R_sDNOouNuYV0KxOvQ5r6Rc-ryGv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Learning+System+Based+on+Random+Search+Algorithm+and+Optimized+Random+Forest+Model+for+Improved+Heart+Disease+Detection&rft.jtitle=IEEE+access&rft.au=Javeed%2C+Ashir&rft.au=Zhou%2C+Shijie&rft.au=Yongjian%2C+Liao&rft.au=Qasim%2C+Iqbal&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=180235&rft.epage=180243&rft_id=info:doi/10.1109%2FACCESS.2019.2952107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2952107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon