Classifying Transformer Winding Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine

As an important part of power system, power transformer plays an irreplaceable role in the process of power transmission. Diagnosis of transformer's failure is of significance to maintain its safe and stable operation. Frequency response analysis (FRA) has been widely accepted as an effective t...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 112494 - 112504
Main Authors Liu, Jiangnan, Zhao, Zhongyong, Tang, Chao, Yao, Chenguo, Li, Chengxiang, Islam, Syed
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2932497

Cover

More Information
Summary:As an important part of power system, power transformer plays an irreplaceable role in the process of power transmission. Diagnosis of transformer's failure is of significance to maintain its safe and stable operation. Frequency response analysis (FRA) has been widely accepted as an effective tool for winding deformation fault diagnosis, which is one of the common failures for power transformers. However, there is no standard and reliable code for FRA interpretation as so far. In this paper, support vector machine (SVM) is combined with FRA to diagnose transformer faults. Furthermore, advanced optimization algorithms are also applied to improve the performance of models. A series of winding fault emulating experiments were carried out on an actual model transformer, the key features are extracted from measured FRA data, and the diagnostic model is trained and obtained, to arrive at an outcome for classifying the fault types and degrees of winding deformation faults with satisfactory accuracy. The diagnostic results indicate that this method has potential to be an intelligent, standardized, accurate and powerful tool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2932497