Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamate...
Saved in:
Published in | Nanoscale Vol. 8; no. 33; pp. 15196 - 1524 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
18.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/c6nr02321e |
Cover
Abstract | Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO
2
/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for the operation across the whole electromagnetic spectrum. |
---|---|
AbstractList | Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO 2 /Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for the operation across the whole electromagnetic spectrum. Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. |
Author | Tang, Weiwei Lu, Wei Wang, Lin Liu, Changlong Chen, Xiaoshuang Yu, Anqi |
AuthorAffiliation | University of Science and Technology of China National Laboratory for Infrared Physics Chinese Academy of Sciences Shanghai Institute of Technical Physics Synergetic Innovation Center of Quantum Information & Quantum Physics University of Chinese Academy of Science |
AuthorAffiliation_xml | – sequence: 0 name: Synergetic Innovation Center of Quantum Information & Quantum Physics – sequence: 0 name: University of Science and Technology of China – sequence: 0 name: University of Chinese Academy of Science – sequence: 0 name: Shanghai Institute of Technical Physics – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: National Laboratory for Infrared Physics |
Author_xml | – sequence: 1 givenname: Weiwei surname: Tang fullname: Tang, Weiwei – sequence: 2 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 3 givenname: Xiaoshuang surname: Chen fullname: Chen, Xiaoshuang – sequence: 4 givenname: Changlong surname: Liu fullname: Liu, Changlong – sequence: 5 givenname: Anqi surname: Yu fullname: Yu, Anqi – sequence: 6 givenname: Wei surname: Lu fullname: Lu, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27337105$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ctr3DAQB2BREppk20vvKTqWghM9LFk-hm1eEBJa2rOZlce7KrbkSNpD_vs6-0gh5JDDoDl8MzD6nZADHzwS8oWzM85kfW61j0xIwfEDORasZIWUlTh46XV5RE5S-suYrqWWH8mRqCbBmTom-OPJw-AsHTDDABmjg54uIGFLg6d5hXQZYVyhR5rG3mUanV_SlVuuip_0CnwoIqbgPeQQaTdVQp-eCYwTt5Bd8OkTOeygT_h5987In6vL3_Ob4u7h-nZ-cVfYkplcKCYV5yCVUVMtStOybqHq0nBmtMQSaqg6bo0QqjJQsq4VNROt7rjBVrdczsi37d4xhsc1ptwMLlnse_AY1qnhRiqlTcXVOygXphailBP9uqPrxYBtM0Y3QHxq9r84AbYFNoaUInaNdXlzeY7g-oaz5jmoZq7vf22CupxGvr8a2W99E59ucUz2xf1PXf4DP5ObkA |
CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111311 crossref_primary_10_1088_2053_1591_abb059 crossref_primary_10_1016_j_matdes_2022_110920 crossref_primary_10_1016_j_optlastec_2019_105657 crossref_primary_10_1039_C9NR00187E crossref_primary_10_1039_C7NR01516J crossref_primary_10_3390_nano10040687 crossref_primary_10_1080_09205071_2018_1563509 crossref_primary_10_1109_LPT_2018_2879540 crossref_primary_10_1364_OE_388936 crossref_primary_10_1364_JOSAB_36_003060 crossref_primary_10_1364_OE_412442 crossref_primary_10_1364_OL_416493 crossref_primary_10_1109_TNANO_2019_2961631 crossref_primary_10_1039_D2NR00292B crossref_primary_10_1016_j_apsusc_2021_150182 crossref_primary_10_1016_j_carbon_2018_03_051 crossref_primary_10_1016_j_diamond_2022_108935 crossref_primary_10_1021_acs_chemrev_9b00592 crossref_primary_10_1364_AO_58_003604 crossref_primary_10_1364_AO_58_001667 crossref_primary_10_1002_adom_201900550 crossref_primary_10_1016_j_jallcom_2017_01_334 crossref_primary_10_1063_5_0097104 crossref_primary_10_1039_C7RA06770D crossref_primary_10_1039_C8NR06796A crossref_primary_10_1016_j_optmat_2021_111535 crossref_primary_10_1364_OE_453064 crossref_primary_10_1364_OE_381765 crossref_primary_10_1016_j_rinp_2020_103140 crossref_primary_10_1007_s10854_021_07182_w crossref_primary_10_1016_j_optmat_2023_113992 crossref_primary_10_1038_s41598_018_22536_x crossref_primary_10_1088_2053_1591_ab74fe crossref_primary_10_1007_s11468_020_01234_3 crossref_primary_10_1007_s11468_021_01463_0 crossref_primary_10_1039_C6NR01911K crossref_primary_10_3390_cryst11020164 crossref_primary_10_1016_j_optcom_2020_126299 crossref_primary_10_1039_C8NR08672A crossref_primary_10_1016_j_optcom_2017_09_084 crossref_primary_10_1364_OE_27_020165 crossref_primary_10_29026_oea_2022_200098 crossref_primary_10_1038_s41598_019_49395_4 crossref_primary_10_1016_j_mssp_2022_106601 crossref_primary_10_1364_AO_391210 crossref_primary_10_1109_ACCESS_2019_2894760 crossref_primary_10_1088_1402_4896_ad8e90 crossref_primary_10_3390_nano9030385 crossref_primary_10_1021_acsanm_0c00141 crossref_primary_10_1140_epjd_s10053_024_00857_z crossref_primary_10_1016_j_infrared_2016_11_007 crossref_primary_10_1364_JOSAB_36_002461 crossref_primary_10_1016_j_diamond_2022_109002 crossref_primary_10_1007_s11468_024_02203_w crossref_primary_10_1364_AOP_11_000314 crossref_primary_10_1103_PhysRevB_106_075401 crossref_primary_10_1016_j_carbon_2018_10_061 crossref_primary_10_1016_j_physe_2019_113910 crossref_primary_10_3390_app8122672 crossref_primary_10_1039_D1SD00050K crossref_primary_10_1007_s11468_018_0770_y crossref_primary_10_1016_j_ssc_2018_06_006 crossref_primary_10_1007_s11468_021_01410_z crossref_primary_10_1016_j_optcom_2019_01_044 crossref_primary_10_1088_1402_4896_ac86ad crossref_primary_10_1088_2040_8986_ac5b4f crossref_primary_10_1364_OE_487640 crossref_primary_10_1002_adom_201801433 crossref_primary_10_1364_OL_42_002659 crossref_primary_10_1002_adom_201800502 crossref_primary_10_1088_1402_4896_ad7338 crossref_primary_10_1016_j_optcom_2020_126164 crossref_primary_10_1109_TIM_2023_3318676 crossref_primary_10_1364_OE_27_034731 crossref_primary_10_1364_OE_475312 crossref_primary_10_1364_OME_10_000014 crossref_primary_10_1039_C8NR08813F crossref_primary_10_1038_s41598_017_17394_y crossref_primary_10_1016_j_optcom_2019_124581 crossref_primary_10_1002_adom_202101008 crossref_primary_10_1088_1361_6463_ab3ea0 crossref_primary_10_1016_j_carbon_2019_12_050 crossref_primary_10_1002_admt_201800014 crossref_primary_10_1364_OE_389573 crossref_primary_10_3390_nano10061038 crossref_primary_10_1039_D2CP04531A crossref_primary_10_1039_C7NR05919A crossref_primary_10_1364_OE_27_003101 crossref_primary_10_1364_OE_455954 crossref_primary_10_3390_chemosensors10100397 crossref_primary_10_1007_s42452_024_05661_3 crossref_primary_10_1002_adpr_202200233 crossref_primary_10_1016_j_optcom_2019_04_067 crossref_primary_10_1142_S0217984921502444 crossref_primary_10_1364_JOSAB_36_000090 crossref_primary_10_1007_s11468_021_01553_z crossref_primary_10_1364_JOSAA_413384 crossref_primary_10_1016_j_spmi_2019_106295 crossref_primary_10_1021_acsami_1c15222 crossref_primary_10_1016_j_ijleo_2022_170195 crossref_primary_10_1016_j_talanta_2024_127214 crossref_primary_10_1016_j_ijleo_2023_171185 crossref_primary_10_1016_j_optcom_2019_124684 crossref_primary_10_1364_OE_461261 crossref_primary_10_1364_OME_8_001132 crossref_primary_10_1088_1361_6528_ac7d60 crossref_primary_10_1016_j_jpcs_2023_111634 crossref_primary_10_1039_D2NR01561G crossref_primary_10_1109_JSTQE_2024_3359185 |
Cites_doi | 10.1088/0957-4484/24/34/345203 10.1063/1.3541652 10.1109/7260.966036 10.1021/nn3055835 10.1016/j.polymer.2007.04.010 10.1038/nphoton.2007.3 10.1103/RevModPhys.77.633 10.1070/PU1968v010n04ABEH003699 10.1103/PhysRevB.88.195203 10.1021/nn2037626 10.1103/PhysRevLett.96.107401 10.1364/OE.17.016527 10.1038/nphoton.2013.57 10.1364/OL.32.001620 10.1103/PhysRevLett.101.047401 10.1063/1.4859636 10.1021/nl404042h 10.1063/1.3079419 10.1103/PhysRevLett.84.4184 10.1038/nphoton.2006.49 10.1063/1.4895595 10.1103/PhysRevLett.85.3966 10.1021/nl901073g 10.1038/nphoton.2014.109 10.1038/nature05343 10.1021/nl802509r 10.1126/science.1108759 10.1038/nature03040 10.1126/science.1058847 10.1126/science.1094025 10.1126/science.291.5505.849 10.1126/science.1133628 10.1063/1.3525925 10.1007/s10762-012-9946-2 10.1103/PhysRevE.71.036617 10.1364/OE.19.006312 10.1103/RevModPhys.82.2257 10.1016/j.carbon.2014.10.066 10.1021/acsnano.5b04258 10.1038/ncomms2153 10.1021/nl101629g 10.1126/science.1136481 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1039/c6nr02321e |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1524 |
ExternalDocumentID | 27337105 10_1039_C6NR02321E c6nr02321e |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 R56 NPM 7X8 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c408t-503511a3585358b48d0fb594810863e4a9a7f1c822578a40fd2902d6f18ed6d13 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 19:03:51 EDT 2025 Fri Jul 11 04:24:24 EDT 2025 Wed Feb 19 02:42:57 EST 2025 Tue Jul 01 00:33:35 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Tue Dec 17 20:59:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c408t-503511a3585358b48d0fb594810863e4a9a7f1c822578a40fd2902d6f18ed6d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27337105 |
PQID | 1812892243 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_27337105 rsc_primary_c6nr02321e crossref_citationtrail_10_1039_C6NR02321E crossref_primary_10_1039_C6NR02321E proquest_miscellaneous_1812892243 proquest_miscellaneous_1835568715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160818 |
PublicationDateYYYYMMDD | 2016-08-18 |
PublicationDate_xml | – month: 8 year: 2016 text: 20160818 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2016 |
References | Obradovic (C6NR02321E-(cit1)/*[position()=1]) 2007; 48 Smith (C6NR02321E-(cit8)/*[position()=1]) 2000; 84 Xiao (C6NR02321E-(cit16)/*[position()=1]) 2011; 98 Chen (C6NR02321E-(cit25)/*[position()=1]) 2006; 444 Singh (C6NR02321E-(cit13)/*[position()=1]) 2011; 19 Yen (C6NR02321E-(cit7)/*[position()=1]) 2004; 303 Wiltshire (C6NR02321E-(cit9)/*[position()=1]) 2001; 291 He (C6NR02321E-(cit30)/*[position()=1]) 2013; 24 Zhang (C6NR02321E-(cit40)/*[position()=1]) 2008; 101 Yan (C6NR02321E-(cit29)/*[position()=1]) 2013; 7 Huang (C6NR02321E-(cit35)/*[position()=1]) 2015; 9 Pendry (C6NR02321E-(cit4)/*[position()=1]) 2000; 85 Rahm (C6NR02321E-(cit24)/*[position()=1]) 2013; 34 Fleischhauer (C6NR02321E-(cit39)/*[position()=1]) 2005; 77 Hang (C6NR02321E-(cit43)/*[position()=1]) 2010; 97 Schurig (C6NR02321E-(cit10)/*[position()=1]) 2006; 314 Fang (C6NR02321E-(cit37)/*[position()=1]) 2013; 7 Wang (C6NR02321E-(cit18)/*[position()=1]) 2004; 432 Chiam (C6NR02321E-(cit23)/*[position()=1]) 2009; 94 Padilla (C6NR02321E-(cit27)/*[position()=1]) 2006; 96 Robinson (C6NR02321E-(cit33)/*[position()=1]) 2009; 9 Hao (C6NR02321E-(cit15)/*[position()=1]) 2008; 8 Shalaev (C6NR02321E-(cit5)/*[position()=1]) 2007; 1 He (C6NR02321E-(cit38)/*[position()=1]) 2015; 82 Han (C6NR02321E-(cit21)/*[position()=1]) 2009; 17 Smith (C6NR02321E-(cit42)/*[position()=1]) 2005; 71 Veselago (C6NR02321E-(cit3)/*[position()=1]) 1968; 10 Shelby (C6NR02321E-(cit12)/*[position()=1]) 2001; 292 Fang (C6NR02321E-(cit36)/*[position()=1]) 2013; 14 Mendis (C6NR02321E-(cit19)/*[position()=1]) 2001; 11 Tamagnone (C6NR02321E-(cit22)/*[position()=1]) 2014; 8 Li (C6NR02321E-(cit34)/*[position()=1]) 2010; 10 Miroshnichenko (C6NR02321E-(cit17)/*[position()=1]) 2010; 82 Tonouchi (C6NR02321E-(cit2)/*[position()=1]) 2007; 1 Fang (C6NR02321E-(cit11)/*[position()=1]) 2005; 308 Singh (C6NR02321E-(cit14)/*[position()=1]) 2014; 105 Al-Naib (C6NR02321E-(cit28)/*[position()=1]) 2013; 88 Soukoulis (C6NR02321E-(cit6)/*[position()=1]) 2007; 315 Benz (C6NR02321E-(cit20)/*[position()=1]) 2013; 103 Christensen (C6NR02321E-(cit32)/*[position()=1]) 2011; 6 Chen (C6NR02321E-(cit26)/*[position()=1]) 2007; 32 Gu (C6NR02321E-(cit41)/*[position()=1]) 2012; 3 |
References_xml | – issn: 2008 volume-title: Optical properties of graphene//Journal of Physics, Conference Series doi: Falkovsky – volume: 24 start-page: 345203 issue: 34 year: 2013 ident: C6NR02321E-(cit30)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/24/34/345203 – volume: 98 start-page: 011911 issue: 1 year: 2011 ident: C6NR02321E-(cit16)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3541652 – volume: 11 start-page: 444 issue: 11 year: 2001 ident: C6NR02321E-(cit19)/*[position()=1] publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/7260.966036 – volume: 7 start-page: 2388 issue: 3 year: 2013 ident: C6NR02321E-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3055835 – volume: 48 start-page: 3494 issue: 12 year: 2007 ident: C6NR02321E-(cit1)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2007.04.010 – volume: 1 start-page: 97 issue: 2 year: 2007 ident: C6NR02321E-(cit2)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.3 – volume: 77 start-page: 633 issue: 2 year: 2005 ident: C6NR02321E-(cit39)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.633 – volume: 10 start-page: 509 issue: 4 year: 1968 ident: C6NR02321E-(cit3)/*[position()=1] publication-title: Sov. Phys.-Usp. doi: 10.1070/PU1968v010n04ABEH003699 – volume: 88 start-page: 195203 issue: 19 year: 2013 ident: C6NR02321E-(cit28)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.88.195203 – volume: 6 start-page: 431 issue: 1 year: 2011 ident: C6NR02321E-(cit32)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2037626 – volume: 96 start-page: 107401 issue: 10 year: 2006 ident: C6NR02321E-(cit27)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.107401 – volume: 17 start-page: 16527 issue: 19 year: 2009 ident: C6NR02321E-(cit21)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.17.016527 – volume: 7 start-page: 394 issue: 5 year: 2013 ident: C6NR02321E-(cit29)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.57 – volume: 32 start-page: 1620 issue: 12 year: 2007 ident: C6NR02321E-(cit26)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.32.001620 – volume: 101 start-page: 047401 issue: 4 year: 2008 ident: C6NR02321E-(cit40)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.047401 – volume: 103 start-page: 263116 issue: 26 year: 2013 ident: C6NR02321E-(cit20)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4859636 – volume: 14 start-page: 299 issue: 1 year: 2013 ident: C6NR02321E-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl404042h – volume: 94 start-page: 064102 issue: 6 year: 2009 ident: C6NR02321E-(cit23)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3079419 – volume: 84 start-page: 4184 issue: 18 year: 2000 ident: C6NR02321E-(cit8)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4184 – volume: 1 start-page: 41 issue: 1 year: 2007 ident: C6NR02321E-(cit5)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2006.49 – volume: 105 start-page: 171101 issue: 17 year: 2014 ident: C6NR02321E-(cit14)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4895595 – volume: 85 start-page: 3966 issue: 18 year: 2000 ident: C6NR02321E-(cit4)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 9 start-page: 2873 issue: 8 year: 2009 ident: C6NR02321E-(cit33)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl901073g – volume: 8 start-page: 556 issue: 7 year: 2014 ident: C6NR02321E-(cit22)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.109 – volume: 444 start-page: 597 issue: 7119 year: 2006 ident: C6NR02321E-(cit25)/*[position()=1] publication-title: Nature doi: 10.1038/nature05343 – volume: 8 start-page: 3983 issue: 11 year: 2008 ident: C6NR02321E-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl802509r – volume: 308 start-page: 534 issue: 5721 year: 2005 ident: C6NR02321E-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.1108759 – volume: 432 start-page: 376 issue: 7015 year: 2004 ident: C6NR02321E-(cit18)/*[position()=1] publication-title: Nature doi: 10.1038/nature03040 – volume: 292 start-page: 77 issue: 5514 year: 2001 ident: C6NR02321E-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.1058847 – volume: 303 start-page: 1494 issue: 5663 year: 2004 ident: C6NR02321E-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1094025 – volume: 291 start-page: 849 issue: 5505 year: 2001 ident: C6NR02321E-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.291.5505.849 – volume: 314 start-page: 977 issue: 5801 year: 2006 ident: C6NR02321E-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.1133628 – volume: 97 start-page: 241904 issue: 24 year: 2010 ident: C6NR02321E-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3525925 – volume: 34 start-page: 1 issue: 1 year: 2013 ident: C6NR02321E-(cit24)/*[position()=1] publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-012-9946-2 – volume: 71 start-page: 036617 issue: 3 year: 2005 ident: C6NR02321E-(cit42)/*[position()=1] publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. doi: 10.1103/PhysRevE.71.036617 – volume: 19 start-page: 6312 issue: 7 year: 2011 ident: C6NR02321E-(cit13)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.19.006312 – volume: 82 start-page: 2257 issue: 3 year: 2010 ident: C6NR02321E-(cit17)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2257 – volume: 82 start-page: 229 year: 2015 ident: C6NR02321E-(cit38)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2014.10.066 – volume: 9 start-page: 10612 issue: 11 year: 2015 ident: C6NR02321E-(cit35)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b04258 – volume: 3 start-page: 1151 year: 2012 ident: C6NR02321E-(cit41)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2153 – volume: 10 start-page: 4328 issue: 11 year: 2010 ident: C6NR02321E-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101629g – volume: 315 start-page: 47 issue: 5808 year: 2007 ident: C6NR02321E-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1136481 |
SSID | ssj0069363 |
Score | 2.5253344 |
Snippet | Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15196 |
SubjectTerms | Detection Electric components Graphene Mathematical models Metamaterials Modulation Nanostructure Resonators |
Title | Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27337105 https://www.proquest.com/docview/1812892243 https://www.proquest.com/docview/1835568715 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4rVQXjKCC4oCSey4yXFVWi2oFIFS0VvkNPYSaeWgJhUSv56x4yRedoUWDo0qN3WizJeZbzzjGYReFyIQlBDmSyoTnxYx8ZMYsAzGigMjL8KU6_WOT2t2uqEft_F2zNM1u0va4u3u15X7Sv5HqjAGctW7ZP9BssOkMADfQb5wBAnD8Voyft-1k9dtoDkwT3NJT9ul0sYAPFOPGtSZ1wDZbD2TbKcrFPtfvCVXtQ_Odq2UdrxNvmGj09n1rkUnrO3SV9DFdQNSHdCQ2eXmb6L6Kapxdb4bXVUD9OZ2F8i24nXz_cCtwdSpQNXBxv3V2Xltx-06RMj0wqqrOiOdmwhS75YHhDs2u6BvEwdWhDjKE8hHyhxLDNSia018Sc0HRFdJ3TG1B8oRhWI0Zn0Af_05X25WqzxbbLOb6CiaAbOaoKOTRfZh1VtqlhLTaW-48758LUnfjXNfJCyXvBDgJPu-V4zhJNlddMc6E_ikQ8Y9dEOo--i2U2LyARIWI9jFCDYYwbXCgBHcYwQbjGD9P9xhBP-BEQwYwRYj2MXIQ7RZLrL5qW9ba_g7GiStH5sAMifgLMKnoEkZyMJU7gEXlwjK4RWV4Q7YI2h0TgNZRmkQlUyGiShZGZJjNFG1Eo8RDgvwYCMRylIKmgYyIZIJTtMo4aWO4k7Rm_755Ttbd163PznPTf4DSfM5W381z3oxRa-Gc3901VauPOtlL4YclKGOcHEl6kOTa7qapMBKyd_OIbrq3iyMp-hRJ8PhWsDlCVBu-OUYhDoMj2B4co1pn6Jb4_vxDE3a_UE8B-baFi8sAH8Dg_yZtw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+metamaterial+based+on+the+graphene+split+ring+high-Q+Fano-resonnator+for+sensing+applications&rft.jtitle=Nanoscale&rft.au=Tang%2C+Weiwei&rft.au=Wang%2C+Lin&rft.au=Chen%2C+Xiaoshuang&rft.au=Liu%2C+Changlong&rft.date=2016-08-18&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=8&rft.issue=33&rft.spage=15196&rft.epage=15204&rft_id=info:doi/10.1039%2Fc6nr02321e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |