Hybrid algorithmic approach oriented to incipient rotor fault diagnosis on induction motors

This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfun...

Full description

Saved in:
Bibliographic Details
Published inISA transactions Vol. 80; pp. 427 - 438
Main Authors Martin-Diaz, Ignacio, Morinigo-Sotelo, Daniel, Duque-Perez, Oscar, Osornio-Rios, Roque A., Romero-Troncoso, Rene J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text
ISSN0019-0578
1879-2022
1879-2022
DOI10.1016/j.isatra.2018.07.033

Cover

Abstract This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field. [Display omitted] •A rotor fault diagnosis with all indicators proposed recently in literature is developed.•SA algorithm identifies the features with greater discriminant capacity in different experiments.•Random Forest-based classifiers outperform CART and k-NN for incipient rotor conditions.•Careful performance evaluation through recent state-of-the-art techniques.
AbstractList This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field. [Display omitted] •A rotor fault diagnosis with all indicators proposed recently in literature is developed.•SA algorithm identifies the features with greater discriminant capacity in different experiments.•Random Forest-based classifiers outperform CART and k-NN for incipient rotor conditions.•Careful performance evaluation through recent state-of-the-art techniques.
This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.
This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.
Author Martin-Diaz, Ignacio
Romero-Troncoso, Rene J.
Osornio-Rios, Roque A.
Duque-Perez, Oscar
Morinigo-Sotelo, Daniel
Author_xml – sequence: 1
  givenname: Ignacio
  surname: Martin-Diaz
  fullname: Martin-Diaz, Ignacio
  organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain
– sequence: 2
  givenname: Daniel
  surname: Morinigo-Sotelo
  fullname: Morinigo-Sotelo, Daniel
  organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain
– sequence: 3
  givenname: Oscar
  surname: Duque-Perez
  fullname: Duque-Perez, Oscar
  organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain
– sequence: 4
  givenname: Roque A.
  surname: Osornio-Rios
  fullname: Osornio-Rios, Roque A.
  organization: Universidad Autónoma de Querétaro, HSPdigital CA-Mecatronica, Facultad de Ingenieria, Río Moctezuma 249, San Juan del Rio, 76806, Querétaro, Mexico
– sequence: 5
  givenname: Rene J.
  surname: Romero-Troncoso
  fullname: Romero-Troncoso, Rene J.
  email: troncoso@hspdigital.org
  organization: Universidad Autónoma de Querétaro, HSPdigital CA-Mecatronica, Facultad de Ingenieria, Río Moctezuma 249, San Juan del Rio, 76806, Querétaro, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30093102$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1v1TAUhi1URG8L_wChjCwJx3acxAxIqKItUiUWmBgsxz5pfZXEwXZA99_jKIWBAZj89bzHx48vyNnsZyTkJYWKAm3eHCsXdQq6YkC7CtoKOH9CDrRrZcmAsTNyAKCyBNF25-QixiMAMCG7Z-ScA0hOgR3I19tTH5wt9Hjvg0sPkzOFXpbgtXko8g7OCW2RfOFm45ZtWQSffCgGvY6psE7fzz66WPg5I3Y1yeXZtCHxOXk66DHii8fxkny5_vD56ra8-3Tz8er9XWlq6FIppMah6ZE2tOV20FLWPcOmG5jmhtq6Qc1ky4Rta94DmiEf6150g5AoLbf8koi97jov-vRDj6Nagpt0OCkKapOljmqXpTZZClqVZeXc6z2Xn_ttxZjU5KLBcdQz-jVmtmuF5MBFRl89oms_of1d_5fIDLzdARN8jAEHZVzSm4x8qxv_1Uj9R_g_-3-3xzDL_e4wqGjyDxm0LqBJynr39wI_AU-StFs
CitedBy_id crossref_primary_10_3390_s24165285
crossref_primary_10_1515_teme_2020_0066
crossref_primary_10_1016_j_heliyon_2023_e17584
crossref_primary_10_1049_iet_epa_2019_0779
crossref_primary_10_1088_1361_6501_acfb2c
crossref_primary_10_1109_CJECE_2019_2914959
crossref_primary_10_3390_s19020269
crossref_primary_10_1109_TII_2020_3029551
crossref_primary_10_1016_j_isatra_2020_03_006
crossref_primary_10_1109_ACCESS_2020_2986306
crossref_primary_10_1016_j_isatra_2022_10_037
crossref_primary_10_1016_j_heliyon_2022_e09136
crossref_primary_10_1109_ACCESS_2022_3159693
crossref_primary_10_1109_TIM_2020_3003359
crossref_primary_10_3390_s21165658
crossref_primary_10_1016_j_measurement_2021_110690
crossref_primary_10_1016_j_isatra_2020_07_002
Cites_doi 10.1109/TIE.2008.2004669
10.1109/TIA.2018.2801863
10.1109/TIE.2014.2327589
10.1016/j.epsr.2017.06.021
10.1109/TIE.2009.2035991
10.1016/j.eswa.2007.12.010
10.1016/j.epsr.2014.03.031
10.1016/j.isatra.2016.10.014
10.1109/TIE.2011.2109340
10.1007/s12206-007-1036-3
10.1016/j.isatra.2016.03.007
10.1109/TIE.2007.909076
10.1016/j.ymssp.2017.04.035
10.1109/ACCESS.2016.2622679
10.1016/j.isatra.2017.06.001
10.1109/28.952499
10.1109/TEC.2005.847955
10.1016/j.ymssp.2016.06.032
10.1016/j.eswa.2009.10.041
10.1016/j.ymssp.2015.08.030
10.1080/00401706.1986.10488128
10.1016/j.pisc.2016.04.068
10.1016/j.epsr.2012.12.013
10.1023/A:1010933404324
10.1016/j.ymssp.2017.02.014
10.1109/TIA.2017.2764846
10.1016/j.isatra.2016.06.004
10.1016/j.ymssp.2011.05.007
10.1109/TIA.2017.2657478
10.1109/TPAMI.2006.211
10.1109/TII.2015.2463680
10.1007/s10845-014-0950-3
10.1109/TIE.2010.2093476
10.1016/j.ymssp.2007.03.006
10.1109/TIE.2010.2095391
10.1016/j.ymssp.2017.01.046
ContentType Journal Article
Copyright 2018 ISA
Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 ISA
– notice: Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.isatra.2018.07.033
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 438
ExternalDocumentID oai:uvadoc.uva.es:10324/64932
30093102
10_1016_j_isatra_2018_07_033
S0019057818302891
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c408t-59aef6be16173dfa994b2e68f2a3c1d46ea29725d743b0ecf4b2ab58f59e9d3d3
IEDL.DBID .~1
ISSN 0019-0578
1879-2022
IngestDate Thu Aug 28 11:01:09 EDT 2025
Sun Sep 28 11:51:23 EDT 2025
Wed Feb 19 02:43:00 EST 2025
Thu Apr 24 23:10:01 EDT 2025
Wed Oct 01 05:12:06 EDT 2025
Fri Feb 23 02:32:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MCSA
ANN
ORF
OOB
Oblique random forests
IM
ROC
FPR
KNN
SA
CBM
PCA
AUC
Induction motor
Fault diagnosis
DT
BRB
RF
FFT
TPR
Simulated annealing algorithm
OVA
Artificial intelligence
PM
Language English
License Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-59aef6be16173dfa994b2e68f2a3c1d46ea29725d743b0ecf4b2ab58f59e9d3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://uvadoc.uva.es/handle/10324/64932
PMID 30093102
PQID 2087593035
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_isatra_2018_07_033
proquest_miscellaneous_2087593035
pubmed_primary_30093102
crossref_citationtrail_10_1016_j_isatra_2018_07_033
crossref_primary_10_1016_j_isatra_2018_07_033
elsevier_sciencedirect_doi_10_1016_j_isatra_2018_07_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Elbouchikhi, Choqueuse, Benbouzid (bib13) Jul. 2016; 63
Martinez, Belahcen, Muetze (bib20) May/Jun. 2017; 53
Bellini, Filippetti, Franceschini, Tassoni, Kliman (bib32) Sep./Oct. 2001; 37
Nandi, Toliyat, Li (bib4) Dec. 2005; 20
Drif, Cardoso (bib11) Mar. 2008; 55
Deleroi (bib23) 1982
Gyftakis, Cardoso, Antonino-Daviu (bib15) Sep. 2017; 93
Seera, Lim, Loo (bib30) Dec. 2016; 27
Rauber, de Assis Boldt, Varejao (bib35) Jan. 2015; 62
Xue, Zhou (bib26) Jan. 2017; 66
Bohachevsky, Johnson, Stein (bib37) 1986; 28
Morinigo-Sotelo, Romero-Troncoso, Panagiotou, Antonino-Daviu, Gyftakis (bib16) Mar./Apr. 2018; 54
Rodriguez, Kuncheva, Alonso (bib40) Oct. 2006; 28
Bessam, Menacer, Boumehraz, Cherif (bib19) Sep. 2016; 64
Mehrjou, Mariun, Hamiruce Marhaban, Misron (bib2) Nov. 2011; 25
Cabanas, Pedrayes, Rojas, Melero, Norniella, Orcajo, Cano, Nuno, Fuentes (bib9) Oct. 2011; 58
Breiman (bib38) Jan. 2001; 45
Martin-Diaz, Morinigo-Sotelo, Duque-Perez, de Jesus Romero-Troncoso (bib12) May-June 2018; 54
Samanta, Naha, Routray, Deb (bib18) Jan. 2018; 98
Delgado-Arredondo, Morinigo-Sotelo, Osornio-Rios, Avina-Cervantes, Rostro-Gonzalez, de Jesus Romero-Troncoso (bib7) Jan. 2017; 83
Gyftakis, Antonino-Daviu, Garcia-Hernandez, McCulloch, Howey, Cardoso (bib17) Mar./Apr. 2016; 52
Yang, Oh, Tan (bib29) Mar. 2009; 36
Liu, Bazzi (bib22) Sep. 2017; 70
Bruzzese (bib25) Dec. 2008; 55
Liaw, Wiener (bib42) 2002; 2
Patel, Giri (bib5) Sep. 2016; 8
Keskes, Braham, Lachiri (bib1) Apr. 2013; 97
Eltabach, Antoni, Najjar (bib10) Oct. 2007; 21
Georgakopoulos, Mitronikas, Safacas (bib14) Sep. 2011; 58
Karvelis, Georgoulas, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib31) Oct. 2015; 11
Nemec, Drobnic, Nedeljkovic, Fiser, Ambrozic (bib3) Aug. 2010; 57
R Core Team (bib41) 2013
Abd-el Malek, Abdelsalam, Hassan (bib21) Sep. 2017; 93
Garcia-Ramirez, Morales-Hernandez, Osornio-Rios, Benitez-Rangel, Garcia-Perez, de Jesus Romero-Troncoso (bib8) Sep. 2014; 114
Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Arredondo-Delgado, Camarena-Martinez, Romero-Troncoso (bib24) Nov. 2017; 152
Ghate, Dudul (bib28) Apr. 2010; 37
Nguyen, Lee, Kwon (bib6) Mar. 2008; 22
Menze, Splitthoff (bib43) 2012
Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Romero-Troncoso (bib44) Oct. 2016; 4
Cerrada, Zurita, Cabrera, Sanchez, Artes, Li (bib36) Mar. 2016; 70
Bouzida, Touhami, Ibtiouen, Belouchrani, Fadel, Rezzoug (bib27) Sep. 2011; 58
Kuhn, Wing, Weston, Williams, Keefer, Engelhardt, Cooper, Mayer, Kenkel, Benesty, Lescarbeau, Ziem, Scrucca, Tang, Candan, Hunt (bib33) 2017
Menze, Kelm, Splitthoff, Koethe, Hamprecht (bib39) Sep. 2011; vol. 2
Guyon, Elisseeff (bib34) Mar. 2003; 3
Cabanas (10.1016/j.isatra.2018.07.033_bib9) 2011; 58
Ghate (10.1016/j.isatra.2018.07.033_bib28) 2010; 37
Menze (10.1016/j.isatra.2018.07.033_bib39) 2011; vol. 2
Mehrjou (10.1016/j.isatra.2018.07.033_bib2) 2011; 25
Bruzzese (10.1016/j.isatra.2018.07.033_bib25) 2008; 55
Yang (10.1016/j.isatra.2018.07.033_bib29) 2009; 36
Gyftakis (10.1016/j.isatra.2018.07.033_bib15) 2017; 93
Elbouchikhi (10.1016/j.isatra.2018.07.033_bib13) 2016; 63
Rauber (10.1016/j.isatra.2018.07.033_bib35) 2015; 62
Cerrada (10.1016/j.isatra.2018.07.033_bib36) 2016; 70
Karvelis (10.1016/j.isatra.2018.07.033_bib31) 2015; 11
Liaw (10.1016/j.isatra.2018.07.033_bib42) 2002; 2
Bouzida (10.1016/j.isatra.2018.07.033_bib27) 2011; 58
Martin-Diaz (10.1016/j.isatra.2018.07.033_bib24) 2017; 152
Bohachevsky (10.1016/j.isatra.2018.07.033_bib37) 1986; 28
Guyon (10.1016/j.isatra.2018.07.033_bib34) 2003; 3
Keskes (10.1016/j.isatra.2018.07.033_bib1) 2013; 97
Menze (10.1016/j.isatra.2018.07.033_bib43) 2012
Delgado-Arredondo (10.1016/j.isatra.2018.07.033_bib7) 2017; 83
Eltabach (10.1016/j.isatra.2018.07.033_bib10) 2007; 21
Georgakopoulos (10.1016/j.isatra.2018.07.033_bib14) 2011; 58
Martin-Diaz (10.1016/j.isatra.2018.07.033_bib44) 2016; 4
R Core Team (10.1016/j.isatra.2018.07.033_bib41) 2013
Martinez (10.1016/j.isatra.2018.07.033_bib20) 2017; 53
Garcia-Ramirez (10.1016/j.isatra.2018.07.033_bib8) 2014; 114
Deleroi (10.1016/j.isatra.2018.07.033_bib23) 1982
Drif (10.1016/j.isatra.2018.07.033_bib11) 2008; 55
Nguyen (10.1016/j.isatra.2018.07.033_bib6) 2008; 22
Seera (10.1016/j.isatra.2018.07.033_bib30) 2016; 27
Samanta (10.1016/j.isatra.2018.07.033_bib18) 2018; 98
Breiman (10.1016/j.isatra.2018.07.033_bib38) 2001; 45
Nemec (10.1016/j.isatra.2018.07.033_bib3) 2010; 57
Morinigo-Sotelo (10.1016/j.isatra.2018.07.033_bib16) 2018; 54
Kuhn (10.1016/j.isatra.2018.07.033_bib33) 2017
Bellini (10.1016/j.isatra.2018.07.033_bib32) 2001; 37
Patel (10.1016/j.isatra.2018.07.033_bib5) 2016; 8
Abd-el Malek (10.1016/j.isatra.2018.07.033_bib21) 2017; 93
Liu (10.1016/j.isatra.2018.07.033_bib22) 2017; 70
Xue (10.1016/j.isatra.2018.07.033_bib26) 2017; 66
Gyftakis (10.1016/j.isatra.2018.07.033_bib17) 2016; 52
Nandi (10.1016/j.isatra.2018.07.033_bib4) 2005; 20
Martin-Diaz (10.1016/j.isatra.2018.07.033_bib12) 2018; 54
Rodriguez (10.1016/j.isatra.2018.07.033_bib40) 2006; 28
Bessam (10.1016/j.isatra.2018.07.033_bib19) 2016; 64
References_xml – year: 2012
  ident: bib43
  article-title: obliqueRF: oblique random forests from recursive linear model splits
– volume: 54
  start-page: 2215
  year: May-June 2018
  end-page: 2224
  ident: bib12
  article-title: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions
  publication-title: IEEE Trans Ind Appl
– volume: 11
  start-page: 1028
  year: Oct. 2015
  end-page: 1037
  ident: bib31
  article-title: A symbolic representation approach for the diagnosis of broken rotor bars in induction motors
  publication-title: IEEE Trans Ind Inf
– volume: 64
  start-page: 241
  year: Sep. 2016
  end-page: 246
  ident: bib19
  article-title: Detection of broken rotor bar faults in induction motor at low load using neural network
  publication-title: ISA Trans
– volume: 83
  start-page: 568
  year: Jan. 2017
  end-page: 589
  ident: bib7
  article-title: Methodology for fault detection in induction motors via sound and vibration signals
  publication-title: Mech Syst Signal Process
– volume: 54
  start-page: 1224
  year: Mar./Apr. 2018
  end-page: 1234
  ident: bib16
  article-title: Reliable detection of rotor bars breakage in induction motors via music and zsc methods
  publication-title: IEEE Trans Ind Appl
– volume: 20
  start-page: 719
  year: Dec. 2005
  end-page: 729
  ident: bib4
  article-title: Condition monitoring and fault diagnosis of electrical motors a review
  publication-title: IEEE Trans Energy Convers
– volume: 98
  start-page: 63
  year: Jan. 2018
  end-page: 77
  ident: bib18
  article-title: Fast and accurate spectral estimation for online detection of partial broken bar in induction motors
  publication-title: Mech Syst Signal Process
– volume: 4
  start-page: 7028
  year: Oct. 2016
  end-page: 7038
  ident: bib44
  article-title: Advances in classifier evaluation: novel insights for an electric data-driven motor diagnosis
  publication-title: IEEE Access
– volume: 28
  start-page: 209
  year: 1986
  end-page: 217
  ident: bib37
  article-title: Generalized simulated annealing for function optimization
  publication-title: Technometrics
– volume: 66
  start-page: 284
  year: Jan. 2017
  end-page: 295
  ident: bib26
  article-title: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery
  publication-title: ISA Trans
– volume: 57
  start-page: 2879
  year: Aug. 2010
  end-page: 2888
  ident: bib3
  article-title: Detection of broken bars in induction motor through the analysis of supply voltage modulation
  publication-title: IEEE Trans Ind Electron
– volume: 28
  start-page: 1619
  year: Oct. 2006
  end-page: 1630
  ident: bib40
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 36
  start-page: 1840
  year: Mar. 2009
  end-page: 1849
  ident: bib29
  article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
  publication-title: Expert Syst Appl
– year: 2017
  ident: bib33
  article-title: Caret: classification and regression training
– volume: 58
  start-page: 4385
  year: Sep. 2011
  end-page: 4395
  ident: bib27
  article-title: Fault diagnosis in industrial induction machines through discrete wavelet transform
  publication-title: IEEE Trans Ind Electron
– volume: 70
  start-page: 400
  year: Sep. 2017
  end-page: 409
  ident: bib22
  article-title: A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art
  publication-title: ISA Trans
– volume: 3
  start-page: 1157
  year: Mar. 2003
  end-page: 1182
  ident: bib34
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 25
  start-page: 2827
  year: Nov. 2011
  end-page: 2848
  ident: bib2
  article-title: Rotor fault condition monitoring techniques for squirrel-cage induction machine - a review
  publication-title: Mech Syst Signal Process
– volume: 8
  start-page: 334
  year: Sep. 2016
  end-page: 337
  ident: bib5
  article-title: Feature selection and classification of mechanical fault of an induction motor using random forest classifier
  publication-title: Perspect Sci
– volume: 21
  start-page: 2838
  year: Oct. 2007
  end-page: 2856
  ident: bib10
  article-title: Quantitative analysis of noninvasive diagnostic procedures for induction motor drives
  publication-title: Mech Syst Signal Process
– volume: 55
  start-page: 4137
  year: Dec. 2008
  end-page: 4155
  ident: bib25
  article-title: Analysis and application of particular current signatures (symptoms) for cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia, and frequency variations
  publication-title: IEEE Trans Ind Electron
– volume: 70
  start-page: 87
  year: Mar. 2016
  end-page: 103
  ident: bib36
  article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest
  publication-title: Mech Syst Signal Process
– volume: 55
  start-page: 1404
  year: Mar. 2008
  end-page: 1410
  ident: bib11
  article-title: Airgap-eccentricity fault diagnosis, in three-phase induction motors, by the complex apparent power signature analysis
  publication-title: IEEE Trans Ind Electron
– year: 2013
  ident: bib41
  article-title: A language and environment for statistical computing
– volume: 27
  start-page: 1273
  year: Dec. 2016
  end-page: 1285
  ident: bib30
  article-title: Motor fault detection and diagnosis using a hybrid FMM-cart model with online learning
  publication-title: J Intell Manuf
– volume: 62
  start-page: 637
  year: Jan. 2015
  end-page: 646
  ident: bib35
  article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
– volume: 37
  start-page: 3468
  year: Apr. 2010
  end-page: 3481
  ident: bib28
  article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor
  publication-title: Expert Syst Appl
– volume: vol. 2
  start-page: 453
  year: Sep. 2011
  end-page: 469
  ident: bib39
  article-title: On oblique random forests
  publication-title: Proc. Springer ECML PKDD’11
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib42
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 52
  start-page: 1452
  year: Mar./Apr. 2016
  end-page: 1459
  ident: bib17
  article-title: Comparative experimental investigation of broken bar fault detectability in induction motors
  publication-title: IEEE Trans Ind Appl
– volume: 53
  start-page: 2711
  year: May/Jun. 2017
  end-page: 2720
  ident: bib20
  article-title: Analysis of the vibration magnitude of an induction motor with di erent numbers of broken bars
  publication-title: IEEE Trans Ind Appl
– volume: 93
  start-page: 332
  year: Sep. 2017
  end-page: 350
  ident: bib21
  article-title: Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using hilbert transform
  publication-title: Mech Syst Signal Process
– volume: 58
  start-page: 4917
  year: Oct. 2011
  end-page: 4930
  ident: bib9
  article-title: A new portable, self-powered, and wireless instrument for the early detection of broken rotor bars in induction motors
  publication-title: IEEE Trans Ind Electron
– volume: 37
  start-page: 1248
  year: Sep./Oct. 2001
  end-page: 1255
  ident: bib32
  article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis
  publication-title: IEEE Trans Ind Appl
– volume: 22
  start-page: 490
  year: Mar. 2008
  end-page: 496
  ident: bib6
  article-title: Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor
  publication-title: J Mech Sci Technol
– volume: 93
  start-page: 30
  year: Sep. 2017
  end-page: 50
  ident: bib15
  article-title: Introducing the filtered park's and filtered extended park's vector approach to detect broken rotor bars in induction motors independently from the rotor slots number
  publication-title: Mech Syst Signal Process
– volume: 152
  start-page: 18
  year: Nov. 2017
  end-page: 26
  ident: bib24
  article-title: Analysis of various inverters feeding induction motors with incipient rotor fault using high-resolution spectral analysis
  publication-title: Elec Power Syst Res
– volume: 45
  start-page: 5
  year: Jan. 2001
  end-page: 32
  ident: bib38
  article-title: Random forests
  publication-title: Mach Learn
– volume: 97
  start-page: 151
  year: Apr. 2013
  end-page: 157
  ident: bib1
  article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm
  publication-title: Elec Power Syst Res
– volume: 114
  start-page: 1
  year: Sep. 2014
  end-page: 9
  ident: bib8
  article-title: Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis
  publication-title: Elec Power Syst Res
– volume: 58
  start-page: 4365
  year: Sep. 2011
  end-page: 4373
  ident: bib14
  article-title: Detection of induction motor faults in inverter drives using inverter input current analysis
  publication-title: IEEE Trans Ind Electron
– start-page: 767
  year: 1982
  end-page: 770
  ident: bib23
  article-title: Squirrel cage motor with broken bar in the rotor-physical phenomena and their experimental assessment
  publication-title: Proc. of int. Conf. On electrical machines
– volume: 63
  start-page: 413
  year: Jul. 2016
  end-page: 424
  ident: bib13
  article-title: Induction machine bearing faults detection based on a multi-dimensional music algorithm and maximum likelihood estimation
  publication-title: ISA Trans
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.isatra.2018.07.033_bib42
  article-title: Classification and regression by random forest
  publication-title: R News
– year: 2013
  ident: 10.1016/j.isatra.2018.07.033_bib41
– volume: 55
  start-page: 4137
  year: 2008
  ident: 10.1016/j.isatra.2018.07.033_bib25
  article-title: Analysis and application of particular current signatures (symptoms) for cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia, and frequency variations
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2008.2004669
– volume: 54
  start-page: 2215
  year: 2018
  ident: 10.1016/j.isatra.2018.07.033_bib12
  article-title: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2018.2801863
– volume: 62
  start-page: 637
  year: 2015
  ident: 10.1016/j.isatra.2018.07.033_bib35
  article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327589
– volume: 152
  start-page: 18
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib24
  article-title: Analysis of various inverters feeding induction motors with incipient rotor fault using high-resolution spectral analysis
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2017.06.021
– volume: 57
  start-page: 2879
  year: 2010
  ident: 10.1016/j.isatra.2018.07.033_bib3
  article-title: Detection of broken bars in induction motor through the analysis of supply voltage modulation
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2035991
– volume: 36
  start-page: 1840
  year: 2009
  ident: 10.1016/j.isatra.2018.07.033_bib29
  article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.12.010
– volume: 114
  start-page: 1
  year: 2014
  ident: 10.1016/j.isatra.2018.07.033_bib8
  article-title: Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2014.03.031
– start-page: 767
  year: 1982
  ident: 10.1016/j.isatra.2018.07.033_bib23
  article-title: Squirrel cage motor with broken bar in the rotor-physical phenomena and their experimental assessment
– volume: 66
  start-page: 284
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib26
  article-title: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.10.014
– volume: 58
  start-page: 4917
  year: 2011
  ident: 10.1016/j.isatra.2018.07.033_bib9
  article-title: A new portable, self-powered, and wireless instrument for the early detection of broken rotor bars in induction motors
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2011.2109340
– volume: 22
  start-page: 490
  year: 2008
  ident: 10.1016/j.isatra.2018.07.033_bib6
  article-title: Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-007-1036-3
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.isatra.2018.07.033_bib34
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 63
  start-page: 413
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib13
  article-title: Induction machine bearing faults detection based on a multi-dimensional music algorithm and maximum likelihood estimation
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.03.007
– year: 2012
  ident: 10.1016/j.isatra.2018.07.033_bib43
– volume: 55
  start-page: 1404
  year: 2008
  ident: 10.1016/j.isatra.2018.07.033_bib11
  article-title: Airgap-eccentricity fault diagnosis, in three-phase induction motors, by the complex apparent power signature analysis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2007.909076
– volume: 98
  start-page: 63
  year: 2018
  ident: 10.1016/j.isatra.2018.07.033_bib18
  article-title: Fast and accurate spectral estimation for online detection of partial broken bar in induction motors
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.04.035
– volume: 4
  start-page: 7028
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib44
  article-title: Advances in classifier evaluation: novel insights for an electric data-driven motor diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2622679
– volume: 70
  start-page: 400
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib22
  article-title: A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.06.001
– volume: 37
  start-page: 1248
  year: 2001
  ident: 10.1016/j.isatra.2018.07.033_bib32
  article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/28.952499
– volume: 20
  start-page: 719
  year: 2005
  ident: 10.1016/j.isatra.2018.07.033_bib4
  article-title: Condition monitoring and fault diagnosis of electrical motors a review
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2005.847955
– volume: 83
  start-page: 568
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib7
  article-title: Methodology for fault detection in induction motors via sound and vibration signals
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.06.032
– volume: 37
  start-page: 3468
  year: 2010
  ident: 10.1016/j.isatra.2018.07.033_bib28
  article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.10.041
– volume: 70
  start-page: 87
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib36
  article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.030
– volume: 28
  start-page: 209
  issue: 3
  year: 1986
  ident: 10.1016/j.isatra.2018.07.033_bib37
  article-title: Generalized simulated annealing for function optimization
  publication-title: Technometrics
  doi: 10.1080/00401706.1986.10488128
– volume: 8
  start-page: 334
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib5
  article-title: Feature selection and classification of mechanical fault of an induction motor using random forest classifier
  publication-title: Perspect Sci
  doi: 10.1016/j.pisc.2016.04.068
– volume: 97
  start-page: 151
  year: 2013
  ident: 10.1016/j.isatra.2018.07.033_bib1
  article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2012.12.013
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.isatra.2018.07.033_bib38
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 93
  start-page: 332
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib21
  article-title: Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using hilbert transform
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.02.014
– volume: vol. 2
  start-page: 453
  year: 2011
  ident: 10.1016/j.isatra.2018.07.033_bib39
  article-title: On oblique random forests
– volume: 54
  start-page: 1224
  year: 2018
  ident: 10.1016/j.isatra.2018.07.033_bib16
  article-title: Reliable detection of rotor bars breakage in induction motors via music and zsc methods
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2017.2764846
– volume: 64
  start-page: 241
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib19
  article-title: Detection of broken rotor bar faults in induction motor at low load using neural network
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.06.004
– volume: 25
  start-page: 2827
  year: 2011
  ident: 10.1016/j.isatra.2018.07.033_bib2
  article-title: Rotor fault condition monitoring techniques for squirrel-cage induction machine - a review
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.05.007
– volume: 53
  start-page: 2711
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib20
  article-title: Analysis of the vibration magnitude of an induction motor with di erent numbers of broken bars
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2017.2657478
– volume: 28
  start-page: 1619
  year: 2006
  ident: 10.1016/j.isatra.2018.07.033_bib40
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.211
– volume: 11
  start-page: 1028
  year: 2015
  ident: 10.1016/j.isatra.2018.07.033_bib31
  article-title: A symbolic representation approach for the diagnosis of broken rotor bars in induction motors
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2015.2463680
– volume: 27
  start-page: 1273
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib30
  article-title: Motor fault detection and diagnosis using a hybrid FMM-cart model with online learning
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-014-0950-3
– volume: 58
  start-page: 4365
  year: 2011
  ident: 10.1016/j.isatra.2018.07.033_bib14
  article-title: Detection of induction motor faults in inverter drives using inverter input current analysis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2010.2093476
– volume: 21
  start-page: 2838
  year: 2007
  ident: 10.1016/j.isatra.2018.07.033_bib10
  article-title: Quantitative analysis of noninvasive diagnostic procedures for induction motor drives
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.03.006
– volume: 52
  start-page: 1452
  year: 2016
  ident: 10.1016/j.isatra.2018.07.033_bib17
  article-title: Comparative experimental investigation of broken bar fault detectability in induction motors
  publication-title: IEEE Trans Ind Appl
– volume: 58
  start-page: 4385
  year: 2011
  ident: 10.1016/j.isatra.2018.07.033_bib27
  article-title: Fault diagnosis in industrial induction machines through discrete wavelet transform
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2010.2095391
– volume: 93
  start-page: 30
  year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib15
  article-title: Introducing the filtered park's and filtered extended park's vector approach to detect broken rotor bars in induction motors independently from the rotor slots number
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.01.046
– year: 2017
  ident: 10.1016/j.isatra.2018.07.033_bib33
SSID ssj0002598
Score 2.295444
Snippet This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms Artificial intelligence
Fault diagnosis
Induction motor
Oblique random forests
Simulated annealing algorithm
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Nb9QwEIZHsD1AD0DLRxcKMhIHODi7je0kPlZVqxUSFQdWKuIQOf6AhTSpNomq8usZx8mqAlUtp8jKWEo04_i1M_MY4J21qIK11TTLZEp5ylJaoIqgWiSyYJqrWPt650-nyWLJP56Js2G_o-k5EMrUOsJLZJtZIA3MPPSNzxKOWuM-bCUCVfcEtpannw-_hg-tpCg7-qq3LJXo-Dgeq-T6VC6fGLP2kKGDrCd1MnbTLPSvytyGB111oa4uVVlem3lOHgcMUtMDC33Cya-oa4tI__4L53iXl3oCjwb5SQ5DvOzAPVvtwvY1KOEu7AzDvSHvByb1h6fwbXHlS7uIKr_X61X743ylyYgjJ7VnJaNyJW1N-q173yTrGpfzxKmubIkJCX2rhtQVmpiArCXn3qR5BsuT4y9HCzqcy0A1n2ctFVJZlxTWL42YcUpKXsQ2yVysmD4wPLEqlmksDKqTYm61w9uqEJkT0krDDHsOk6qu7B4QO7dOKY2LdOV4KmKMGAwcaxInU1PIeAps9FOuB2i5PzujzMfstJ958G7uvZvP0xy9OwW66XURoB232KdjCOSD8AiCIsd55Zaeb8eIyXFc-p8tqrJ116ARrgQlCgQxhRchlDbPwvw-Eiq7KUSb2LrTg7783w6v4KFvhaS4fZi0686-RhXVFm-GAfQHDUgbYA
  priority: 102
  providerName: Unpaywall
Title Hybrid algorithmic approach oriented to incipient rotor fault diagnosis on induction motors
URI https://dx.doi.org/10.1016/j.isatra.2018.07.033
https://www.ncbi.nlm.nih.gov/pubmed/30093102
https://www.proquest.com/docview/2087593035
https://uvadoc.uva.es/handle/10324/64932
UnpaywallVersion submittedVersion
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CemhzKE362qYJKvTQHpTsWrZlHZelYdPHEkoXUnowsiy1Lo697HoJufS3d8ayNymhpPRkZI9AaEYzn-SZTwCvrUUUbKzhSaIkD6WQPEMUwU0Uq0yYUAeG6p0_zeLpPHx_Hp1vwaSvhaG0ys73e5_eeuvuzXE3m8eLoqAaXwxmaHAjorBKfAV7KOkWg6Nf12keCO87b6w4Sfflc22OF2XMLIl9aJS0FJ5C_C083YafO3B_XS301aUuyxsh6eQRPOywJBv74e7Clq32YOcGw-Ae7HZrd8XedATTbx_Dt-kV1WkxXX6vl0Xz46IwrOcWZzURHyMMZU3N2nN4arJljXtz5vS6bFjus_OKFasrFMk9_yy7IJHVE5ifvPsymfLukgVuwmHS8Ehp6-LM0j5H5E4rFWaBjRMXaGFGeRhbHSgZRDlCjWxojcPPOosSFymrcpGLp7Bd1ZV9DswOrdPa4I5bu1BGAaofrcDmsVMyz1QwANHPbWo6BnK6CKNM-1Szn6nXSEoaSYcyRY0MgG96LTwDxx3ysldb-oclpRgk7uj5qtdyiouM_pzoytbrFQrhtk5htI8G8MyrfzMWQYdCCNMGcLSxh38a6Iv_Hug-PKCWT3V7CdvNcm0PEBs12WFr_Idwbzz5_PGMnqcfpjN8zmdn46-_AQe8E1Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heqAcqkK_lrbUlXpoD4bdOE7iY4VA2xY4gYTUg-U4Nk0VktVuVohLf3tnEmdLhRBVj0nGkuUZz7xxZp4BPjiHKNg6y7NMpTxORcpzRBHcykTlwsYmstTvfHKaTM_jrxfyYg0Ohl4YKqsMvr_36Z23Dm_2w2ruz8qSenwxmKHBTYjCKqMO9kexjFLKwPZ-_anzQHwf3LHiJD70z3VFXlQyMyf6oUnWcXgKcV98uos_N2FjWc_MzbWpqlsx6egpPAlgkn3u57sFa67ehs1bFIPbsBU274J9DAzTn57B9-kNNWoxU10287L9cVVaNpCLs4aYjxGHsrZh3UE8PbJ5g8k582ZZtazoy_PKBWtqFCl6Alp2RSKL53B-dHh2MOXhlgVu43HWcqmM80nuKNERhTdKxXnkksxHRthJESfORCqNZIFYIx876_GzyWXmpXKqEIV4Aet1U7tXwNzYeWMsptzGx6mMUP9oBq5IvEqLXEUjEMPaahsoyOkmjEoPtWY_da8RTRrR41SjRkbAV6NmPQXHA_LpoDb9lylpjBIPjHw_aFnjLqNfJ6Z2zXKBQpjXKQz3cgQve_Wv5iLoVAhx2gj2VvbwTxPd-e-JvoON6dnJsT7-cvrtNTymL33d2xtYb-dL9xaBUpvvdhvhNxbXEaY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Nb9QwEIZHsD1AD0DLRxcKMhIHODi7je0kPlZVqxUSFQdWKuIQOf6AhTSpNomq8usZx8mqAlUtp8jKWEo04_i1M_MY4J21qIK11TTLZEp5ylJaoIqgWiSyYJqrWPt650-nyWLJP56Js2G_o-k5EMrUOsJLZJtZIA3MPPSNzxKOWuM-bCUCVfcEtpannw-_hg-tpCg7-qq3LJXo-Dgeq-T6VC6fGLP2kKGDrCd1MnbTLPSvytyGB111oa4uVVlem3lOHgcMUtMDC33Cya-oa4tI__4L53iXl3oCjwb5SQ5DvOzAPVvtwvY1KOEu7AzDvSHvByb1h6fwbXHlS7uIKr_X61X743ylyYgjJ7VnJaNyJW1N-q173yTrGpfzxKmubIkJCX2rhtQVmpiArCXn3qR5BsuT4y9HCzqcy0A1n2ctFVJZlxTWL42YcUpKXsQ2yVysmD4wPLEqlmksDKqTYm61w9uqEJkT0krDDHsOk6qu7B4QO7dOKY2LdOV4KmKMGAwcaxInU1PIeAps9FOuB2i5PzujzMfstJ958G7uvZvP0xy9OwW66XURoB232KdjCOSD8AiCIsd55Zaeb8eIyXFc-p8tqrJ116ARrgQlCgQxhRchlDbPwvw-Eiq7KUSb2LrTg7783w6v4KFvhaS4fZi0686-RhXVFm-GAfQHDUgbYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+algorithmic+approach+oriented+to+incipient+rotor+fault+diagnosis+on+induction+motors&rft.jtitle=ISA+transactions&rft.au=Martin-Diaz%2C+Ignacio&rft.au=Morinigo-Sotelo%2C+Daniel&rft.au=Duque-Perez%2C+Oscar&rft.au=Osornio-Rios%2C+Roque+A.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.eissn=1879-2022&rft.volume=80&rft.spage=427&rft.epage=438&rft_id=info:doi/10.1016%2Fj.isatra.2018.07.033&rft.externalDocID=S0019057818302891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon