Hybrid algorithmic approach oriented to incipient rotor fault diagnosis on induction motors
This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfun...
Saved in:
| Published in | ISA transactions Vol. 80; pp. 427 - 438 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.09.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0019-0578 1879-2022 1879-2022 |
| DOI | 10.1016/j.isatra.2018.07.033 |
Cover
| Abstract | This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.
[Display omitted]
•A rotor fault diagnosis with all indicators proposed recently in literature is developed.•SA algorithm identifies the features with greater discriminant capacity in different experiments.•Random Forest-based classifiers outperform CART and k-NN for incipient rotor conditions.•Careful performance evaluation through recent state-of-the-art techniques. |
|---|---|
| AbstractList | This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.
[Display omitted]
•A rotor fault diagnosis with all indicators proposed recently in literature is developed.•SA algorithm identifies the features with greater discriminant capacity in different experiments.•Random Forest-based classifiers outperform CART and k-NN for incipient rotor conditions.•Careful performance evaluation through recent state-of-the-art techniques. This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field. This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field. |
| Author | Martin-Diaz, Ignacio Romero-Troncoso, Rene J. Osornio-Rios, Roque A. Duque-Perez, Oscar Morinigo-Sotelo, Daniel |
| Author_xml | – sequence: 1 givenname: Ignacio surname: Martin-Diaz fullname: Martin-Diaz, Ignacio organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain – sequence: 2 givenname: Daniel surname: Morinigo-Sotelo fullname: Morinigo-Sotelo, Daniel organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain – sequence: 3 givenname: Oscar surname: Duque-Perez fullname: Duque-Perez, Oscar organization: Elect. Eng. Dept. Escuela de Ingenierias Industriales, Sede Paseo del Cauce, University of Valladolid, Paseo del Cauce, 59, 47011, Valladolid, Spain – sequence: 4 givenname: Roque A. surname: Osornio-Rios fullname: Osornio-Rios, Roque A. organization: Universidad Autónoma de Querétaro, HSPdigital CA-Mecatronica, Facultad de Ingenieria, Río Moctezuma 249, San Juan del Rio, 76806, Querétaro, Mexico – sequence: 5 givenname: Rene J. surname: Romero-Troncoso fullname: Romero-Troncoso, Rene J. email: troncoso@hspdigital.org organization: Universidad Autónoma de Querétaro, HSPdigital CA-Mecatronica, Facultad de Ingenieria, Río Moctezuma 249, San Juan del Rio, 76806, Querétaro, Mexico |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30093102$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkT1v1TAUhi1URG8L_wChjCwJx3acxAxIqKItUiUWmBgsxz5pfZXEwXZA99_jKIWBAZj89bzHx48vyNnsZyTkJYWKAm3eHCsXdQq6YkC7CtoKOH9CDrRrZcmAsTNyAKCyBNF25-QixiMAMCG7Z-ScA0hOgR3I19tTH5wt9Hjvg0sPkzOFXpbgtXko8g7OCW2RfOFm45ZtWQSffCgGvY6psE7fzz66WPg5I3Y1yeXZtCHxOXk66DHii8fxkny5_vD56ra8-3Tz8er9XWlq6FIppMah6ZE2tOV20FLWPcOmG5jmhtq6Qc1ky4Rta94DmiEf6150g5AoLbf8koi97jov-vRDj6Nagpt0OCkKapOljmqXpTZZClqVZeXc6z2Xn_ttxZjU5KLBcdQz-jVmtmuF5MBFRl89oms_of1d_5fIDLzdARN8jAEHZVzSm4x8qxv_1Uj9R_g_-3-3xzDL_e4wqGjyDxm0LqBJynr39wI_AU-StFs |
| CitedBy_id | crossref_primary_10_3390_s24165285 crossref_primary_10_1515_teme_2020_0066 crossref_primary_10_1016_j_heliyon_2023_e17584 crossref_primary_10_1049_iet_epa_2019_0779 crossref_primary_10_1088_1361_6501_acfb2c crossref_primary_10_1109_CJECE_2019_2914959 crossref_primary_10_3390_s19020269 crossref_primary_10_1109_TII_2020_3029551 crossref_primary_10_1016_j_isatra_2020_03_006 crossref_primary_10_1109_ACCESS_2020_2986306 crossref_primary_10_1016_j_isatra_2022_10_037 crossref_primary_10_1016_j_heliyon_2022_e09136 crossref_primary_10_1109_ACCESS_2022_3159693 crossref_primary_10_1109_TIM_2020_3003359 crossref_primary_10_3390_s21165658 crossref_primary_10_1016_j_measurement_2021_110690 crossref_primary_10_1016_j_isatra_2020_07_002 |
| Cites_doi | 10.1109/TIE.2008.2004669 10.1109/TIA.2018.2801863 10.1109/TIE.2014.2327589 10.1016/j.epsr.2017.06.021 10.1109/TIE.2009.2035991 10.1016/j.eswa.2007.12.010 10.1016/j.epsr.2014.03.031 10.1016/j.isatra.2016.10.014 10.1109/TIE.2011.2109340 10.1007/s12206-007-1036-3 10.1016/j.isatra.2016.03.007 10.1109/TIE.2007.909076 10.1016/j.ymssp.2017.04.035 10.1109/ACCESS.2016.2622679 10.1016/j.isatra.2017.06.001 10.1109/28.952499 10.1109/TEC.2005.847955 10.1016/j.ymssp.2016.06.032 10.1016/j.eswa.2009.10.041 10.1016/j.ymssp.2015.08.030 10.1080/00401706.1986.10488128 10.1016/j.pisc.2016.04.068 10.1016/j.epsr.2012.12.013 10.1023/A:1010933404324 10.1016/j.ymssp.2017.02.014 10.1109/TIA.2017.2764846 10.1016/j.isatra.2016.06.004 10.1016/j.ymssp.2011.05.007 10.1109/TIA.2017.2657478 10.1109/TPAMI.2006.211 10.1109/TII.2015.2463680 10.1007/s10845-014-0950-3 10.1109/TIE.2010.2093476 10.1016/j.ymssp.2007.03.006 10.1109/TIE.2010.2095391 10.1016/j.ymssp.2017.01.046 |
| ContentType | Journal Article |
| Copyright | 2018 ISA Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 ISA – notice: Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.isatra.2018.07.033 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 438 |
| ExternalDocumentID | oai:uvadoc.uva.es:10324/64932 30093102 10_1016_j_isatra_2018_07_033 S0019057818302891 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c408t-59aef6be16173dfa994b2e68f2a3c1d46ea29725d743b0ecf4b2ab58f59e9d3d3 |
| IEDL.DBID | .~1 |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Thu Aug 28 11:01:09 EDT 2025 Sun Sep 28 11:51:23 EDT 2025 Wed Feb 19 02:43:00 EST 2025 Thu Apr 24 23:10:01 EDT 2025 Wed Oct 01 05:12:06 EDT 2025 Fri Feb 23 02:32:12 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MCSA ANN ORF OOB Oblique random forests IM ROC FPR KNN SA CBM PCA AUC Induction motor Fault diagnosis DT BRB RF FFT TPR Simulated annealing algorithm OVA Artificial intelligence PM |
| Language | English |
| License | Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-59aef6be16173dfa994b2e68f2a3c1d46ea29725d743b0ecf4b2ab58f59e9d3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://uvadoc.uva.es/handle/10324/64932 |
| PMID | 30093102 |
| PQID | 2087593035 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_isatra_2018_07_033 proquest_miscellaneous_2087593035 pubmed_primary_30093102 crossref_citationtrail_10_1016_j_isatra_2018_07_033 crossref_primary_10_1016_j_isatra_2018_07_033 elsevier_sciencedirect_doi_10_1016_j_isatra_2018_07_033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Elbouchikhi, Choqueuse, Benbouzid (bib13) Jul. 2016; 63 Martinez, Belahcen, Muetze (bib20) May/Jun. 2017; 53 Bellini, Filippetti, Franceschini, Tassoni, Kliman (bib32) Sep./Oct. 2001; 37 Nandi, Toliyat, Li (bib4) Dec. 2005; 20 Drif, Cardoso (bib11) Mar. 2008; 55 Deleroi (bib23) 1982 Gyftakis, Cardoso, Antonino-Daviu (bib15) Sep. 2017; 93 Seera, Lim, Loo (bib30) Dec. 2016; 27 Rauber, de Assis Boldt, Varejao (bib35) Jan. 2015; 62 Xue, Zhou (bib26) Jan. 2017; 66 Bohachevsky, Johnson, Stein (bib37) 1986; 28 Morinigo-Sotelo, Romero-Troncoso, Panagiotou, Antonino-Daviu, Gyftakis (bib16) Mar./Apr. 2018; 54 Rodriguez, Kuncheva, Alonso (bib40) Oct. 2006; 28 Bessam, Menacer, Boumehraz, Cherif (bib19) Sep. 2016; 64 Mehrjou, Mariun, Hamiruce Marhaban, Misron (bib2) Nov. 2011; 25 Cabanas, Pedrayes, Rojas, Melero, Norniella, Orcajo, Cano, Nuno, Fuentes (bib9) Oct. 2011; 58 Breiman (bib38) Jan. 2001; 45 Martin-Diaz, Morinigo-Sotelo, Duque-Perez, de Jesus Romero-Troncoso (bib12) May-June 2018; 54 Samanta, Naha, Routray, Deb (bib18) Jan. 2018; 98 Delgado-Arredondo, Morinigo-Sotelo, Osornio-Rios, Avina-Cervantes, Rostro-Gonzalez, de Jesus Romero-Troncoso (bib7) Jan. 2017; 83 Gyftakis, Antonino-Daviu, Garcia-Hernandez, McCulloch, Howey, Cardoso (bib17) Mar./Apr. 2016; 52 Yang, Oh, Tan (bib29) Mar. 2009; 36 Liu, Bazzi (bib22) Sep. 2017; 70 Bruzzese (bib25) Dec. 2008; 55 Liaw, Wiener (bib42) 2002; 2 Patel, Giri (bib5) Sep. 2016; 8 Keskes, Braham, Lachiri (bib1) Apr. 2013; 97 Eltabach, Antoni, Najjar (bib10) Oct. 2007; 21 Georgakopoulos, Mitronikas, Safacas (bib14) Sep. 2011; 58 Karvelis, Georgoulas, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib31) Oct. 2015; 11 Nemec, Drobnic, Nedeljkovic, Fiser, Ambrozic (bib3) Aug. 2010; 57 R Core Team (bib41) 2013 Abd-el Malek, Abdelsalam, Hassan (bib21) Sep. 2017; 93 Garcia-Ramirez, Morales-Hernandez, Osornio-Rios, Benitez-Rangel, Garcia-Perez, de Jesus Romero-Troncoso (bib8) Sep. 2014; 114 Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Arredondo-Delgado, Camarena-Martinez, Romero-Troncoso (bib24) Nov. 2017; 152 Ghate, Dudul (bib28) Apr. 2010; 37 Nguyen, Lee, Kwon (bib6) Mar. 2008; 22 Menze, Splitthoff (bib43) 2012 Martin-Diaz, Morinigo-Sotelo, Duque-Perez, Romero-Troncoso (bib44) Oct. 2016; 4 Cerrada, Zurita, Cabrera, Sanchez, Artes, Li (bib36) Mar. 2016; 70 Bouzida, Touhami, Ibtiouen, Belouchrani, Fadel, Rezzoug (bib27) Sep. 2011; 58 Kuhn, Wing, Weston, Williams, Keefer, Engelhardt, Cooper, Mayer, Kenkel, Benesty, Lescarbeau, Ziem, Scrucca, Tang, Candan, Hunt (bib33) 2017 Menze, Kelm, Splitthoff, Koethe, Hamprecht (bib39) Sep. 2011; vol. 2 Guyon, Elisseeff (bib34) Mar. 2003; 3 Cabanas (10.1016/j.isatra.2018.07.033_bib9) 2011; 58 Ghate (10.1016/j.isatra.2018.07.033_bib28) 2010; 37 Menze (10.1016/j.isatra.2018.07.033_bib39) 2011; vol. 2 Mehrjou (10.1016/j.isatra.2018.07.033_bib2) 2011; 25 Bruzzese (10.1016/j.isatra.2018.07.033_bib25) 2008; 55 Yang (10.1016/j.isatra.2018.07.033_bib29) 2009; 36 Gyftakis (10.1016/j.isatra.2018.07.033_bib15) 2017; 93 Elbouchikhi (10.1016/j.isatra.2018.07.033_bib13) 2016; 63 Rauber (10.1016/j.isatra.2018.07.033_bib35) 2015; 62 Cerrada (10.1016/j.isatra.2018.07.033_bib36) 2016; 70 Karvelis (10.1016/j.isatra.2018.07.033_bib31) 2015; 11 Liaw (10.1016/j.isatra.2018.07.033_bib42) 2002; 2 Bouzida (10.1016/j.isatra.2018.07.033_bib27) 2011; 58 Martin-Diaz (10.1016/j.isatra.2018.07.033_bib24) 2017; 152 Bohachevsky (10.1016/j.isatra.2018.07.033_bib37) 1986; 28 Guyon (10.1016/j.isatra.2018.07.033_bib34) 2003; 3 Keskes (10.1016/j.isatra.2018.07.033_bib1) 2013; 97 Menze (10.1016/j.isatra.2018.07.033_bib43) 2012 Delgado-Arredondo (10.1016/j.isatra.2018.07.033_bib7) 2017; 83 Eltabach (10.1016/j.isatra.2018.07.033_bib10) 2007; 21 Georgakopoulos (10.1016/j.isatra.2018.07.033_bib14) 2011; 58 Martin-Diaz (10.1016/j.isatra.2018.07.033_bib44) 2016; 4 R Core Team (10.1016/j.isatra.2018.07.033_bib41) 2013 Martinez (10.1016/j.isatra.2018.07.033_bib20) 2017; 53 Garcia-Ramirez (10.1016/j.isatra.2018.07.033_bib8) 2014; 114 Deleroi (10.1016/j.isatra.2018.07.033_bib23) 1982 Drif (10.1016/j.isatra.2018.07.033_bib11) 2008; 55 Nguyen (10.1016/j.isatra.2018.07.033_bib6) 2008; 22 Seera (10.1016/j.isatra.2018.07.033_bib30) 2016; 27 Samanta (10.1016/j.isatra.2018.07.033_bib18) 2018; 98 Breiman (10.1016/j.isatra.2018.07.033_bib38) 2001; 45 Nemec (10.1016/j.isatra.2018.07.033_bib3) 2010; 57 Morinigo-Sotelo (10.1016/j.isatra.2018.07.033_bib16) 2018; 54 Kuhn (10.1016/j.isatra.2018.07.033_bib33) 2017 Bellini (10.1016/j.isatra.2018.07.033_bib32) 2001; 37 Patel (10.1016/j.isatra.2018.07.033_bib5) 2016; 8 Abd-el Malek (10.1016/j.isatra.2018.07.033_bib21) 2017; 93 Liu (10.1016/j.isatra.2018.07.033_bib22) 2017; 70 Xue (10.1016/j.isatra.2018.07.033_bib26) 2017; 66 Gyftakis (10.1016/j.isatra.2018.07.033_bib17) 2016; 52 Nandi (10.1016/j.isatra.2018.07.033_bib4) 2005; 20 Martin-Diaz (10.1016/j.isatra.2018.07.033_bib12) 2018; 54 Rodriguez (10.1016/j.isatra.2018.07.033_bib40) 2006; 28 Bessam (10.1016/j.isatra.2018.07.033_bib19) 2016; 64 |
| References_xml | – year: 2012 ident: bib43 article-title: obliqueRF: oblique random forests from recursive linear model splits – volume: 54 start-page: 2215 year: May-June 2018 end-page: 2224 ident: bib12 article-title: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions publication-title: IEEE Trans Ind Appl – volume: 11 start-page: 1028 year: Oct. 2015 end-page: 1037 ident: bib31 article-title: A symbolic representation approach for the diagnosis of broken rotor bars in induction motors publication-title: IEEE Trans Ind Inf – volume: 64 start-page: 241 year: Sep. 2016 end-page: 246 ident: bib19 article-title: Detection of broken rotor bar faults in induction motor at low load using neural network publication-title: ISA Trans – volume: 83 start-page: 568 year: Jan. 2017 end-page: 589 ident: bib7 article-title: Methodology for fault detection in induction motors via sound and vibration signals publication-title: Mech Syst Signal Process – volume: 54 start-page: 1224 year: Mar./Apr. 2018 end-page: 1234 ident: bib16 article-title: Reliable detection of rotor bars breakage in induction motors via music and zsc methods publication-title: IEEE Trans Ind Appl – volume: 20 start-page: 719 year: Dec. 2005 end-page: 729 ident: bib4 article-title: Condition monitoring and fault diagnosis of electrical motors a review publication-title: IEEE Trans Energy Convers – volume: 98 start-page: 63 year: Jan. 2018 end-page: 77 ident: bib18 article-title: Fast and accurate spectral estimation for online detection of partial broken bar in induction motors publication-title: Mech Syst Signal Process – volume: 4 start-page: 7028 year: Oct. 2016 end-page: 7038 ident: bib44 article-title: Advances in classifier evaluation: novel insights for an electric data-driven motor diagnosis publication-title: IEEE Access – volume: 28 start-page: 209 year: 1986 end-page: 217 ident: bib37 article-title: Generalized simulated annealing for function optimization publication-title: Technometrics – volume: 66 start-page: 284 year: Jan. 2017 end-page: 295 ident: bib26 article-title: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery publication-title: ISA Trans – volume: 57 start-page: 2879 year: Aug. 2010 end-page: 2888 ident: bib3 article-title: Detection of broken bars in induction motor through the analysis of supply voltage modulation publication-title: IEEE Trans Ind Electron – volume: 28 start-page: 1619 year: Oct. 2006 end-page: 1630 ident: bib40 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 36 start-page: 1840 year: Mar. 2009 end-page: 1849 ident: bib29 article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference publication-title: Expert Syst Appl – year: 2017 ident: bib33 article-title: Caret: classification and regression training – volume: 58 start-page: 4385 year: Sep. 2011 end-page: 4395 ident: bib27 article-title: Fault diagnosis in industrial induction machines through discrete wavelet transform publication-title: IEEE Trans Ind Electron – volume: 70 start-page: 400 year: Sep. 2017 end-page: 409 ident: bib22 article-title: A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art publication-title: ISA Trans – volume: 3 start-page: 1157 year: Mar. 2003 end-page: 1182 ident: bib34 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 25 start-page: 2827 year: Nov. 2011 end-page: 2848 ident: bib2 article-title: Rotor fault condition monitoring techniques for squirrel-cage induction machine - a review publication-title: Mech Syst Signal Process – volume: 8 start-page: 334 year: Sep. 2016 end-page: 337 ident: bib5 article-title: Feature selection and classification of mechanical fault of an induction motor using random forest classifier publication-title: Perspect Sci – volume: 21 start-page: 2838 year: Oct. 2007 end-page: 2856 ident: bib10 article-title: Quantitative analysis of noninvasive diagnostic procedures for induction motor drives publication-title: Mech Syst Signal Process – volume: 55 start-page: 4137 year: Dec. 2008 end-page: 4155 ident: bib25 article-title: Analysis and application of particular current signatures (symptoms) for cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia, and frequency variations publication-title: IEEE Trans Ind Electron – volume: 70 start-page: 87 year: Mar. 2016 end-page: 103 ident: bib36 article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest publication-title: Mech Syst Signal Process – volume: 55 start-page: 1404 year: Mar. 2008 end-page: 1410 ident: bib11 article-title: Airgap-eccentricity fault diagnosis, in three-phase induction motors, by the complex apparent power signature analysis publication-title: IEEE Trans Ind Electron – year: 2013 ident: bib41 article-title: A language and environment for statistical computing – volume: 27 start-page: 1273 year: Dec. 2016 end-page: 1285 ident: bib30 article-title: Motor fault detection and diagnosis using a hybrid FMM-cart model with online learning publication-title: J Intell Manuf – volume: 62 start-page: 637 year: Jan. 2015 end-page: 646 ident: bib35 article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis publication-title: IEEE Trans Ind Electron – volume: 37 start-page: 3468 year: Apr. 2010 end-page: 3481 ident: bib28 article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor publication-title: Expert Syst Appl – volume: vol. 2 start-page: 453 year: Sep. 2011 end-page: 469 ident: bib39 article-title: On oblique random forests publication-title: Proc. Springer ECML PKDD’11 – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib42 article-title: Classification and regression by random forest publication-title: R News – volume: 52 start-page: 1452 year: Mar./Apr. 2016 end-page: 1459 ident: bib17 article-title: Comparative experimental investigation of broken bar fault detectability in induction motors publication-title: IEEE Trans Ind Appl – volume: 53 start-page: 2711 year: May/Jun. 2017 end-page: 2720 ident: bib20 article-title: Analysis of the vibration magnitude of an induction motor with di erent numbers of broken bars publication-title: IEEE Trans Ind Appl – volume: 93 start-page: 332 year: Sep. 2017 end-page: 350 ident: bib21 article-title: Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using hilbert transform publication-title: Mech Syst Signal Process – volume: 58 start-page: 4917 year: Oct. 2011 end-page: 4930 ident: bib9 article-title: A new portable, self-powered, and wireless instrument for the early detection of broken rotor bars in induction motors publication-title: IEEE Trans Ind Electron – volume: 37 start-page: 1248 year: Sep./Oct. 2001 end-page: 1255 ident: bib32 article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis publication-title: IEEE Trans Ind Appl – volume: 22 start-page: 490 year: Mar. 2008 end-page: 496 ident: bib6 article-title: Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor publication-title: J Mech Sci Technol – volume: 93 start-page: 30 year: Sep. 2017 end-page: 50 ident: bib15 article-title: Introducing the filtered park's and filtered extended park's vector approach to detect broken rotor bars in induction motors independently from the rotor slots number publication-title: Mech Syst Signal Process – volume: 152 start-page: 18 year: Nov. 2017 end-page: 26 ident: bib24 article-title: Analysis of various inverters feeding induction motors with incipient rotor fault using high-resolution spectral analysis publication-title: Elec Power Syst Res – volume: 45 start-page: 5 year: Jan. 2001 end-page: 32 ident: bib38 article-title: Random forests publication-title: Mach Learn – volume: 97 start-page: 151 year: Apr. 2013 end-page: 157 ident: bib1 article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm publication-title: Elec Power Syst Res – volume: 114 start-page: 1 year: Sep. 2014 end-page: 9 ident: bib8 article-title: Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis publication-title: Elec Power Syst Res – volume: 58 start-page: 4365 year: Sep. 2011 end-page: 4373 ident: bib14 article-title: Detection of induction motor faults in inverter drives using inverter input current analysis publication-title: IEEE Trans Ind Electron – start-page: 767 year: 1982 end-page: 770 ident: bib23 article-title: Squirrel cage motor with broken bar in the rotor-physical phenomena and their experimental assessment publication-title: Proc. of int. Conf. On electrical machines – volume: 63 start-page: 413 year: Jul. 2016 end-page: 424 ident: bib13 article-title: Induction machine bearing faults detection based on a multi-dimensional music algorithm and maximum likelihood estimation publication-title: ISA Trans – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.isatra.2018.07.033_bib42 article-title: Classification and regression by random forest publication-title: R News – year: 2013 ident: 10.1016/j.isatra.2018.07.033_bib41 – volume: 55 start-page: 4137 year: 2008 ident: 10.1016/j.isatra.2018.07.033_bib25 article-title: Analysis and application of particular current signatures (symptoms) for cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia, and frequency variations publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2008.2004669 – volume: 54 start-page: 2215 year: 2018 ident: 10.1016/j.isatra.2018.07.033_bib12 article-title: An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2018.2801863 – volume: 62 start-page: 637 year: 2015 ident: 10.1016/j.isatra.2018.07.033_bib35 article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2327589 – volume: 152 start-page: 18 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib24 article-title: Analysis of various inverters feeding induction motors with incipient rotor fault using high-resolution spectral analysis publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2017.06.021 – volume: 57 start-page: 2879 year: 2010 ident: 10.1016/j.isatra.2018.07.033_bib3 article-title: Detection of broken bars in induction motor through the analysis of supply voltage modulation publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2035991 – volume: 36 start-page: 1840 year: 2009 ident: 10.1016/j.isatra.2018.07.033_bib29 article-title: Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.12.010 – volume: 114 start-page: 1 year: 2014 ident: 10.1016/j.isatra.2018.07.033_bib8 article-title: Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2014.03.031 – start-page: 767 year: 1982 ident: 10.1016/j.isatra.2018.07.033_bib23 article-title: Squirrel cage motor with broken bar in the rotor-physical phenomena and their experimental assessment – volume: 66 start-page: 284 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib26 article-title: A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery publication-title: ISA Trans doi: 10.1016/j.isatra.2016.10.014 – volume: 58 start-page: 4917 year: 2011 ident: 10.1016/j.isatra.2018.07.033_bib9 article-title: A new portable, self-powered, and wireless instrument for the early detection of broken rotor bars in induction motors publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2011.2109340 – volume: 22 start-page: 490 year: 2008 ident: 10.1016/j.isatra.2018.07.033_bib6 article-title: Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor publication-title: J Mech Sci Technol doi: 10.1007/s12206-007-1036-3 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.isatra.2018.07.033_bib34 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 63 start-page: 413 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib13 article-title: Induction machine bearing faults detection based on a multi-dimensional music algorithm and maximum likelihood estimation publication-title: ISA Trans doi: 10.1016/j.isatra.2016.03.007 – year: 2012 ident: 10.1016/j.isatra.2018.07.033_bib43 – volume: 55 start-page: 1404 year: 2008 ident: 10.1016/j.isatra.2018.07.033_bib11 article-title: Airgap-eccentricity fault diagnosis, in three-phase induction motors, by the complex apparent power signature analysis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2007.909076 – volume: 98 start-page: 63 year: 2018 ident: 10.1016/j.isatra.2018.07.033_bib18 article-title: Fast and accurate spectral estimation for online detection of partial broken bar in induction motors publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.04.035 – volume: 4 start-page: 7028 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib44 article-title: Advances in classifier evaluation: novel insights for an electric data-driven motor diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2622679 – volume: 70 start-page: 400 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib22 article-title: A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art publication-title: ISA Trans doi: 10.1016/j.isatra.2017.06.001 – volume: 37 start-page: 1248 year: 2001 ident: 10.1016/j.isatra.2018.07.033_bib32 article-title: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis publication-title: IEEE Trans Ind Appl doi: 10.1109/28.952499 – volume: 20 start-page: 719 year: 2005 ident: 10.1016/j.isatra.2018.07.033_bib4 article-title: Condition monitoring and fault diagnosis of electrical motors a review publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2005.847955 – volume: 83 start-page: 568 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib7 article-title: Methodology for fault detection in induction motors via sound and vibration signals publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.06.032 – volume: 37 start-page: 3468 year: 2010 ident: 10.1016/j.isatra.2018.07.033_bib28 article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.10.041 – volume: 70 start-page: 87 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib36 article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.08.030 – volume: 28 start-page: 209 issue: 3 year: 1986 ident: 10.1016/j.isatra.2018.07.033_bib37 article-title: Generalized simulated annealing for function optimization publication-title: Technometrics doi: 10.1080/00401706.1986.10488128 – volume: 8 start-page: 334 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib5 article-title: Feature selection and classification of mechanical fault of an induction motor using random forest classifier publication-title: Perspect Sci doi: 10.1016/j.pisc.2016.04.068 – volume: 97 start-page: 151 year: 2013 ident: 10.1016/j.isatra.2018.07.033_bib1 article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2012.12.013 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isatra.2018.07.033_bib38 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 93 start-page: 332 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib21 article-title: Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using hilbert transform publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.02.014 – volume: vol. 2 start-page: 453 year: 2011 ident: 10.1016/j.isatra.2018.07.033_bib39 article-title: On oblique random forests – volume: 54 start-page: 1224 year: 2018 ident: 10.1016/j.isatra.2018.07.033_bib16 article-title: Reliable detection of rotor bars breakage in induction motors via music and zsc methods publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2017.2764846 – volume: 64 start-page: 241 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib19 article-title: Detection of broken rotor bar faults in induction motor at low load using neural network publication-title: ISA Trans doi: 10.1016/j.isatra.2016.06.004 – volume: 25 start-page: 2827 year: 2011 ident: 10.1016/j.isatra.2018.07.033_bib2 article-title: Rotor fault condition monitoring techniques for squirrel-cage induction machine - a review publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.05.007 – volume: 53 start-page: 2711 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib20 article-title: Analysis of the vibration magnitude of an induction motor with di erent numbers of broken bars publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2017.2657478 – volume: 28 start-page: 1619 year: 2006 ident: 10.1016/j.isatra.2018.07.033_bib40 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2006.211 – volume: 11 start-page: 1028 year: 2015 ident: 10.1016/j.isatra.2018.07.033_bib31 article-title: A symbolic representation approach for the diagnosis of broken rotor bars in induction motors publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2015.2463680 – volume: 27 start-page: 1273 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib30 article-title: Motor fault detection and diagnosis using a hybrid FMM-cart model with online learning publication-title: J Intell Manuf doi: 10.1007/s10845-014-0950-3 – volume: 58 start-page: 4365 year: 2011 ident: 10.1016/j.isatra.2018.07.033_bib14 article-title: Detection of induction motor faults in inverter drives using inverter input current analysis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2010.2093476 – volume: 21 start-page: 2838 year: 2007 ident: 10.1016/j.isatra.2018.07.033_bib10 article-title: Quantitative analysis of noninvasive diagnostic procedures for induction motor drives publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.03.006 – volume: 52 start-page: 1452 year: 2016 ident: 10.1016/j.isatra.2018.07.033_bib17 article-title: Comparative experimental investigation of broken bar fault detectability in induction motors publication-title: IEEE Trans Ind Appl – volume: 58 start-page: 4385 year: 2011 ident: 10.1016/j.isatra.2018.07.033_bib27 article-title: Fault diagnosis in industrial induction machines through discrete wavelet transform publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2010.2095391 – volume: 93 start-page: 30 year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib15 article-title: Introducing the filtered park's and filtered extended park's vector approach to detect broken rotor bars in induction motors independently from the rotor slots number publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.01.046 – year: 2017 ident: 10.1016/j.isatra.2018.07.033_bib33 |
| SSID | ssj0002598 |
| Score | 2.295444 |
| Snippet | This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 427 |
| SubjectTerms | Artificial intelligence Fault diagnosis Induction motor Oblique random forests Simulated annealing algorithm |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Nb9QwEIZHsD1AD0DLRxcKMhIHODi7je0kPlZVqxUSFQdWKuIQOf6AhTSpNomq8usZx8mqAlUtp8jKWEo04_i1M_MY4J21qIK11TTLZEp5ylJaoIqgWiSyYJqrWPt650-nyWLJP56Js2G_o-k5EMrUOsJLZJtZIA3MPPSNzxKOWuM-bCUCVfcEtpannw-_hg-tpCg7-qq3LJXo-Dgeq-T6VC6fGLP2kKGDrCd1MnbTLPSvytyGB111oa4uVVlem3lOHgcMUtMDC33Cya-oa4tI__4L53iXl3oCjwb5SQ5DvOzAPVvtwvY1KOEu7AzDvSHvByb1h6fwbXHlS7uIKr_X61X743ylyYgjJ7VnJaNyJW1N-q173yTrGpfzxKmubIkJCX2rhtQVmpiArCXn3qR5BsuT4y9HCzqcy0A1n2ctFVJZlxTWL42YcUpKXsQ2yVysmD4wPLEqlmksDKqTYm61w9uqEJkT0krDDHsOk6qu7B4QO7dOKY2LdOV4KmKMGAwcaxInU1PIeAps9FOuB2i5PzujzMfstJ958G7uvZvP0xy9OwW66XURoB232KdjCOSD8AiCIsd55Zaeb8eIyXFc-p8tqrJ116ARrgQlCgQxhRchlDbPwvw-Eiq7KUSb2LrTg7783w6v4KFvhaS4fZi0686-RhXVFm-GAfQHDUgbYA priority: 102 providerName: Unpaywall |
| Title | Hybrid algorithmic approach oriented to incipient rotor fault diagnosis on induction motors |
| URI | https://dx.doi.org/10.1016/j.isatra.2018.07.033 https://www.ncbi.nlm.nih.gov/pubmed/30093102 https://www.proquest.com/docview/2087593035 https://uvadoc.uva.es/handle/10324/64932 |
| UnpaywallVersion | submittedVersion |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CemhzKE362qYJKvTQHpTsWrZlHZelYdPHEkoXUnowsiy1Lo697HoJufS3d8ayNymhpPRkZI9AaEYzn-SZTwCvrUUUbKzhSaIkD6WQPEMUwU0Uq0yYUAeG6p0_zeLpPHx_Hp1vwaSvhaG0ys73e5_eeuvuzXE3m8eLoqAaXwxmaHAjorBKfAV7KOkWg6Nf12keCO87b6w4Sfflc22OF2XMLIl9aJS0FJ5C_C083YafO3B_XS301aUuyxsh6eQRPOywJBv74e7Clq32YOcGw-Ae7HZrd8XedATTbx_Dt-kV1WkxXX6vl0Xz46IwrOcWZzURHyMMZU3N2nN4arJljXtz5vS6bFjus_OKFasrFMk9_yy7IJHVE5ifvPsymfLukgVuwmHS8Ehp6-LM0j5H5E4rFWaBjRMXaGFGeRhbHSgZRDlCjWxojcPPOosSFymrcpGLp7Bd1ZV9DswOrdPa4I5bu1BGAaofrcDmsVMyz1QwANHPbWo6BnK6CKNM-1Szn6nXSEoaSYcyRY0MgG96LTwDxx3ysldb-oclpRgk7uj5qtdyiouM_pzoytbrFQrhtk5htI8G8MyrfzMWQYdCCNMGcLSxh38a6Iv_Hug-PKCWT3V7CdvNcm0PEBs12WFr_Idwbzz5_PGMnqcfpjN8zmdn46-_AQe8E1Y |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heqAcqkK_lrbUlXpoD4bdOE7iY4VA2xY4gYTUg-U4Nk0VktVuVohLf3tnEmdLhRBVj0nGkuUZz7xxZp4BPjiHKNg6y7NMpTxORcpzRBHcykTlwsYmstTvfHKaTM_jrxfyYg0Ohl4YKqsMvr_36Z23Dm_2w2ruz8qSenwxmKHBTYjCKqMO9kexjFLKwPZ-_anzQHwf3LHiJD70z3VFXlQyMyf6oUnWcXgKcV98uos_N2FjWc_MzbWpqlsx6egpPAlgkn3u57sFa67ehs1bFIPbsBU274J9DAzTn57B9-kNNWoxU10287L9cVVaNpCLs4aYjxGHsrZh3UE8PbJ5g8k582ZZtazoy_PKBWtqFCl6Alp2RSKL53B-dHh2MOXhlgVu43HWcqmM80nuKNERhTdKxXnkksxHRthJESfORCqNZIFYIx876_GzyWXmpXKqEIV4Aet1U7tXwNzYeWMsptzGx6mMUP9oBq5IvEqLXEUjEMPaahsoyOkmjEoPtWY_da8RTRrR41SjRkbAV6NmPQXHA_LpoDb9lylpjBIPjHw_aFnjLqNfJ6Z2zXKBQpjXKQz3cgQve_Wv5iLoVAhx2gj2VvbwTxPd-e-JvoON6dnJsT7-cvrtNTymL33d2xtYb-dL9xaBUpvvdhvhNxbXEaY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Nb9QwEIZHsD1AD0DLRxcKMhIHODi7je0kPlZVqxUSFQdWKuIQOf6AhTSpNomq8usZx8mqAlUtp8jKWEo04_i1M_MY4J21qIK11TTLZEp5ylJaoIqgWiSyYJqrWPt650-nyWLJP56Js2G_o-k5EMrUOsJLZJtZIA3MPPSNzxKOWuM-bCUCVfcEtpannw-_hg-tpCg7-qq3LJXo-Dgeq-T6VC6fGLP2kKGDrCd1MnbTLPSvytyGB111oa4uVVlem3lOHgcMUtMDC33Cya-oa4tI__4L53iXl3oCjwb5SQ5DvOzAPVvtwvY1KOEu7AzDvSHvByb1h6fwbXHlS7uIKr_X61X743ylyYgjJ7VnJaNyJW1N-q173yTrGpfzxKmubIkJCX2rhtQVmpiArCXn3qR5BsuT4y9HCzqcy0A1n2ctFVJZlxTWL42YcUpKXsQ2yVysmD4wPLEqlmksDKqTYm61w9uqEJkT0krDDHsOk6qu7B4QO7dOKY2LdOV4KmKMGAwcaxInU1PIeAps9FOuB2i5PzujzMfstJ958G7uvZvP0xy9OwW66XURoB232KdjCOSD8AiCIsd55Zaeb8eIyXFc-p8tqrJ116ARrgQlCgQxhRchlDbPwvw-Eiq7KUSb2LrTg7783w6v4KFvhaS4fZi0686-RhXVFm-GAfQHDUgbYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+algorithmic+approach+oriented+to+incipient+rotor+fault+diagnosis+on+induction+motors&rft.jtitle=ISA+transactions&rft.au=Martin-Diaz%2C+Ignacio&rft.au=Morinigo-Sotelo%2C+Daniel&rft.au=Duque-Perez%2C+Oscar&rft.au=Osornio-Rios%2C+Roque+A.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.eissn=1879-2022&rft.volume=80&rft.spage=427&rft.epage=438&rft_id=info:doi/10.1016%2Fj.isatra.2018.07.033&rft.externalDocID=S0019057818302891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |