Compressed sensing of roller bearing fault based on multiple down-sampling strategy

Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, i...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 27; no. 2; pp. 25009 - 25017
Main Authors Wang, Huaqing, Ke, Yanliang, Luo, Ganggang, Tang, Gang
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.02.2016
Subjects
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/0957-0233/27/2/025009

Cover

Abstract Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing's vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults.
AbstractList Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing's vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults.
Author Tang, Gang
Wang, Huaqing
Ke, Yanliang
Luo, Ganggang
Author_xml – sequence: 1
  givenname: Huaqing
  surname: Wang
  fullname: Wang, Huaqing
– sequence: 2
  givenname: Yanliang
  surname: Ke
  fullname: Ke, Yanliang
– sequence: 3
  givenname: Ganggang
  surname: Luo
  fullname: Luo, Ganggang
  organization: Beijing University of Chemical Technology School of Mechanical and Electrical Engineering, Beijing 100029, People's Republic of China
– sequence: 4
  givenname: Gang
  surname: Tang
  fullname: Tang, Gang
  email: tanggang@mail.buct.edu.cn
BookMark eNqFkE1LxDAQhoMouKv-BKE3vdSdZNu0wZMsfoHgQT2HNDtZKmlSkxbZf2_KioiInoYZnvdleOZk33mHhJxSuKBQ1wsQZZUDWy4XrFqwBbASQOyRGV1ymvMS6D6ZfTGHZB7jKwBUIMSMPK181weMEddZRBdbt8m8yYK3FkPWoArTxajRDlmjJsq7rEtb21vM1v7d5VF1vZ2oOAQ14GZ7TA6MshFPPucRebm5fl7d5Q-Pt_erq4dcF1APeVmh4ZSymhqomTGCIxisGS-4ANOUotBcKV01BaMMmaZcNQ2vEqY18rpcHpHzXW8f_NuIcZBdGzVaqxz6MUpaAxQi6RAJvdyhOvgYAxqp20ENrXfp59ZKCnJSKSdNctIkWSWZ3KlM6fJHug9tp8L239zZLtf6Xr76MbikQ3bp0W-U7NcmkfQX8u_2D7ALlY4
CODEN MSTCEP
CitedBy_id crossref_primary_10_1007_s11633_022_1363_y
crossref_primary_10_1063_5_0001660
crossref_primary_10_1007_s12206_023_0501_y
crossref_primary_10_1109_TIM_2018_2806984
crossref_primary_10_3390_app9132690
crossref_primary_10_1016_j_jmsy_2018_05_010
crossref_primary_10_3390_s16091524
crossref_primary_10_1088_1361_6501_abf374
crossref_primary_10_21595_jve_2018_20140
crossref_primary_10_21595_jve_2017_17546
crossref_primary_10_1088_1361_6501_ac0560
crossref_primary_10_1155_2022_1507630
crossref_primary_10_1109_JIOT_2024_3412675
Cites_doi 10.1016/j.sigpro.2013.04.018
10.1155/2014/676205
10.1016/j.measurement.2015.02.046
10.1016/j.phycom.2011.09.005
10.1109/TIT.2014.2361858
10.1016/j.acha.2008.07.002
10.1109/ICIST.2014.6920378
10.1006/mssp.2000.1304
10.1109/ITAB.2010.5687775
10.1016/j.ymssp.2003.12.002
10.1016/j.mechatronics.2015.04.017
10.1016/j.ymssp.2013.07.005
10.1016/j.jvcir.2015.03.006
10.1109/TIT.2013.2273491
10.1016/S0888-3270(03)00075-X
10.1016/j.dsp.2013.12.001
10.1016/j.ymssp.2012.11.003
10.1016/j.ymssp.2013.08.004
10.1016/j.measurement.2014.12.021
10.1016/j.sigpro.2013.07.002
10.1109/MSP.2008.915557
10.1155/2014/825825
10.1016/j.measurement.2015.04.006
10.1016/j.mri.2015.03.009
10.1016/j.jsv.2014.02.038
10.1006/mssp.2001.1462
10.1016/j.acha.2012.08.003
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
F28
FR3
L7M
DOI 10.1088/0957-0233/27/2/025009
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
DocumentTitleAlternate Compressed sensing of roller bearing fault based on multiple down-sampling strategy
EISSN 1361-6501
ExternalDocumentID 10_1088_0957_0233_27_2_025009
mstaa0dc2
GrantInformation_xml – fundername: China Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  grantid: 51375037; 51405012
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
AAYXX
ADEQX
AEINN
CITATION
7U5
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c408t-57ef611281f082ff96e0fe8264690fb594c6aac7b4212e2c16abb6796ecce6853
IEDL.DBID IOP
ISSN 0957-0233
IngestDate Fri Sep 05 08:35:37 EDT 2025
Thu Apr 24 23:01:09 EDT 2025
Wed Oct 01 04:32:37 EDT 2025
Wed Aug 21 03:41:10 EDT 2024
Thu Jan 07 13:53:10 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-57ef611281f082ff96e0fe8264690fb594c6aac7b4212e2c16abb6796ecce6853
Notes MST-103080.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800490259
PQPubID 23500
PageCount 9
ParticipantIDs crossref_primary_10_1088_0957_0233_27_2_025009
proquest_miscellaneous_1800490259
crossref_citationtrail_10_1088_0957_0233_27_2_025009
iop_journals_10_1088_0957_0233_27_2_025009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Measurement science & technology
PublicationTitleAbbrev MST
PublicationTitleAlternate Meas. Sci. Technol
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
27
28
Wang H (29); 9
Milles J (16) 2010
Hu D (15) 2014
10
11
12
13
17
Harish S (14) 2013
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 19
  doi: 10.1016/j.sigpro.2013.04.018
– ident: 28
  doi: 10.1155/2014/676205
– ident: 18
  doi: 10.1016/j.measurement.2015.02.046
– ident: 12
  doi: 10.1016/j.phycom.2011.09.005
– ident: 23
  doi: 10.1109/TIT.2014.2361858
– ident: 26
  doi: 10.1016/j.acha.2008.07.002
– start-page: 256
  year: 2014
  ident: 15
  publication-title: 2014 4th IEEE Int. Conf. on Information Science and Technology
  doi: 10.1109/ICIST.2014.6920378
– ident: 25
  doi: 10.1006/mssp.2000.1304
– start-page: 1
  year: 2010
  ident: 16
  publication-title: 2010 10th IEEE Int. Conf. on Information Technology and Applications in Biomedicine
  doi: 10.1109/ITAB.2010.5687775
– ident: 6
  doi: 10.1016/j.ymssp.2003.12.002
– ident: 17
  doi: 10.1016/j.mechatronics.2015.04.017
– ident: 3
  doi: 10.1016/j.ymssp.2013.07.005
– ident: 21
  doi: 10.1016/j.jvcir.2015.03.006
– ident: 27
  doi: 10.1109/TIT.2013.2273491
– ident: 7
  doi: 10.1016/S0888-3270(03)00075-X
– volume: 9
  ident: 29
  publication-title: Plos One
– ident: 13
  doi: 10.1016/j.dsp.2013.12.001
– ident: 10
  doi: 10.1016/j.ymssp.2012.11.003
– ident: 2
  doi: 10.1016/j.ymssp.2013.08.004
– ident: 9
  doi: 10.1016/j.measurement.2014.12.021
– ident: 11
  doi: 10.1016/j.sigpro.2013.07.002
– ident: 22
  doi: 10.1109/MSP.2008.915557
– ident: 1
  doi: 10.1155/2014/825825
– ident: 8
  doi: 10.1016/j.measurement.2015.04.006
– ident: 24
  doi: 10.1016/j.mri.2015.03.009
– start-page: 244
  year: 2013
  ident: 14
  publication-title: 2013 Int. Conf. on Recent Trends in Information Technology
– ident: 5
  doi: 10.1016/j.jsv.2014.02.038
– ident: 4
  doi: 10.1006/mssp.2001.1462
– ident: 20
  doi: 10.1016/j.acha.2012.08.003
SSID ssj0007099
Score 2.2608123
Snippet Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures....
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25009
SubjectTerms compressive sensing
Data management
Failure
fault diagnosis
Faults
multiple down-sample algorithm
Noise
roller bearing
Roller bearings
Sampling
Strategy
Vibration
Title Compressed sensing of roller bearing fault based on multiple down-sampling strategy
URI https://iopscience.iop.org/article/10.1088/0957-0233/27/2/025009
https://www.proquest.com/docview/1800490259
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP_英国物理学会现刊(含NSTL购买的14种刊)
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELegCIkXoGxoZTAZaQ8wKW3j5sN9nCYQQoJNGkh9s2znjBBdUjXpA_z1u0scVJhQhfYWJefEOdt3v_N9mLGvInRZNBIyiA2l5ICAQEOsAwdpApFFiGwpUfjqOrm4jS4n8WQpi_--mHnR38fLplBww0IfECcHCArSAFXNaIBmuxiQEqcMvo2RRHRMKXw_fz3L4nQ49tX2miZtDs9br3mhndaxB_-I6FrvnO8w3fa4CTd56C8q07dPr4o5_s8v7bJtD0r594a-y9Yg32ObdXCoLfdY1wuAkp_4KtWnH9hvkiR15fGMlxQFn9_xwvE5bUTMucEFRHecXkwrTqoy40XO2_BFnqHxH5SawtmRqmxK5D5-ZLfnZzc_LgJ_QkNgo6GsgjgFl4TkjHMIJZwbJzB0gBYLGd3OxOPIJlrb1JDfGYQNE20M7VzhxIEEkcI-6-RFDp8YF2E2NlEqQTqIhlaYGMGDiWMItUOI6nosakdGWV--nE7RmKrajS6lIiYqYqISqRKqYWKP9Z-bzZr6HasafMNRUn4ll6uI-QviP2W1_FjNMuz3cTuBFK5ccsfoHIoFvlnWble0Pw_e883PbAtBm48cP2Sdar6AIwRGlflSz_2_wmf9sg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAX-gKxQMFIHEql7CZunseqZVVepVKp1JtlO2MOlGS1yQrBr2cmcVYUhKqqtyixE8ePmW88M58BXsvIlfGBzIPEcEoOSgw0JjpwmKUYW4LIlhOFP52mJxfx-8vkcgWOl7kw9cyL_jFd9kTBfRf6gLh8QqAgC0jVHEzIbJcTVuJhMZmVbhXWO7ISTuP7fLaUx1lYeMa9vtqQx_O_V13TUKvUin_EdKd7phuAQ6v7kJNv40VrxvbXX4SOd_2tTXjowak47OtswQpW23CvCxK1zTZseUHQiD3PVv1mB85ZonQM5KVoOBq--ipqJ-a8ITEXhhYS33F6cdUKVpmlqCsxhDGKsv5RBY3msHYq1fRUuT8fwcX07Zejk8Cf1BDYOMzbIMnQpRE75RxBCueKFEOHZLmw8e1MUsQ21dpmhv3PKG2UamN4B4smEKaEGB7DWlVX-ASEjMrCxFmOucM4tNIkBCJMkmCkHUFVN4J4GB1lPY05n6ZxpTp3ep4r7kjFHalkpqTqO3IE42W1Wc_jcVOFfRop5Vd0c1Nhca3w96b987GiURzBq2ESKVrB7JbRFdYLenPeuV_JDn16m2--hPtnx1P18d3ph2fwgHCcDyZ_DmvtfIG7hJVa86JbCr8BLNgDIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+sensing+of+roller+bearing+fault+based+on+multiple+down-sampling+strategy&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Huaqing&rft.au=Ke%2C+Yanliang&rft.au=Luo%2C+Ganggang&rft.au=Tang%2C+Gang&rft.date=2016-02-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=27&rft.issue=2&rft.spage=25009&rft_id=info:doi/10.1088%2F0957-0233%2F27%2F2%2F025009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0957_0233_27_2_025009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon