Compressed sensing of roller bearing fault based on multiple down-sampling strategy
Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, i...
        Saved in:
      
    
          | Published in | Measurement science & technology Vol. 27; no. 2; pp. 25009 - 25017 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IOP Publishing
    
        01.02.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-0233 1361-6501  | 
| DOI | 10.1088/0957-0233/27/2/025009 | 
Cover
| Abstract | Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing's vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults. | 
    
|---|---|
| AbstractList | Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing's vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults. | 
    
| Author | Tang, Gang Wang, Huaqing Ke, Yanliang Luo, Ganggang  | 
    
| Author_xml | – sequence: 1 givenname: Huaqing surname: Wang fullname: Wang, Huaqing – sequence: 2 givenname: Yanliang surname: Ke fullname: Ke, Yanliang – sequence: 3 givenname: Ganggang surname: Luo fullname: Luo, Ganggang organization: Beijing University of Chemical Technology School of Mechanical and Electrical Engineering, Beijing 100029, People's Republic of China – sequence: 4 givenname: Gang surname: Tang fullname: Tang, Gang email: tanggang@mail.buct.edu.cn  | 
    
| BookMark | eNqFkE1LxDAQhoMouKv-BKE3vdSdZNu0wZMsfoHgQT2HNDtZKmlSkxbZf2_KioiInoYZnvdleOZk33mHhJxSuKBQ1wsQZZUDWy4XrFqwBbASQOyRGV1ymvMS6D6ZfTGHZB7jKwBUIMSMPK181weMEddZRBdbt8m8yYK3FkPWoArTxajRDlmjJsq7rEtb21vM1v7d5VF1vZ2oOAQ14GZ7TA6MshFPPucRebm5fl7d5Q-Pt_erq4dcF1APeVmh4ZSymhqomTGCIxisGS-4ANOUotBcKV01BaMMmaZcNQ2vEqY18rpcHpHzXW8f_NuIcZBdGzVaqxz6MUpaAxQi6RAJvdyhOvgYAxqp20ENrXfp59ZKCnJSKSdNctIkWSWZ3KlM6fJHug9tp8L239zZLtf6Xr76MbikQ3bp0W-U7NcmkfQX8u_2D7ALlY4 | 
    
| CODEN | MSTCEP | 
    
| CitedBy_id | crossref_primary_10_1007_s11633_022_1363_y crossref_primary_10_1063_5_0001660 crossref_primary_10_1007_s12206_023_0501_y crossref_primary_10_1109_TIM_2018_2806984 crossref_primary_10_3390_app9132690 crossref_primary_10_1016_j_jmsy_2018_05_010 crossref_primary_10_3390_s16091524 crossref_primary_10_1088_1361_6501_abf374 crossref_primary_10_21595_jve_2018_20140 crossref_primary_10_21595_jve_2017_17546 crossref_primary_10_1088_1361_6501_ac0560 crossref_primary_10_1155_2022_1507630 crossref_primary_10_1109_JIOT_2024_3412675  | 
    
| Cites_doi | 10.1016/j.sigpro.2013.04.018 10.1155/2014/676205 10.1016/j.measurement.2015.02.046 10.1016/j.phycom.2011.09.005 10.1109/TIT.2014.2361858 10.1016/j.acha.2008.07.002 10.1109/ICIST.2014.6920378 10.1006/mssp.2000.1304 10.1109/ITAB.2010.5687775 10.1016/j.ymssp.2003.12.002 10.1016/j.mechatronics.2015.04.017 10.1016/j.ymssp.2013.07.005 10.1016/j.jvcir.2015.03.006 10.1109/TIT.2013.2273491 10.1016/S0888-3270(03)00075-X 10.1016/j.dsp.2013.12.001 10.1016/j.ymssp.2012.11.003 10.1016/j.ymssp.2013.08.004 10.1016/j.measurement.2014.12.021 10.1016/j.sigpro.2013.07.002 10.1109/MSP.2008.915557 10.1155/2014/825825 10.1016/j.measurement.2015.04.006 10.1016/j.mri.2015.03.009 10.1016/j.jsv.2014.02.038 10.1006/mssp.2001.1462 10.1016/j.acha.2012.08.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 IOP Publishing Ltd | 
    
| Copyright_xml | – notice: 2016 IOP Publishing Ltd | 
    
| DBID | AAYXX CITATION 7U5 8FD F28 FR3 L7M  | 
    
| DOI | 10.1088/0957-0233/27/2/025009 | 
    
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Physics  | 
    
| DocumentTitleAlternate | Compressed sensing of roller bearing fault based on multiple down-sampling strategy | 
    
| EISSN | 1361-6501 | 
    
| ExternalDocumentID | 10_1088_0957_0233_27_2_025009 mstaa0dc2  | 
    
| GrantInformation_xml | – fundername: China Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China grantid: 51375037; 51405012 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 AAYXX ADEQX AEINN CITATION 7U5 8FD F28 FR3 L7M  | 
    
| ID | FETCH-LOGICAL-c408t-57ef611281f082ff96e0fe8264690fb594c6aac7b4212e2c16abb6796ecce6853 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 0957-0233 | 
    
| IngestDate | Fri Sep 05 08:35:37 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Wed Oct 01 04:32:37 EDT 2025 Wed Aug 21 03:41:10 EDT 2024 Thu Jan 07 13:53:10 EST 2021  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-57ef611281f082ff96e0fe8264690fb594c6aac7b4212e2c16abb6796ecce6853 | 
    
| Notes | MST-103080.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1800490259 | 
    
| PQPubID | 23500 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_primary_10_1088_0957_0233_27_2_025009 proquest_miscellaneous_1800490259 crossref_citationtrail_10_1088_0957_0233_27_2_025009 iop_journals_10_1088_0957_0233_27_2_025009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-02-01 | 
    
| PublicationDateYYYYMMDD | 2016-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Measurement science & technology | 
    
| PublicationTitleAbbrev | MST | 
    
| PublicationTitleAlternate | Meas. Sci. Technol | 
    
| PublicationYear | 2016 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | 22 23 24 25 26 27 28 Wang H (29); 9 Milles J (16) 2010 Hu D (15) 2014 10 11 12 13 17 Harish S (14) 2013 18 19 1 2 3 4 5 6 7 8 9 20 21  | 
    
| References_xml | – ident: 19 doi: 10.1016/j.sigpro.2013.04.018 – ident: 28 doi: 10.1155/2014/676205 – ident: 18 doi: 10.1016/j.measurement.2015.02.046 – ident: 12 doi: 10.1016/j.phycom.2011.09.005 – ident: 23 doi: 10.1109/TIT.2014.2361858 – ident: 26 doi: 10.1016/j.acha.2008.07.002 – start-page: 256 year: 2014 ident: 15 publication-title: 2014 4th IEEE Int. Conf. on Information Science and Technology doi: 10.1109/ICIST.2014.6920378 – ident: 25 doi: 10.1006/mssp.2000.1304 – start-page: 1 year: 2010 ident: 16 publication-title: 2010 10th IEEE Int. Conf. on Information Technology and Applications in Biomedicine doi: 10.1109/ITAB.2010.5687775 – ident: 6 doi: 10.1016/j.ymssp.2003.12.002 – ident: 17 doi: 10.1016/j.mechatronics.2015.04.017 – ident: 3 doi: 10.1016/j.ymssp.2013.07.005 – ident: 21 doi: 10.1016/j.jvcir.2015.03.006 – ident: 27 doi: 10.1109/TIT.2013.2273491 – ident: 7 doi: 10.1016/S0888-3270(03)00075-X – volume: 9 ident: 29 publication-title: Plos One – ident: 13 doi: 10.1016/j.dsp.2013.12.001 – ident: 10 doi: 10.1016/j.ymssp.2012.11.003 – ident: 2 doi: 10.1016/j.ymssp.2013.08.004 – ident: 9 doi: 10.1016/j.measurement.2014.12.021 – ident: 11 doi: 10.1016/j.sigpro.2013.07.002 – ident: 22 doi: 10.1109/MSP.2008.915557 – ident: 1 doi: 10.1155/2014/825825 – ident: 8 doi: 10.1016/j.measurement.2015.04.006 – ident: 24 doi: 10.1016/j.mri.2015.03.009 – start-page: 244 year: 2013 ident: 14 publication-title: 2013 Int. Conf. on Recent Trends in Information Technology – ident: 5 doi: 10.1016/j.jsv.2014.02.038 – ident: 4 doi: 10.1006/mssp.2001.1462 – ident: 20 doi: 10.1016/j.acha.2012.08.003  | 
    
| SSID | ssj0007099 | 
    
| Score | 2.2608123 | 
    
| Snippet | Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures.... | 
    
| SourceID | proquest crossref iop  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 25009 | 
    
| SubjectTerms | compressive sensing Data management Failure fault diagnosis Faults multiple down-sample algorithm Noise roller bearing Roller bearings Sampling Strategy Vibration  | 
    
| Title | Compressed sensing of roller bearing fault based on multiple down-sampling strategy | 
    
| URI | https://iopscience.iop.org/article/10.1088/0957-0233/27/2/025009 https://www.proquest.com/docview/1800490259  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP_英国物理学会现刊(含NSTL购买的14种刊) customDbUrl: eissn: 1361-6501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007099 issn: 0957-0233 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELegCIkXoGxoZTAZaQ8wKW3j5sN9nCYQQoJNGkh9s2znjBBdUjXpA_z1u0scVJhQhfYWJefEOdt3v_N9mLGvInRZNBIyiA2l5ICAQEOsAwdpApFFiGwpUfjqOrm4jS4n8WQpi_--mHnR38fLplBww0IfECcHCArSAFXNaIBmuxiQEqcMvo2RRHRMKXw_fz3L4nQ49tX2miZtDs9br3mhndaxB_-I6FrvnO8w3fa4CTd56C8q07dPr4o5_s8v7bJtD0r594a-y9Yg32ObdXCoLfdY1wuAkp_4KtWnH9hvkiR15fGMlxQFn9_xwvE5bUTMucEFRHecXkwrTqoy40XO2_BFnqHxH5SawtmRqmxK5D5-ZLfnZzc_LgJ_QkNgo6GsgjgFl4TkjHMIJZwbJzB0gBYLGd3OxOPIJlrb1JDfGYQNE20M7VzhxIEEkcI-6-RFDp8YF2E2NlEqQTqIhlaYGMGDiWMItUOI6nosakdGWV--nE7RmKrajS6lIiYqYqISqRKqYWKP9Z-bzZr6HasafMNRUn4ll6uI-QviP2W1_FjNMuz3cTuBFK5ccsfoHIoFvlnWble0Pw_e883PbAtBm48cP2Sdar6AIwRGlflSz_2_wmf9sg | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAX-gKxQMFIHEql7CZunseqZVVepVKp1JtlO2MOlGS1yQrBr2cmcVYUhKqqtyixE8ePmW88M58BXsvIlfGBzIPEcEoOSgw0JjpwmKUYW4LIlhOFP52mJxfx-8vkcgWOl7kw9cyL_jFd9kTBfRf6gLh8QqAgC0jVHEzIbJcTVuJhMZmVbhXWO7ISTuP7fLaUx1lYeMa9vtqQx_O_V13TUKvUin_EdKd7phuAQ6v7kJNv40VrxvbXX4SOd_2tTXjowak47OtswQpW23CvCxK1zTZseUHQiD3PVv1mB85ZonQM5KVoOBq--ipqJ-a8ITEXhhYS33F6cdUKVpmlqCsxhDGKsv5RBY3msHYq1fRUuT8fwcX07Zejk8Cf1BDYOMzbIMnQpRE75RxBCueKFEOHZLmw8e1MUsQ21dpmhv3PKG2UamN4B4smEKaEGB7DWlVX-ASEjMrCxFmOucM4tNIkBCJMkmCkHUFVN4J4GB1lPY05n6ZxpTp3ep4r7kjFHalkpqTqO3IE42W1Wc_jcVOFfRop5Vd0c1Nhca3w96b987GiURzBq2ESKVrB7JbRFdYLenPeuV_JDn16m2--hPtnx1P18d3ph2fwgHCcDyZ_DmvtfIG7hJVa86JbCr8BLNgDIg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+sensing+of+roller+bearing+fault+based+on+multiple+down-sampling+strategy&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Huaqing&rft.au=Ke%2C+Yanliang&rft.au=Luo%2C+Ganggang&rft.au=Tang%2C+Gang&rft.date=2016-02-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=27&rft.issue=2&rft.spage=25009&rft_id=info:doi/10.1088%2F0957-0233%2F27%2F2%2F025009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0957_0233_27_2_025009 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |