An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection
Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different...
Saved in:
| Published in | IEEE access Vol. 7; pp. 180235 - 180243 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2952107 |
Cover
| Abstract | Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different intelligent systems for automated detection of heart failure. However, most of these methods are facing the problem of overfitting i.e. the recently proposed methods improved heart failure detection accuracy on testing data while compromising heart failure detection accuracy on training data. Consequently, the constructed models overfit to the testing data. In order, to come up with an intelligent system that would show good performance on both training and testing data, in this paper we develop a novel diagnostic system. The proposed diagnostic system uses random search algorithm (RSA) for features selection and random forest model for heart failure prediction. The proposed diagnostic system is optimized using grid search algorithm. Two types of experiments are performed to evaluate the precision of the proposed method. In the first experiment, only random forest model is developed while in the second experiment the proposed RSA based random forest model is developed. Experiments are performed using an online heart failure database namely Cleveland dataset. The proposed method is efficient and less complex than conventional random forest model as it produces 3.3% higher accuracy than conventional random forest model while using only 7 features. Moreover, the proposed method shows better performance than five other state of the art machine learning models. In addition, the proposed method achieved classification accuracy of 93.33% while improving the training accuracy as well. Finally, the proposed method shows better performance than eleven recently proposed methods for heart failure detection. |
|---|---|
| AbstractList | Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in under-developed and developing countries where there is a paucity of human experts and equipments. Hence, different researchers have developed different intelligent systems for automated detection of heart failure. However, most of these methods are facing the problem of overfitting i.e. the recently proposed methods improved heart failure detection accuracy on testing data while compromising heart failure detection accuracy on training data. Consequently, the constructed models overfit to the testing data. In order, to come up with an intelligent system that would show good performance on both training and testing data, in this paper we develop a novel diagnostic system. The proposed diagnostic system uses random search algorithm (RSA) for features selection and random forest model for heart failure prediction. The proposed diagnostic system is optimized using grid search algorithm. Two types of experiments are performed to evaluate the precision of the proposed method. In the first experiment, only random forest model is developed while in the second experiment the proposed RSA based random forest model is developed. Experiments are performed using an online heart failure database namely Cleveland dataset. The proposed method is efficient and less complex than conventional random forest model as it produces 3.3% higher accuracy than conventional random forest model while using only 7 features. Moreover, the proposed method shows better performance than five other state of the art machine learning models. In addition, the proposed method achieved classification accuracy of 93.33% while improving the training accuracy as well. Finally, the proposed method shows better performance than eleven recently proposed methods for heart failure detection. |
| Author | Yongjian, Liao Javeed, Ashir Zhou, Shijie Qasim, Iqbal Nour, Redhwan Noor, Adeeb |
| Author_xml | – sequence: 1 givenname: Ashir surname: Javeed fullname: Javeed, Ashir organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Shijie surname: Zhou fullname: Zhou, Shijie email: sjzhou@uestc.edu.cn organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Liao orcidid: 0000-0003-3139-8528 surname: Yongjian fullname: Yongjian, Liao organization: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Iqbal orcidid: 0000-0002-4786-7299 surname: Qasim fullname: Qasim, Iqbal organization: Department of Computer Science, University of Science and Technology at Bannu, Bannu, Pakistan – sequence: 5 givenname: Adeeb surname: Noor fullname: Noor, Adeeb organization: Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 6 givenname: Redhwan surname: Nour fullname: Nour, Redhwan organization: Department of Computer Science, Taibah University, Medina, Saudi Arabia |
| BookMark | eNptUc1uGyEYXFWJ1DTJE-SC1LNdWFgWjq6TNJZcRaqTM2L5cbB2wQXcyn2APndx17Iqq1xAw8x8P_OhuvDBm6q6Q3CKEOSfZvP5w2o1rSHi05o3NYLtu-qqRpRPcIPpxT_v99VtShtYDitQ015Vv2ceLHw2fe_WxmewNDJ659dgtU_ZDOCzTEaD4ME36XUYwKr8qzcw69chuvw2gAKD5212g_tViEfWY4gmZfA1aNMDGyJYDNsYfhTCU9FncO-SKcbg3mSjsgv-prq0sk_m9nhfV6-PDy_zp8ny-ctiPltOFIEsT2jNGsmwJJrTlsG2QZQqSjS0mHSdrRHqTFPmt9wqzTiCtKFMW4s7S6RqW3xdLUZfHeRGbKMbZNyLIJ34C4S4FqU_p3ojKEIE8VYq3lEitea2oajDhEKtGSG4eJHRa-e3cv9T9v3JEEFxiEZIpUxK4hCNOEZTZB9HWdnI911Zk9iEXfRlalGTpqEEtzUvLD6yVAwpRWOFclkeVpWjdP2pwhj-eQV8pj3v6_-qu1HljDEnBWOcoJrhPwCeu08 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_127550 crossref_primary_10_1007_s10489_020_01948_1 crossref_primary_10_1016_j_measurement_2022_112166 crossref_primary_10_1515_bams_2020_0033 crossref_primary_10_1016_j_rineng_2024_101894 crossref_primary_10_3390_biomedicines11020439 crossref_primary_10_3390_diagnostics11101863 crossref_primary_10_1016_j_istruc_2023_05_136 crossref_primary_10_3390_math11061457 crossref_primary_10_15232_aas_2023_02504 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1016_j_bspc_2021_103456 crossref_primary_10_1109_ACCESS_2023_3339225 crossref_primary_10_1016_j_bspc_2023_104700 crossref_primary_10_1038_s41598_023_29395_1 crossref_primary_10_1155_2022_1901735 crossref_primary_10_1007_s10462_023_10493_5 crossref_primary_10_1115_1_4065777 crossref_primary_10_4108_eetiot_5326 crossref_primary_10_1007_s11276_024_03807_0 crossref_primary_10_1109_ACCESS_2025_3532385 crossref_primary_10_1177_00405175211040869 crossref_primary_10_1016_j_orp_2024_100308 crossref_primary_10_32604_csse_2023_021469 crossref_primary_10_3390_app13010118 crossref_primary_10_1080_10255842_2024_2310075 crossref_primary_10_1007_s11831_023_10005_2 crossref_primary_10_56977_jicce_2024_22_1_56 crossref_primary_10_1016_j_ibmed_2025_100199 crossref_primary_10_1016_j_jobe_2023_107904 crossref_primary_10_1109_ACCESS_2020_3016116 crossref_primary_10_3389_fnagi_2021_828214 crossref_primary_10_1109_ACCESS_2023_3289584 crossref_primary_10_1088_1742_6596_2040_1_012051 crossref_primary_10_48084_etasr_4854 crossref_primary_10_4018_IJHISI_334021 crossref_primary_10_59717_j_xinn_med_2023_100023 crossref_primary_10_3390_app13085188 crossref_primary_10_1051_e3sconf_202130901042 crossref_primary_10_1115_1_4056227 crossref_primary_10_2174_18741207_v16_e221227_2022_HT27_3589_14 crossref_primary_10_1016_j_engappai_2024_109389 crossref_primary_10_1049_smc2_12003 crossref_primary_10_4018_IJSIR_313665 crossref_primary_10_1038_s41598_024_67973_z crossref_primary_10_1016_j_cmpb_2020_105770 crossref_primary_10_1155_2022_9288452 crossref_primary_10_1080_21681163_2022_2156927 crossref_primary_10_1007_s10916_023_01906_7 crossref_primary_10_1109_ACCESS_2022_3228176 crossref_primary_10_1007_s12145_024_01398_0 crossref_primary_10_1016_j_eswa_2024_123534 crossref_primary_10_1109_JIOT_2023_3247452 crossref_primary_10_1016_j_bspc_2021_103260 crossref_primary_10_1080_21681163_2022_2032361 crossref_primary_10_3233_JIFS_224298 crossref_primary_10_1007_s41870_021_00671_5 crossref_primary_10_1007_s00500_023_08388_2 crossref_primary_10_1016_j_compbiomed_2025_109958 crossref_primary_10_3390_life12071097 crossref_primary_10_1016_j_asoc_2022_109371 crossref_primary_10_3390_electronics11244081 crossref_primary_10_32604_cmc_2023_041031 crossref_primary_10_31083_j_fbl2902082 crossref_primary_10_1007_s11042_024_19169_w crossref_primary_10_1016_j_advengsoft_2022_103297 crossref_primary_10_3390_s23104949 crossref_primary_10_1038_s41598_024_79127_2 crossref_primary_10_1007_s13042_022_01573_z crossref_primary_10_1016_j_eswa_2022_117882 crossref_primary_10_3390_make6020046 crossref_primary_10_1177_11769351221147244 crossref_primary_10_1016_j_bspc_2024_107070 crossref_primary_10_3233_WEB_220118 crossref_primary_10_1109_ACCESS_2023_3325681 crossref_primary_10_3390_math11224667 crossref_primary_10_1016_j_jebo_2024_03_018 crossref_primary_10_1016_j_asoc_2024_111273 crossref_primary_10_1016_j_compbiolchem_2025_108394 crossref_primary_10_1007_s11042_023_16562_9 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_1109_ACCESS_2022_3153047 crossref_primary_10_1007_s42979_023_02081_9 crossref_primary_10_1038_s41598_024_55991_w crossref_primary_10_1002_ett_4679 crossref_primary_10_1007_s11042_021_11259_3 crossref_primary_10_3390_a16060293 crossref_primary_10_1080_10255842_2022_2116577 crossref_primary_10_1016_j_procs_2023_01_107 crossref_primary_10_1109_TVT_2024_3395535 crossref_primary_10_1109_ACCESS_2020_3022854 crossref_primary_10_1111_exsy_13002 crossref_primary_10_3390_math11061467 crossref_primary_10_1016_j_bspc_2022_104019 crossref_primary_10_3390_math11194065 crossref_primary_10_1016_j_compeleceng_2023_109068 crossref_primary_10_1016_j_mehy_2020_110072 crossref_primary_10_1016_j_knosys_2022_109709 crossref_primary_10_1080_03235408_2021_2003054 crossref_primary_10_2174_18741207_v17_e230510_2022_HT28_4371_8 crossref_primary_10_1109_ACCESS_2024_3470537 crossref_primary_10_32604_cmc_2023_036141 |
| Cites_doi | 10.1016/j.physa.2017.04.113 10.1109/ICSEng.2011.80 10.1016/j.cmpb.2016.10.011 10.1007/s11042-017-5515-y 10.1016/j.eswa.2005.07.022 10.1016/j.jacc.2013.11.053 10.1016/j.jacc.2008.08.049 10.1377/hlthaff.27.4.1064 10.1016/j.eswa.2019.06.052 10.4236/jsea.2014.712093 10.1109/ICACSIS.2018.8618166 10.1109/TITB.2009.2019637 10.1016/j.eswa.2008.09.013 10.1016/j.jksuci.2011.09.002 10.1007/s40265-013-0057-8 10.1016/j.tele.2018.11.007 10.1016/j.eswa.2013.01.030 10.3390/app9112356 10.1007/s10489-017-1037-6 10.1109/ICIEV.2016.7759984 10.1016/j.eswa.2007.06.004 10.1109/ACCESS.2019.2904800 10.1056/NEJMsa050467 10.1016/j.eswa.2009.09.064 10.1109/ACCESS.2019.2909969 10.1016/j.eswa.2006.01.027 10.1038/nrcardio.2010.165 10.1007/s00521-016-2604-1 10.1007/s10916-016-0536-z 10.1109/ACCESS.2019.2932037 10.1016/j.eswa.2016.10.020 10.1016/j.knosys.2017.06.003 10.5815/ijisa.2015.12.08 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2952107 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 180243 |
| ExternalDocumentID | oai_doaj_org_article_6114197ac9b64add9f561b3460dd8443 10.1109/access.2019.2952107 10_1109_ACCESS_2019_2952107 8894128 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: King Abdulaziz University grantid: DF-608-611-1441 funderid: 10.13039/501100004054 – fundername: Sichuan Science and Technology Program grantid: 2018GZ0085; 2019YFG0399 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-6285a83a4d9678075166c64d0f34bbf211be5107f9fcd89106568dff3bf4ac773 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:08 EDT 2025 Wed Oct 01 15:25:33 EDT 2025 Sun Jun 29 15:45:27 EDT 2025 Thu Apr 24 23:44:01 EDT 2025 Wed Oct 01 02:05:46 EDT 2025 Wed Aug 27 02:47:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-6285a83a4d9678075166c64d0f34bbf211be5107f9fcd89106568dff3bf4ac773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4786-7299 0000-0003-3139-8528 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8894128 |
| PQID | 2455643729 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2952107 ieee_primary_8894128 doaj_primary_oai_doaj_org_article_6114197ac9b64add9f561b3460dd8443 unpaywall_primary_10_1109_access_2019_2952107 crossref_primary_10_1109_ACCESS_2019_2952107 proquest_journals_2455643729 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 cheung (ref47) 2001 ref14 ref31 ref30 ref33 ref32 ref10 kumar (ref40) 2011 jankowski (ref41) 1997 ref2 patil (ref15) 2009; 31 ref17 ref38 ref16 ref19 šter (ref45) 1996 polat (ref44) 2005 liu (ref37) 2015; 51 paschalidis (ref26) 2017 ref24 ref23 ref25 vanisree (ref11) 2011; 19 ref20 ref42 ref22 ref21 ref43 ref28 ref27 tomov (ref18) 2018 ref29 bergstra (ref36) 2012; 13 ref8 ref7 ref9 kurnar (ref39) 2012 ref4 ref3 ref6 ref5 bonow (ref1) 2011 (ref46) 2007 |
| References_xml | – ident: ref31 doi: 10.1016/j.physa.2017.04.113 – ident: ref28 doi: 10.1109/ICSEng.2011.80 – ident: ref20 doi: 10.1016/j.cmpb.2016.10.011 – ident: ref19 doi: 10.1007/s11042-017-5515-y – year: 2007 ident: ref46 publication-title: Datasets Used for Classification Comparison of Results – start-page: 427 year: 1996 ident: ref45 article-title: Neural networks in medical diagnosis: Comparison with other methods publication-title: Proc Conf Eng Appl Neural Networks – ident: ref10 doi: 10.1016/j.eswa.2005.07.022 – ident: ref4 doi: 10.1016/j.jacc.2013.11.053 – ident: ref5 doi: 10.1016/j.jacc.2008.08.049 – year: 2011 ident: ref1 publication-title: Braunwald's Heart Disease E-Book A Textbook of Cardiovascular Medicine – ident: ref7 doi: 10.1377/hlthaff.27.4.1064 – ident: ref22 doi: 10.1016/j.eswa.2019.06.052 – ident: ref27 doi: 10.4236/jsea.2014.712093 – ident: ref38 doi: 10.1109/ICACSIS.2018.8618166 – start-page: 91 year: 2011 ident: ref40 article-title: Adaptive neuro-fuzzy inference system for heart disease diagnosis publication-title: Proc Int Conf Inf Syst Comput Eng Appl (ICISCEA) – ident: ref43 doi: 10.1109/TITB.2009.2019637 – ident: ref2 doi: 10.1016/j.eswa.2008.09.013 – ident: ref13 doi: 10.1016/j.jksuci.2011.09.002 – ident: ref6 doi: 10.1007/s40265-013-0057-8 – ident: ref33 doi: 10.1016/j.tele.2018.11.007 – ident: ref12 doi: 10.1016/j.eswa.2013.01.030 – year: 2001 ident: ref47 article-title: Machine learning techniques for medical analysis. school of information technology and electrical engineering – year: 2005 ident: ref44 article-title: A new classification method to diagnosis heart disease: Supervised artificial immune system (AIRS) publication-title: Proc Turkish Symp Artif Intell Neural Netw – ident: ref23 doi: 10.3390/app9112356 – year: 2018 ident: ref18 article-title: On deep neural networks for detecting heart disease publication-title: arXiv 1808 07168 – ident: ref35 doi: 10.1007/s10489-017-1037-6 – volume: 13 start-page: 281 year: 2012 ident: ref36 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – start-page: 1 year: 2012 ident: ref39 article-title: Diagnosis of heart disease using fuzzy resolution mechanism publication-title: J Artif Intell – volume: 19 start-page: 6 year: 2011 ident: ref11 article-title: Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks publication-title: Int J Comput Appl – ident: ref29 doi: 10.1109/ICIEV.2016.7759984 – ident: ref42 doi: 10.1016/j.eswa.2007.06.004 – ident: ref25 doi: 10.1109/ACCESS.2019.2904800 – ident: ref8 doi: 10.1056/NEJMsa050467 – ident: ref14 doi: 10.1016/j.eswa.2009.09.064 – ident: ref9 doi: 10.1109/ACCESS.2019.2909969 – start-page: 385 year: 1997 ident: ref41 article-title: Statistical control of RBF-like networks for classification publication-title: Proc Int Conf Artif Neural Netw – ident: ref16 doi: 10.1016/j.eswa.2006.01.027 – ident: ref3 doi: 10.1038/nrcardio.2010.165 – ident: ref32 doi: 10.1007/s00521-016-2604-1 – ident: ref30 doi: 10.1007/s10916-016-0536-z – volume: 51 start-page: 126 year: 2015 ident: ref37 article-title: Number of trees in random forest publication-title: Comput Eng Appl – ident: ref21 doi: 10.1109/ACCESS.2019.2932037 – ident: ref34 doi: 10.1016/j.eswa.2016.10.020 – volume: 31 start-page: 642 year: 2009 ident: ref15 article-title: Intelligent and effective heart attack prediction system using data mining and artificial neural network publication-title: Eur J Sci Res – year: 2017 ident: ref26 article-title: How machine learning is helping us predict heart disease and diabetes publication-title: Harvard Bus Rev – ident: ref24 doi: 10.1016/j.knosys.2017.06.003 – ident: ref17 doi: 10.5815/ijisa.2015.12.08 |
| SSID | ssj0000816957 |
| Score | 2.5792313 |
| Snippet | Heart failure is considered one of the leading cause of death around the world. The diagnosis of heart failure is a challenging task especially in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 180235 |
| SubjectTerms | Accuracy Algorithms Developing countries Diagnostic systems Diseases Failure detection Feature extraction feature selection grid search algorithm Heart Heart diseases Heart failure hyperparameters optimization LDCs Machine learning Model accuracy Prediction algorithms random search algorithm Search algorithms Solid modeling Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABFQoiUCofOBKaxI5jH7dbqgUJkBCVerP8LJWy2apNVbU_gN_N-NEoVSW4cLXG1sQz9jdjO98g9J4bUnsA5pK5xkOCQkTJnQ_ceIQIQCBt4u35129sdUy_nLQns1Jf4U1YogdOE7fPIGCvRaeM0IzCYhQeEF8TyiprOaWR57PiYpZMxT2Y10y0XaYZqiuxv1gu4YvCWy7xsREAWqGA7AyKImN_LrFyL9p8fDWcq5tr1fcz4DnaRs9yxIgXSdPn6JEbXqCnMx7BHfR7MeDPE7fmiDNp6ilOfOT4AKDK4s2Af6jBbtY4vTHGi_50c3E2_lpjaMbfYfNYn92CYJYKVTsvRxyqpfUYYlucDiBAYAX9R3yY7nbwoRvje67hJTo--vRzuSpzgYXS0IqPZfh9UnGiqBWAWRA81IwZRm3lCdXaQ26oHazZzgtvLIfAAoI_br0n2lNluo68QlvDZnCvEdatt8R1ndHOUc-89q3qOPVdJbhqhCpQczfX0mT28VAEo5cxC6mETAaSwUAyG6hAH6ZO54l84-_iB8GIk2hgzo4N4E8y-5P8lz8VaCe4wDQI54IChhdo984lZF7ll7KhbZsuPgtUTm7yQFUVS1_eU_XN_1D1LXoSxkwHQrtoa7y4cu8gRBr1XlwNfwDNMAl0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwEA-cCRpGjuOfcw6poLEQIhK4xTZsb1VpGm1pdrYH8DfzbPjRh1ISHCLrOfIkT_7fc57_h5Cb3hNJhYcc8xMZuGAQkTMjXXaeIQI8ECq9tHzjydsNqcfTvPT8MPN34UxxvjkM5O4Rx_LX5jmuhizzImniTF3iurpZOzycyjsrsla27toj-XAxUdob37yufzmKspNmIiJj02-DMKaY-lrELp8LpFkAhyXKyK74468an8os3KLcd7btGv540o2zY7zOX6Iqu2w-5yT78mmU0l985ui4_9_1yP0IPBSXPZAeozumPYJur-jVriPfpYtfj8oeHY4SLOe4V71HB-CQ9R41eIvstWrJe4zmXHZnK0uFt35EkMz_gRb1HJxA4bBytUGveywq8nWYGDQuP_NAQYz6N_hoz6ChI9M57PG2qdofvzu63QWhzIOcU1T3sXukqbkRFItwDMCRZkwVjOqU0uoUhZOoMrAzlBYYWvNgb4AxeTaWqIslXVRkGdo1K5a8xxhlVtNTFHUyhhqmVU2lwWntkgFl5mQEcq2s1nVQePcldpoKn_WSUVVTqcA7MpBoAoQiNDbodO6l_j4u_mhg8lg6vS5fQNMaRWWe8XgmDkRhayFYhRciLDAUxWhLNWaU0oitO9gMLwkzHmEDragq8JeclllNM_78GqE4gGIfwy1B_etob74R_sDNOouNuYV0KxOvQ5r6Rc-ryGv priority: 102 providerName: Unpaywall |
| Title | An Intelligent Learning System Based on Random Search Algorithm and Optimized Random Forest Model for Improved Heart Disease Detection |
| URI | https://ieeexplore.ieee.org/document/8894128 https://www.proquest.com/docview/2455643729 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08894128.pdf https://doaj.org/article/6114197ac9b64add9f561b3460dd8443 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacgAOvAoiUFY-cGy22dhJ7GO6pVqQWhBipXKK_GwrdpOqzQrRH8DvZvzYaAsIcYuicWJrxp6nv0HoLVNkYkExp6XJLTgohKfMWIeNRwgHDSSVz56fnJazOf1wVpxtof3hLowxxhefmbF79Ll83amVC5UdMMYpnKfbaLtiZbirNcRTXAMJXlQRWGiS8YN6OoU1uOotPs45qCnXMnZD-XiM_thU5Y59eX_VXokf38VisaFqjh-jk_UkQ4XJt_Gql2N1-xt-4_-u4gl6FG1OXAcheYq2TPsMPdxAItxFP-sWvx_QOXscYVfPcUA0x4eg7DTuWvxZtLpb4lCljOvFeXd92V8sMbzGH-H4WV7eAmGkcn0_b3rs-q0tMFjHOIQwgGAG43t8FLJD-Mj0viKsfY7mx---TGdpbNGQKpqxPnUXMAUjgmoOWg_Mj0lZqpLqzBIqpQXvUhrY9ZXlVmkGpgmYj0xbS6SlQlUVeYF22q41LxGWhdXEVJWSxlBbWmkLUTFqq4wzkXORoHzNu0ZF_HLXRmPReD8m401geOMY3kSGJ2h_GHQV4Dv-TX7ohGIgddjb_gUwsIlbuSnBhZzwSiguSwrqgVuwQSWhZaY1o5QkaNcxffhI5HeC9tYi1sRz4qbJaVGE1GmC0kHs_piq8M0z70z11d__8ho9cFQhSLSHdvrrlXkDZlMvRz7cMPK7ZoTuzU8_1V9_AaDgFks |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvAoiUMAHjs02GzuJfdxuqbbQLRJqpd4sP0tFNqnarBD9AfxuxrE32gJC3KJonNiasefpbxB6zzQZO1DMaWlzBw4K4SmzzmPjEcJBAyndZ8_nJ-XsjH48L8430O5wF8Za2xef2ZF_7HP5ptVLHyrbY4xTOE_vofsFpbQIt7WGiIpvIcGLKkILjTO-N5lOYRW-fouPcg6KyjeNXVM_PUp_bKtyx8LcWjZX8sd3WddryubwMZqvphlqTL6Nlp0a6dvfEBz_dx1P0KNodeJJEJOnaMM2z9DDNSzCbfRz0uCjAZ-zwxF49QIHTHO8D-rO4LbBX2Rj2gUOdcp4Ul-015fd1wWG1_gzHECLy1sgjFS-8-dNh33HtRqDfYxDEAMIZjC-wwchP4QPbNfXhDXP0dnhh9PpLI1NGlJNM9al_gqmZERSw0HvgQEyLktdUpM5QpVy4F8qC_u-ctxpw8A4AQOSGeeIclTqqiIv0GbTNvYlwqpwhtiq0spa6kqnXCErRl2VcSZzLhOUr3gndEQw9400atF7MhkXgeHCM1xEhidodxh0FQA8_k2-74ViIPXo2_0LYKCIm1mU4ESOeSU1VyUFBcEdWKGK0DIzhlFKErTtmT58JPI7QTsrERPxpLgROS2KkDxNUDqI3R9TlX37zDtTffX3v7xDW7PT-bE4Pjr59Bo98CNCyGgHbXbXS_sGjKhOve33zi8GHBbz |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOyAO_BqIwEA-cCRpGjuOfcw6poLEQIhK4xTZsb1VpGm1pdrYH8DfzbPjRh1ISHCLrOfIkT_7fc57_h5Cb3hNJhYcc8xMZuGAQkTMjXXaeIQI8ECq9tHzjydsNqcfTvPT8MPN34UxxvjkM5O4Rx_LX5jmuhizzImniTF3iurpZOzycyjsrsla27toj-XAxUdob37yufzmKspNmIiJj02-DMKaY-lrELp8LpFkAhyXKyK74468an8os3KLcd7btGv540o2zY7zOX6Iqu2w-5yT78mmU0l985ui4_9_1yP0IPBSXPZAeozumPYJur-jVriPfpYtfj8oeHY4SLOe4V71HB-CQ9R41eIvstWrJe4zmXHZnK0uFt35EkMz_gRb1HJxA4bBytUGveywq8nWYGDQuP_NAQYz6N_hoz6ChI9M57PG2qdofvzu63QWhzIOcU1T3sXukqbkRFItwDMCRZkwVjOqU0uoUhZOoMrAzlBYYWvNgb4AxeTaWqIslXVRkGdo1K5a8xxhlVtNTFHUyhhqmVU2lwWntkgFl5mQEcq2s1nVQePcldpoKn_WSUVVTqcA7MpBoAoQiNDbodO6l_j4u_mhg8lg6vS5fQNMaRWWe8XgmDkRhayFYhRciLDAUxWhLNWaU0oitO9gMLwkzHmEDragq8JeclllNM_78GqE4gGIfwy1B_etob74R_sDNOouNuYV0KxOvQ5r6Rc-ryGv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Learning+System+Based+on+Random+Search+Algorithm+and+Optimized+Random+Forest+Model+for+Improved+Heart+Disease+Detection&rft.jtitle=IEEE+access&rft.au=Javeed%2C+Ashir&rft.au=Zhou%2C+Shijie&rft.au=Yongjian%2C+Liao&rft.au=Qasim%2C+Iqbal&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=180235&rft.epage=180243&rft_id=info:doi/10.1109%2FACCESS.2019.2952107&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2952107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |