ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning

The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on co...

Full description

Saved in:
Bibliographic Details
Published inAmino acids Vol. 55; no. 9; pp. 1121 - 1136
Main Authors Liu, Mingyou, Liu, Hongmei, Wu, Tao, Zhu, Yingxue, Zhou, Yuwei, Huang, Ziru, Xiang, Changcheng, Huang, Jian
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0939-4451
1438-2199
1438-2199
DOI10.1007/s00726-023-03300-6

Cover

Abstract The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs’ identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides’ candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew’s correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides’ prediction and it is available at http://150.158.148.228:5000/ .
AbstractList The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs’ identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides’ candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew’s correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides’ prediction and it is available at http://150.158.148.228:5000/ .
The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
Author Liu, Mingyou
Wu, Tao
Huang, Jian
Huang, Ziru
Zhu, Yingxue
Liu, Hongmei
Zhou, Yuwei
Xiang, Changcheng
Author_xml – sequence: 1
  givenname: Mingyou
  surname: Liu
  fullname: Liu, Mingyou
  organization: School of Biology and Engineering, Guizhou Medical University, School of Life Science and Technology, University of Electronic Science and Technology
– sequence: 2
  givenname: Hongmei
  surname: Liu
  fullname: Liu, Hongmei
  organization: School of Biology and Engineering, Guizhou Medical University
– sequence: 3
  givenname: Tao
  surname: Wu
  fullname: Wu, Tao
  organization: School of Biology and Engineering, Guizhou Medical University
– sequence: 4
  givenname: Yingxue
  surname: Zhu
  fullname: Zhu, Yingxue
  organization: School of Biology and Engineering, Guizhou Medical University
– sequence: 5
  givenname: Yuwei
  surname: Zhou
  fullname: Zhou, Yuwei
  organization: School of Life Science and Technology, University of Electronic Science and Technology
– sequence: 6
  givenname: Ziru
  surname: Huang
  fullname: Huang, Ziru
  organization: School of Life Science and Technology, University of Electronic Science and Technology
– sequence: 7
  givenname: Changcheng
  surname: Xiang
  fullname: Xiang, Changcheng
  email: 19999607@abtu.edu.cn
  organization: School of Computer Science and Technology, Aba Teachers University
– sequence: 8
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  email: hj@uestc.edu.cn
  organization: School of Life Science and Technology, University of Electronic Science and Technology, School of Healthcare Technology, Chengdu Neusoft University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37402073$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUhi2UiGwCL0CBRqKhMfF1bNNFy1WKRIpQW177TOQwaw_2DIiO1-D18iTxsomQUoTGx8X3n8v_H6ODlBMg9IKSN5QQdVrbw3pMGMeEc0Jw_wStqOAaM2rMAVoRww0WQtIjdFzrNSGUado_RUdcCcKI4ivkztYX-F1KML7tXJoj9rnk5H7EstRugmmOAerN7z_dVCBEP8ecuo2rELr2CQBTl2Apbmxl_pnLtw5She1mhG4EV1JMV8_Q4eDGCs_v6gn6-uH95foTPv_y8fP67Bx7QfSMpQ894UY50CooFZgyRLjBSQOaeQ8uDAG4E9wIB7IdDt4ZLfthGAQbgPIT9Hrfdyr5-wJ1tttYPYyjS5CXajmVXErdM_5flOlmJ-Oa9A199QC9zktJ7ZBGKckIlUY36uUdtWy2EOxU4taVX_be5wboPeBLrrXAYH2c3c7Nubg4WkrsLlK7j9S24fZvpHa3AXsgve_-qIjvRbXB6QrKv7UfUd0CXLyzog
CitedBy_id crossref_primary_10_3390_fermentation10070359
crossref_primary_10_1016_j_future_2024_06_008
crossref_primary_10_1016_j_csbj_2024_09_015
crossref_primary_10_3934_mbe_2023954
crossref_primary_10_3389_fgene_2024_1352504
Cites_doi 10.1016/j.biopha.2018.11.127
10.1093/bib/bbaa423
10.22159/ajpcr.2022.v15i7.44547
10.1155/2015/475062
10.1016/j.biotechadv.2018.01.004
10.1093/bib/bbab258
10.3390/v15040820
10.1038/s41597-022-01394-3
10.1007/978-3-030-56485-8_3
10.1109/ACCESS.2019.2955754
10.1101/2021.11.29.470292
10.1007/978-3-319-33383-0_5
10.3390/ijms20184331
10.1109/BigData47090.2019.9005997
10.1093/bioinformatics/btz246
10.1093/bib/bbac265
10.3389/fchem.2018.00013
10.1038/s41598-019-56847-4
10.1038/nature14539
10.1109/TMI.2016.2528162
10.1109/IEC47844.2019.8950650
10.2217/pgs-2018-0036
10.3390/ijms20081964
10.4103/0301-4738.37595
10.1038/s41598-016-0028-x
10.21037/jtd.2019.01.25
10.30534/ijatcse/2020/175942020
10.3389/fmed.2020.00427
10.1038/s41421-020-0153-3
10.2174/1574893613666181113131415
10.1093/bib/bbab412
10.7150/ijbs.24612
10.1093/bib/bbab263
10.1109/TCBB.2023.3238370
10.1016/B978-0-323-88506-5.50312-0
10.1016/j.jtbi.2010.12.024
10.1093/nar/gks450
10.1007/s12539-019-00330-1
10.1016/j.asoc.2020.106912
10.1093/bib/bbz043
10.1101/2021.03.25.436982
10.1016/B978-0-12-816125-8.00006-7
10.1186/s12864-019-6413-7
10.1007/s11704-019-8208-z
10.1093/bib/bbaa288
10.1145/2939672.2939785
10.1016/j.ijbiomac.2020.11.096
10.1097/CM9.0000000000000797
10.3389/fphar.2018.00281
10.1128/mBio.01935-20
10.1007/978-1-4842-4240-7
10.34172/bi.2021.40
10.1093/bib/bbab209
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Copyright Springer Nature B.V. Sep 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
– notice: Copyright Springer Nature B.V. Sep 2023
DBID AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOI 10.1007/s00726-023-03300-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest One Academic
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
ProQuest Central Student
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1438-2199
EndPage 1136
ExternalDocumentID 37402073
10_1007_s00726_023_03300_6
Genre Journal Article
GrantInformation_xml – fundername: Guizhou Medical University National Natural Science Foundation Cultivation Project
  grantid: 21NSFCP40
– fundername: Provincial Health Commission Science and Technology Foundation of Guizhou
  grantid: gzwkj2023-590
– fundername: National Natural Science Foundation of China
  grantid: 32160668; 62071099
– fundername: National Natural Science Foundation of China
  grantid: 62071099
– fundername: National Natural Science Foundation of China
  grantid: 32160668
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACULB
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z81
Z82
Z83
Z87
Z8O
Z8P
Z8Q
Z8U
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~EX
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-5cd60397ae87d77d27904afa59e82cceadfde3a4394ae5072eca9856fff42fe13
IEDL.DBID U2A
ISSN 0939-4451
1438-2199
IngestDate Fri Sep 05 09:06:39 EDT 2025
Thu Oct 02 10:04:07 EDT 2025
Tue Oct 07 13:40:37 EDT 2025
Thu Apr 03 07:04:15 EDT 2025
Wed Oct 01 04:44:46 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
Fri Feb 21 02:42:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Ensemble model
Deep convolutional neural network
Anti-coronavirus peptides
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-5cd60397ae87d77d27904afa59e82cceadfde3a4394ae5072eca9856fff42fe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37402073
PQID 2875201598
PQPubID 1456339
PageCount 16
ParticipantIDs proquest_miscellaneous_3153558623
proquest_miscellaneous_2833023806
proquest_journals_2875201598
pubmed_primary_37402073
crossref_citationtrail_10_1007_s00726_023_03300_6
crossref_primary_10_1007_s00726_023_03300_6
springer_journals_10_1007_s00726_023_03300_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Austria
PublicationSubtitle The Forum for Amino Acid, Peptide and Protein Research
PublicationTitle Amino acids
PublicationTitleAbbrev Amino Acids
PublicationTitleAlternate Amino Acids
PublicationYear 2023
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Aslan, Unlersen, Sabanci (CR1) 2021; 98
Chou (CR8) 2011; 273
Meher, Sahu, Saini (CR31) 2017; 7
Masoudi-Sobhanzadeh, Esmaeili, Masoudi-Nejad (CR30) 2022; 12
Liu, Zhu, Sun (CR28) 2023; 15
Pfalzgraff, Brandenburg, Weindl (CR40) 2018; 9
Biau (CR2) 2012; 13
Chung, Kuo, Wu (CR10) 2020; 21
Pang, Yao, Jhong (CR37) 2021; 22
Outlaw, Bovier, Mears (CR36) 2020; 11
Lippmann, Kringel, Ultsch (CR27) 2018; 19
Zhang, Chen, Li (CR59) 2022; 9
CR6
CR5
Chowdhury, Reehl, Kehn-Hall (CR9) 2020; 10
Moolayil, Moolayil, John (CR33) 2019
Wang, Yao, Wei (CR51) 2021; 167
CR48
CR47
Timmons, Hewage (CR49) 2021; 22
CR46
Shipe, Deppen, Farjah (CR45) 2019; 11
Boopathi, Subramaniyam, Malik, Lee, Manavalan, Yang (CR3) 2019; 20
Yang, Huang, He (CR57) 2021; 9
CR42
Parikh, Mathai, Parikh (CR39) 2008; 56
Shin, Roth, Gao (CR44) 2016; 35
Dotolo, Marabotti, Facchiano (CR12) 2021; 22
Manavalan, Basith, Lee (CR29) 2022; 23
Zhou, Xie, Yang (CR61) 2022; 13
Hu, Ma, Wang (CR18) 2019; 14
Sandag (CR43) 2020; 6
CR19
CR15
Chang, Yang (CR4) 2013; 8
Gomes, Augusto, Felício (CR17) 2018; 36
Mishal, Saravanan, Atchitha (CR32) 2020; 4
Nishant, Abid, Manoj (CR34) 2012; 40
Fan, Wang, Liu (CR14) 2020; 133
CR50
Zhou, Hou, Shen (CR60) 2020; 6
LeCun, Bengio, Hinton (CR24) 2015; 521
Pinzi, Rastelli (CR41) 2019; 20
Yoo, Geng, Chiu (CR58) 2020; 7
O'Brien-Simpson, Hoffmann, Chia (CR35) 2018; 6
Wei, Zhou, Su (CR52) 2019; 35
Dong, Yu, Cao (CR11) 2020; 14
Yang, Zhu, Huang (CR56) 2019; 14
CR26
CR25
Kieslich, Alimirzaei, Song (CR20) 2021; 50
CR22
Pang, Wang, Jhong (CR38) 2021; 22
CR21
Xiao, Shao, Cheng (CR53) 2021; 22
Gns, Saraswathy, Murahari (CR16) 2019; 110
Kurata, Tsukiyama, Manavalan (CR23) 2022; 23
Xue, Li, Xie (CR55) 2018; 14
Dzisoo, He, Karikari (CR13) 2019; 11
Chicco, Jurman (CR7) 2020; 21
Xing, Bei (CR54) 2019; 8
J Moolayil (3300_CR33) 2019
3300_CR21
3300_CR22
B Manavalan (3300_CR29) 2022; 23
G Biau (3300_CR2) 2012; 13
CA Kieslich (3300_CR20) 2021; 50
S Hu (3300_CR18) 2019; 14
HC Shin (3300_CR44) 2016; 35
X Dong (3300_CR11) 2020; 14
W Xing (3300_CR54) 2019; 8
A Mishal (3300_CR32) 2020; 4
MF Aslan (3300_CR1) 2021; 98
Y Zhou (3300_CR60) 2020; 6
3300_CR25
3300_CR26
PK Meher (3300_CR31) 2017; 7
D Chicco (3300_CR7) 2020; 21
3300_CR50
Y Zhou (3300_CR61) 2022; 13
Y Masoudi-Sobhanzadeh (3300_CR30) 2022; 12
C Lippmann (3300_CR27) 2018; 19
L Wei (3300_CR52) 2019; 35
3300_CR5
Y LeCun (3300_CR24) 2015; 521
3300_CR6
3300_CR19
AM Dzisoo (3300_CR13) 2019; 11
3300_CR15
X Xiao (3300_CR53) 2021; 22
3300_CR42
AS Chowdhury (3300_CR9) 2020; 10
Y Pang (3300_CR37) 2021; 22
H Xue (3300_CR55) 2018; 14
S Yang (3300_CR57) 2021; 9
CR Chung (3300_CR10) 2020; 21
A Pfalzgraff (3300_CR40) 2018; 9
ME Shipe (3300_CR45) 2019; 11
HH Fan (3300_CR14) 2020; 133
PB Timmons (3300_CR49) 2021; 22
S Dotolo (3300_CR12) 2021; 22
H Kurata (3300_CR23) 2022; 23
T Nishant (3300_CR34) 2012; 40
B Gomes (3300_CR17) 2018; 36
3300_CR46
3300_CR47
L Pinzi (3300_CR41) 2019; 20
3300_CR48
HS Gns (3300_CR16) 2019; 110
GA Sandag (3300_CR43) 2020; 6
SH Yoo (3300_CR58) 2020; 7
NM O'Brien-Simpson (3300_CR35) 2018; 6
Y Pang (3300_CR38) 2021; 22
Y Liu (3300_CR28) 2023; 15
B Wang (3300_CR51) 2021; 167
Q Zhang (3300_CR59) 2022; 9
W Yang (3300_CR56) 2019; 14
KY Chang (3300_CR4) 2013; 8
VK Outlaw (3300_CR36) 2020; 11
R Parikh (3300_CR39) 2008; 56
V Boopathi (3300_CR3) 2019; 20
KC Chou (3300_CR8) 2011; 273
References_xml – ident: CR22
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR24
  article-title: Deep learning
  publication-title: Nature
– volume: 20
  start-page: 1964
  issue: 8
  year: 2019
  ident: CR3
  article-title: mACPpred: a support vector machine-based metapredictor for identification of anticancer peptides
  publication-title: Int J Mol Sci
– volume: 13
  year: 2022
  ident: CR61
  article-title: SSH2.0: a better tool for predicting the hydrophobic interaction risk of monoclonal antibody
  publication-title: Front Genet
– volume: 14
  issue: 11
  year: 2019
  ident: CR18
  article-title: An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences
  publication-title: PLoS ONE
– volume: 7
  start-page: 427
  year: 2020
  ident: CR58
  article-title: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging
  publication-title: Front Med
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  ident: CR31
  article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
  publication-title: Sci Rep
– volume: 11
  start-page: e01935
  issue: 5
  year: 2020
  end-page: e2020
  ident: CR36
  article-title: Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the SARS-CoV-2 spike glycoprotein HRC domain
  publication-title: Mbio
– volume: 8
  start-page: 28808
  year: 2019
  end-page: 28819
  ident: CR54
  article-title: Medical health big data classification based on KNN classification algorithm
  publication-title: IEEE Access
– volume: 14
  start-page: 1232
  issue: 10
  year: 2018
  ident: CR55
  article-title: Review of drug repositioning approaches and resources
  publication-title: Int J Biol Sci
– volume: 40
  start-page: W199
  year: 2012
  end-page: 204
  ident: CR34
  article-title: AVPpred: collection and prediction of highly effective antiviral peptides
  publication-title: Nucleic Acids Res
– volume: 9
  year: 2021
  ident: CR57
  article-title: CASPredict: a web service for identifying Cas proteins
  publication-title: PeerJ
– ident: CR25
– ident: CR42
– volume: 9
  start-page: 281
  year: 2018
  ident: CR40
  article-title: Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds
  publication-title: Front Pharmacol
– ident: CR21
– volume: 22
  start-page: bbab258
  issue: 6
  year: 2021
  ident: CR49
  article-title: ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides
  publication-title: Brief Bioinform
– ident: CR46
– ident: CR19
– volume: 50
  start-page: 2019
  year: 2021
  end-page: 2024
  ident: CR20
  article-title: Data-driven prediction of antiviral peptides based on periodicities of amino acid properties
  publication-title: Comput Aided Chem Eng
– volume: 19
  start-page: 783
  issue: 9
  year: 2018
  end-page: 797
  ident: CR27
  article-title: Computational functional genomics-based approaches in analgesic drug discovery and repurposing
  publication-title: Pharmacogenomics
– volume: 4
  start-page: 1
  issue: 7
  year: 2020
  end-page: 8
  ident: CR32
  article-title: A review of corona virus disease-2019
  publication-title: History
– ident: CR15
– volume: 23
  start-page: bbab412
  issue: 1
  year: 2022
  ident: CR29
  article-title: Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2
  publication-title: Brief Bioinform
– volume: 22
  start-page: 263
  issue: 6
  year: 2021
  ident: CR37
  article-title: AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches
  publication-title: Brief Bioinform
– ident: CR50
– volume: 9
  start-page: 294
  issue: 1
  year: 2022
  ident: CR59
  article-title: A database of anti-coronavirus peptides
  publication-title: Sci Data
– volume: 8
  issue: 8
  year: 2013
  ident: CR4
  article-title: Analysis and prediction of highly effective antiviral peptides based on random forests
  publication-title: PLoS ONE
– volume: 14
  start-page: 241
  issue: 2
  year: 2020
  end-page: 258
  ident: CR11
  article-title: A survey on ensemble learning
  publication-title: Front Comp Sci
– volume: 23
  start-page: bbac265
  issue: 4
  year: 2022
  ident: CR23
  article-title: iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model
  publication-title: Brief Bioinform
– volume: 11
  start-page: S574
  issue: Suppl 4
  year: 2019
  ident: CR45
  article-title: Developing prediction models for clinical use using logistic regression: an overview
  publication-title: J Thorac Dis
– volume: 6
  start-page: 13
  year: 2018
  ident: CR35
  article-title: Antimicrobial and anticancer peptides
  publication-title: Front Chem
– ident: CR5
– ident: CR26
– volume: 98
  year: 2021
  ident: CR1
  article-title: CNN-based transfer learning–BiLSTM network: a novel approach for COVID-19 infection detection
  publication-title: Appl Soft Comput
– volume: 273
  start-page: 236
  issue: 1
  year: 2011
  end-page: 247
  ident: CR8
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition
  publication-title: J Theor Biol
– volume: 6
  start-page: 41
  issue: 1
  year: 2020
  end-page: 46
  ident: CR43
  article-title: A prediction model of company health using bagging classifier
  publication-title: JITK (jurnal Ilmu Pengetahuan Dan Teknologi Komputer)
– year: 2019
  ident: CR33
  publication-title: Learn Keras for deep neural networks
– ident: CR47
– volume: 12
  start-page: 315
  issue: 4
  year: 2022
  ident: CR30
  article-title: A fuzzy logic-based computational method for the repurposing of drugs against COVID-19
  publication-title: Bioimpacts
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  ident: CR9
  article-title: Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance
  publication-title: Sci Rep
– volume: 22
  start-page: bbab209
  issue: 6
  year: 2021
  ident: CR53
  article-title: iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types
  publication-title: Brief Bioinform
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  ident: CR7
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genom
– volume: 133
  start-page: 1051
  issue: 09
  year: 2020
  end-page: 1056
  ident: CR14
  article-title: Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model
  publication-title: Chin Med J
– volume: 14
  start-page: 234
  issue: 3
  year: 2019
  end-page: 240
  ident: CR56
  article-title: A brief survey of machine learning methods in protein sub-Golgi localization
  publication-title: Curr Bioinform
– ident: CR6
– volume: 15
  start-page: 820
  issue: 4
  year: 2023
  ident: CR28
  article-title: DRAVP: a comprehensive database of antiviral peptides and proteins
  publication-title: Viruses
– volume: 167
  start-page: 1424
  year: 2021
  end-page: 1434
  ident: CR51
  article-title: Housefly phormicin inhibits and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo
  publication-title: Int J Biol Macromol
– volume: 6
  start-page: 14
  issue: 1
  year: 2020
  ident: CR60
  article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
  publication-title: Cell Discov
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: CR41
  article-title: Molecular docking: shifting paradigms in drug discovery
  publication-title: Int J Mol Sci
– volume: 35
  start-page: 4272
  issue: 21
  year: 2019
  end-page: 4280
  ident: CR52
  article-title: PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning
  publication-title: Bioinformatics
– ident: CR48
– volume: 21
  start-page: 1098
  issue: 3
  year: 2020
  end-page: 1114
  ident: CR10
  article-title: Characterization and identification of antimicrobial peptides with different functional activities
  publication-title: Brief Bioinform
– volume: 11
  start-page: 691
  issue: 4
  year: 2019
  end-page: 697
  ident: CR13
  article-title: CISI: a tool for predicting cross-interaction or self-interaction of monoclonal antibodies using sequences
  publication-title: Interdiscip Sci Comput Life Sci
– volume: 22
  start-page: 1085
  issue: 2
  year: 2021
  end-page: 1095
  ident: CR38
  article-title: Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies
  publication-title: Brief Bioinform
– volume: 22
  start-page: 726
  issue: 2
  year: 2021
  end-page: 741
  ident: CR12
  article-title: A review on drug repurposing applicable to COVID-19
  publication-title: Brief Bioinform
– volume: 36
  start-page: 415
  issue: 2
  year: 2018
  end-page: 429
  ident: CR17
  article-title: Designing improved active peptides for therapeutic approaches against infectious diseases
  publication-title: Biotechnol Adv
– volume: 110
  start-page: 700
  year: 2019
  end-page: 716
  ident: CR16
  article-title: An update on drug repurposing: re-written saga of the drug’s fate
  publication-title: Biomed Pharmacother
– volume: 13
  start-page: 1063
  issue: 1
  year: 2012
  end-page: 1095
  ident: CR2
  article-title: Analysis of a random forests model
  publication-title: J Mach Learn Res
– volume: 56
  start-page: 45
  issue: 1
  year: 2008
  ident: CR39
  article-title: Understanding and using sensitivity, specificity and predictive values
  publication-title: Indian J Ophthalmol
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR44
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 110
  start-page: 700
  year: 2019
  ident: 3300_CR16
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2018.11.127
– volume: 14
  issue: 11
  year: 2019
  ident: 3300_CR18
  publication-title: PLoS ONE
– volume: 22
  start-page: 1085
  issue: 2
  year: 2021
  ident: 3300_CR38
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa423
– ident: 3300_CR47
  doi: 10.22159/ajpcr.2022.v15i7.44547
– ident: 3300_CR25
  doi: 10.1155/2015/475062
– volume: 36
  start-page: 415
  issue: 2
  year: 2018
  ident: 3300_CR17
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2018.01.004
– volume: 22
  start-page: bbab258
  issue: 6
  year: 2021
  ident: 3300_CR49
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab258
– volume: 15
  start-page: 820
  issue: 4
  year: 2023
  ident: 3300_CR28
  publication-title: Viruses
  doi: 10.3390/v15040820
– volume: 9
  start-page: 294
  issue: 1
  year: 2022
  ident: 3300_CR59
  publication-title: Sci Data
  doi: 10.1038/s41597-022-01394-3
– ident: 3300_CR15
  doi: 10.1007/978-3-030-56485-8_3
– volume: 8
  start-page: 28808
  year: 2019
  ident: 3300_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955754
– ident: 3300_CR26
  doi: 10.1101/2021.11.29.470292
– ident: 3300_CR21
  doi: 10.1007/978-3-319-33383-0_5
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: 3300_CR41
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184331
– ident: 3300_CR46
  doi: 10.1109/BigData47090.2019.9005997
– volume: 35
  start-page: 4272
  issue: 21
  year: 2019
  ident: 3300_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz246
– volume: 23
  start-page: bbac265
  issue: 4
  year: 2022
  ident: 3300_CR23
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac265
– volume: 4
  start-page: 1
  issue: 7
  year: 2020
  ident: 3300_CR32
  publication-title: History
– volume: 6
  start-page: 13
  year: 2018
  ident: 3300_CR35
  publication-title: Front Chem
  doi: 10.3389/fchem.2018.00013
– volume: 13
  year: 2022
  ident: 3300_CR61
  publication-title: Front Genet
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 3300_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 3300_CR24
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 3300_CR44
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 3300_CR19
  doi: 10.1109/IEC47844.2019.8950650
– volume: 19
  start-page: 783
  issue: 9
  year: 2018
  ident: 3300_CR27
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs-2018-0036
– volume: 20
  start-page: 1964
  issue: 8
  year: 2019
  ident: 3300_CR3
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20081964
– volume: 56
  start-page: 45
  issue: 1
  year: 2008
  ident: 3300_CR39
  publication-title: Indian J Ophthalmol
  doi: 10.4103/0301-4738.37595
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 3300_CR31
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 9
  year: 2021
  ident: 3300_CR57
  publication-title: PeerJ
– volume: 11
  start-page: S574
  issue: Suppl 4
  year: 2019
  ident: 3300_CR45
  publication-title: J Thorac Dis
  doi: 10.21037/jtd.2019.01.25
– ident: 3300_CR42
  doi: 10.30534/ijatcse/2020/175942020
– volume: 7
  start-page: 427
  year: 2020
  ident: 3300_CR58
  publication-title: Front Med
  doi: 10.3389/fmed.2020.00427
– volume: 6
  start-page: 14
  issue: 1
  year: 2020
  ident: 3300_CR60
  publication-title: Cell Discov
  doi: 10.1038/s41421-020-0153-3
– volume: 14
  start-page: 234
  issue: 3
  year: 2019
  ident: 3300_CR56
  publication-title: Curr Bioinform
  doi: 10.2174/1574893613666181113131415
– volume: 23
  start-page: bbab412
  issue: 1
  year: 2022
  ident: 3300_CR29
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab412
– volume: 13
  start-page: 1063
  issue: 1
  year: 2012
  ident: 3300_CR2
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 1232
  issue: 10
  year: 2018
  ident: 3300_CR55
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24612
– volume: 22
  start-page: 263
  issue: 6
  year: 2021
  ident: 3300_CR37
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab263
– ident: 3300_CR6
  doi: 10.1109/TCBB.2023.3238370
– volume: 50
  start-page: 2019
  year: 2021
  ident: 3300_CR20
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-323-88506-5.50312-0
– volume: 273
  start-page: 236
  issue: 1
  year: 2011
  ident: 3300_CR8
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 40
  start-page: W199
  year: 2012
  ident: 3300_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks450
– volume: 11
  start-page: 691
  issue: 4
  year: 2019
  ident: 3300_CR13
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-019-00330-1
– volume: 98
  year: 2021
  ident: 3300_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106912
– volume: 21
  start-page: 1098
  issue: 3
  year: 2020
  ident: 3300_CR10
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz043
– ident: 3300_CR48
  doi: 10.1101/2021.03.25.436982
– ident: 3300_CR22
  doi: 10.1016/B978-0-12-816125-8.00006-7
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 3300_CR7
  publication-title: BMC Genom
  doi: 10.1186/s12864-019-6413-7
– ident: 3300_CR50
– volume: 14
  start-page: 241
  issue: 2
  year: 2020
  ident: 3300_CR11
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-019-8208-z
– volume: 22
  start-page: 726
  issue: 2
  year: 2021
  ident: 3300_CR12
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa288
– ident: 3300_CR5
  doi: 10.1145/2939672.2939785
– volume: 167
  start-page: 1424
  year: 2021
  ident: 3300_CR51
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.11.096
– volume: 8
  issue: 8
  year: 2013
  ident: 3300_CR4
  publication-title: PLoS ONE
– volume: 133
  start-page: 1051
  issue: 09
  year: 2020
  ident: 3300_CR14
  publication-title: Chin Med J
  doi: 10.1097/CM9.0000000000000797
– volume: 9
  start-page: 281
  year: 2018
  ident: 3300_CR40
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00281
– volume: 11
  start-page: e01935
  issue: 5
  year: 2020
  ident: 3300_CR36
  publication-title: Mbio
  doi: 10.1128/mBio.01935-20
– volume: 6
  start-page: 41
  issue: 1
  year: 2020
  ident: 3300_CR43
  publication-title: JITK (jurnal Ilmu Pengetahuan Dan Teknologi Komputer)
– volume-title: Learn Keras for deep neural networks
  year: 2019
  ident: 3300_CR33
  doi: 10.1007/978-1-4842-4240-7
– volume: 12
  start-page: 315
  issue: 4
  year: 2022
  ident: 3300_CR30
  publication-title: Bioimpacts
  doi: 10.34172/bi.2021.40
– volume: 22
  start-page: bbab209
  issue: 6
  year: 2021
  ident: 3300_CR53
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab209
SSID ssj0012816
Score 2.4309404
Snippet The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1121
SubjectTerms Accuracy
Algorithms
Analytical Chemistry
Artificial neural networks
Benchmarks
Biochemical Engineering
Biochemistry
Biomedical and Life Sciences
Classification
Coronaviruses
Correlation coefficients
COVID-19
COVID-19 infection
data collection
Datasets
drugs
Ensemble learning
humans
Internet
Learning
Life Sciences
Long short-term memory
Machine learning
model validation
Neural networks
Neurobiology
Original Article
Orthocoronavirinae
Peptides
Performance evaluation
prediction
Predictions
Proteomics
Servers
Toxicity
SummonAdditionalLinks – databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB7q6YO-SK2XHltlBd90Mcnu5iKI1NOWIngoYqFvYbKXUmhz4rn47N_w7_WXdCYnSZHSvgV2Q5aZyc7Mzuz3AbzPlIs1Ki9RBSMpAtcyD1ElqxCnWYVceONzyB_T9PhUfz8zZxsw7e_CcFtlvye2G7WbWT4j_0SRvSFnZYr8a_NbMmsUV1d7Cg3sqBXclxZi7BFsJoyMNYLNb4fTk59DXSHJWzJUSuMLydBc3TWa9jIdg2hzQ66SESX5lFT976ruxJ93aqetSzragqddLCn218p_Bhu-3obHk57C7Tng_uREHnAny2dBEryQlvEK8M_FfLUQDfezOL-4_vtPNHOu17COBLs1J-jBed8IhrukT9TrZnFBOa-_qi696Mgmzl_A6dHhr8mx7DgVpNVRvpTGujSiGAR9nrksc0lWRBoDmsLnibVkV8F5hXxfFj3Fiom3WOQmDSHoJPhYvYRRPav9Dgh0KWq0FFOgpvlYVLGOY4eWtoAiicMY4l58pe0Ax5n34rIcoJJbkZck8rIVeZmO4cPwTrOG23hw9l6vlbL79RblraGM4d0wTILnSgjWfrbiOYrJkvIovX-OIl9gDCV8agyv1hoflqQyTrszGvnYm8DtAu5f7-uH17sLT5LW_LiDbQ9Gy_nKv6GQZ1m97ez4BkEd_Hk
  priority: 102
  providerName: ProQuest
Title ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning
URI https://link.springer.com/article/10.1007/s00726-023-03300-6
https://www.ncbi.nlm.nih.gov/pubmed/37402073
https://www.proquest.com/docview/2875201598
https://www.proquest.com/docview/2833023806
https://www.proquest.com/docview/3153558623
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1438-2199
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012816
  issn: 0939-4451
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1438-2199
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0012816
  issn: 0939-4451
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1438-2199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012816
  issn: 0939-4451
  databaseCode: AAJSJ
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1438-2199
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012816
  issn: 0939-4451
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1438-2199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012816
  issn: 0939-4451
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAXVN7blpWRuIGlJLZjh9t22W0FoqoQKy2nyPEDVSrpah898zf4e_ySzmSTIFSKxCWJ5ElizYzjmczMNwCvtfCptCJwK6LiaIFLbmJS8Sqmua4sBd7oP-Sns_x0Jj_M1bwtClt12e5dSLL5UvfFbgRyTQmzgifohKPTswN7iuC8UItn2aiPHWSmaXiKrnrBCX6rLZX5-zP-3I5u2Zi34qPNtjPdh4etvchGWwE_gnuhfgz3x12btidgR-Nz_p6yVd4x5NIFd4RJYK8vlpsVW1DOig-rXz9-ssWSYjIkB0Zbl2d44UNYMIK0xFfU24Rwhn5t-F5dBtY2lPj2FGbTyZfxKW_7JnAnE7Pmyvk8QTvDBqO91j7TRSJttKoIJnMOdSf6ICzVxNqA9mAWnC2MymOMMoshFc9gt76qwwtg1udWWod2g5VIb4sqlWnqrcNljpyPA0g79pWuBRWn3haXZQ-H3LC8RJaXDcvLfABv-nsWW0iNf1IfdVIp2-W1KtHNU2i5qMIM4FU_jIynaIetw9WGaAQ1RDJJfjeNwO-9UujUiQE830q8n5LQ5FprHHnbqcDvCdw934P_Iz-EB1mjjpS1dgS76-UmvEQzZ10NYUfPNR7N9GQIe6OTrx8neD6enJ1_HjYafwPd5ve0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4gPOAL8e5B1DXRJ93Ydnd7MSEGD5CDwAkxkPBWp3shJNBTz0XCm3_DP-OP8Zc409OWGAJvvDXZbbuZmd2Z2bl8jL1NpA0VSCdAei3QAlci9UEhCh_GSQEUeKN7yP1hPDhSX4_18QL709bCUFpleybWB7UdGboj_4iWvUZlpbP0c_VDEGoURVdbCA1ooBXset1irCns2HWXF-jCTdZ3NpHf76Joe-uwPxANyoAwKkinQhsbB6iVwaWJTRIbJVmgwIPOXBoZg5T21kmgClJwaD1FzkCW6th7ryLvQonfvceWlFQZOn9LX7aGB9-6OEaU1uCrQUbxVqXDpmynLt6jpt2UACxFIGWATtz_qvGavXstVlurwO0HbKWxXfnGXNgesgVXPmLL_RYy7jGDjf6B2KTMmU8cOXYqDPVHgJ-n49mEV5Q_Y93k76_fvBpTfIhkgpMatRwfrHMVp_aa-ItynpzO0cd258WZ4w24xckTdnQn1H3KFstR6Z4zDjYGBQZtGFA4H7IiVGFoweCRk0Wh77GwJV9umgbnhLNxlnetmWuS50jyvCZ5HvfY--6dat7e49bZay1X8marT_IrweyxN90wEp4iL1C60YzmSAJnSoP45jkSdY_W6GDKHns253i3JJmQm5_gyIdWBK4WcPN6V29f72u2PDjc38v3doa7L9j9qBZFyp5bY4vT8cy9RHNrWrxqZJqz73e9jf4Bogw7Wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtRAzCpFAi6IZ9lSYJDgBKMmmZlMgoRQtcuqpVD1QKW9hck8UKWSTfcB4sZv8Ct8Dl-CnU1Soaq99RZpnMSyPWN7_AJ4oYWLpRGeGxEURwtc8ixEJS9DnOrSUOCN7iE_HaS7R_LDRE3W4E9XC0Npld2Z2BzUbmrpjnwbLXuFykrl2XZo0yIOR-N39SmnCVIUae3GaaxEZN___IHu2_zt3gh5_TJJxu8_D3d5O2GAWxllC66sSyPUyMZn2mntEp1H0gSjcp8l1iKVg_PCUPWo8Wg5Jd6aPFNpCEEmwccCv3sNrmshckon1JPe2aMAVRMnzSnSKlXcFuw0ZXvUrptSfwWPhIjQfftfKZ6zdM9FaRvlN74Dt1urle2sxOwurPnqHtwcdsPi7oPZGR7yEeXMvGHIq2NuqTOC-X48W85ZTZkzzs___vrN6hlFhkgaGClQx_DBeV8zaqyJv6hWaekMvWv_rTzxrB1r8fUBHF0JbR_CejWt_CNgxqVGGovWi5EIb_IylnHsjMXDJk_iMIC4I19h29bmNGHjpOibMjckL5DkRUPyIh3Aq_6detXY41LorY4rRbvJ58WZSA7geb-MhKeYi6n8dEkwgsYyZVF6MYxAraMUupZiABsrjvcoCU0OvsaV150InCFwMb6bl-P7DG7g5ik-7h3sP4ZbSSOJlDa3BeuL2dI_QTtrUT5tBJrBl6veQf8A-4Q49A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACP-Dnnel%3A+anti-coronavirus+peptides%E2%80%99+prediction+based+on+deep+neural+network+ensemble+learning&rft.jtitle=Amino+acids&rft.au=Liu%2C+Mingyou&rft.au=Liu%2C+Hongmei&rft.au=Wu%2C+Tao&rft.au=Zhu%2C+Yingxue&rft.date=2023-09-01&rft.pub=Springer+Vienna&rft.issn=0939-4451&rft.eissn=1438-2199&rft.volume=55&rft.issue=9&rft.spage=1121&rft.epage=1136&rft_id=info:doi/10.1007%2Fs00726-023-03300-6&rft.externalDocID=10_1007_s00726_023_03300_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-4451&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-4451&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-4451&client=summon