Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications

Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamate...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 8; no. 33; pp. 15196 - 1524
Main Authors Tang, Weiwei, Wang, Lin, Chen, Xiaoshuang, Liu, Changlong, Yu, Anqi, Lu, Wei
Format Journal Article
LanguageEnglish
Published England 18.08.2016
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/c6nr02321e

Cover

Abstract Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO 2 /Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for the operation across the whole electromagnetic spectrum.
AbstractList Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO 2 /Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for the operation across the whole electromagnetic spectrum.
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.
Author Tang, Weiwei
Lu, Wei
Wang, Lin
Liu, Changlong
Chen, Xiaoshuang
Yu, Anqi
AuthorAffiliation University of Science and Technology of China
National Laboratory for Infrared Physics
Chinese Academy of Sciences
Shanghai Institute of Technical Physics
Synergetic Innovation Center of Quantum Information & Quantum Physics
University of Chinese Academy of Science
AuthorAffiliation_xml – sequence: 0
  name: Synergetic Innovation Center of Quantum Information & Quantum Physics
– sequence: 0
  name: University of Science and Technology of China
– sequence: 0
  name: University of Chinese Academy of Science
– sequence: 0
  name: Shanghai Institute of Technical Physics
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: National Laboratory for Infrared Physics
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Tang
  fullname: Tang, Weiwei
– sequence: 2
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 3
  givenname: Xiaoshuang
  surname: Chen
  fullname: Chen, Xiaoshuang
– sequence: 4
  givenname: Changlong
  surname: Liu
  fullname: Liu, Changlong
– sequence: 5
  givenname: Anqi
  surname: Yu
  fullname: Yu, Anqi
– sequence: 6
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27337105$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctr3DAQB2BREppk20vvKTqWghM9LFk-hm1eEBJa2rOZlce7KrbkSNpD_vs6-0gh5JDDoDl8MzD6nZADHzwS8oWzM85kfW61j0xIwfEDORasZIWUlTh46XV5RE5S-suYrqWWH8mRqCbBmTom-OPJw-AsHTDDABmjg54uIGFLg6d5hXQZYVyhR5rG3mUanV_SlVuuip_0CnwoIqbgPeQQaTdVQp-eCYwTt5Bd8OkTOeygT_h5987In6vL3_Ob4u7h-nZ-cVfYkplcKCYV5yCVUVMtStOybqHq0nBmtMQSaqg6bo0QqjJQsq4VNROt7rjBVrdczsi37d4xhsc1ptwMLlnse_AY1qnhRiqlTcXVOygXphailBP9uqPrxYBtM0Y3QHxq9r84AbYFNoaUInaNdXlzeY7g-oaz5jmoZq7vf22CupxGvr8a2W99E59ucUz2xf1PXf4DP5ObkA
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111311
crossref_primary_10_1088_2053_1591_abb059
crossref_primary_10_1016_j_matdes_2022_110920
crossref_primary_10_1016_j_optlastec_2019_105657
crossref_primary_10_1039_C9NR00187E
crossref_primary_10_1039_C7NR01516J
crossref_primary_10_3390_nano10040687
crossref_primary_10_1080_09205071_2018_1563509
crossref_primary_10_1109_LPT_2018_2879540
crossref_primary_10_1364_OE_388936
crossref_primary_10_1364_JOSAB_36_003060
crossref_primary_10_1364_OE_412442
crossref_primary_10_1364_OL_416493
crossref_primary_10_1109_TNANO_2019_2961631
crossref_primary_10_1039_D2NR00292B
crossref_primary_10_1016_j_apsusc_2021_150182
crossref_primary_10_1016_j_carbon_2018_03_051
crossref_primary_10_1016_j_diamond_2022_108935
crossref_primary_10_1021_acs_chemrev_9b00592
crossref_primary_10_1364_AO_58_003604
crossref_primary_10_1364_AO_58_001667
crossref_primary_10_1002_adom_201900550
crossref_primary_10_1016_j_jallcom_2017_01_334
crossref_primary_10_1063_5_0097104
crossref_primary_10_1039_C7RA06770D
crossref_primary_10_1039_C8NR06796A
crossref_primary_10_1016_j_optmat_2021_111535
crossref_primary_10_1364_OE_453064
crossref_primary_10_1364_OE_381765
crossref_primary_10_1016_j_rinp_2020_103140
crossref_primary_10_1007_s10854_021_07182_w
crossref_primary_10_1016_j_optmat_2023_113992
crossref_primary_10_1038_s41598_018_22536_x
crossref_primary_10_1088_2053_1591_ab74fe
crossref_primary_10_1007_s11468_020_01234_3
crossref_primary_10_1007_s11468_021_01463_0
crossref_primary_10_1039_C6NR01911K
crossref_primary_10_3390_cryst11020164
crossref_primary_10_1016_j_optcom_2020_126299
crossref_primary_10_1039_C8NR08672A
crossref_primary_10_1016_j_optcom_2017_09_084
crossref_primary_10_1364_OE_27_020165
crossref_primary_10_29026_oea_2022_200098
crossref_primary_10_1038_s41598_019_49395_4
crossref_primary_10_1016_j_mssp_2022_106601
crossref_primary_10_1364_AO_391210
crossref_primary_10_1109_ACCESS_2019_2894760
crossref_primary_10_1088_1402_4896_ad8e90
crossref_primary_10_3390_nano9030385
crossref_primary_10_1021_acsanm_0c00141
crossref_primary_10_1140_epjd_s10053_024_00857_z
crossref_primary_10_1016_j_infrared_2016_11_007
crossref_primary_10_1364_JOSAB_36_002461
crossref_primary_10_1016_j_diamond_2022_109002
crossref_primary_10_1007_s11468_024_02203_w
crossref_primary_10_1364_AOP_11_000314
crossref_primary_10_1103_PhysRevB_106_075401
crossref_primary_10_1016_j_carbon_2018_10_061
crossref_primary_10_1016_j_physe_2019_113910
crossref_primary_10_3390_app8122672
crossref_primary_10_1039_D1SD00050K
crossref_primary_10_1007_s11468_018_0770_y
crossref_primary_10_1016_j_ssc_2018_06_006
crossref_primary_10_1007_s11468_021_01410_z
crossref_primary_10_1016_j_optcom_2019_01_044
crossref_primary_10_1088_1402_4896_ac86ad
crossref_primary_10_1088_2040_8986_ac5b4f
crossref_primary_10_1364_OE_487640
crossref_primary_10_1002_adom_201801433
crossref_primary_10_1364_OL_42_002659
crossref_primary_10_1002_adom_201800502
crossref_primary_10_1088_1402_4896_ad7338
crossref_primary_10_1016_j_optcom_2020_126164
crossref_primary_10_1109_TIM_2023_3318676
crossref_primary_10_1364_OE_27_034731
crossref_primary_10_1364_OE_475312
crossref_primary_10_1364_OME_10_000014
crossref_primary_10_1039_C8NR08813F
crossref_primary_10_1038_s41598_017_17394_y
crossref_primary_10_1016_j_optcom_2019_124581
crossref_primary_10_1002_adom_202101008
crossref_primary_10_1088_1361_6463_ab3ea0
crossref_primary_10_1016_j_carbon_2019_12_050
crossref_primary_10_1002_admt_201800014
crossref_primary_10_1364_OE_389573
crossref_primary_10_3390_nano10061038
crossref_primary_10_1039_D2CP04531A
crossref_primary_10_1039_C7NR05919A
crossref_primary_10_1364_OE_27_003101
crossref_primary_10_1364_OE_455954
crossref_primary_10_3390_chemosensors10100397
crossref_primary_10_1007_s42452_024_05661_3
crossref_primary_10_1002_adpr_202200233
crossref_primary_10_1016_j_optcom_2019_04_067
crossref_primary_10_1142_S0217984921502444
crossref_primary_10_1364_JOSAB_36_000090
crossref_primary_10_1007_s11468_021_01553_z
crossref_primary_10_1364_JOSAA_413384
crossref_primary_10_1016_j_spmi_2019_106295
crossref_primary_10_1021_acsami_1c15222
crossref_primary_10_1016_j_ijleo_2022_170195
crossref_primary_10_1016_j_talanta_2024_127214
crossref_primary_10_1016_j_ijleo_2023_171185
crossref_primary_10_1016_j_optcom_2019_124684
crossref_primary_10_1364_OE_461261
crossref_primary_10_1364_OME_8_001132
crossref_primary_10_1088_1361_6528_ac7d60
crossref_primary_10_1016_j_jpcs_2023_111634
crossref_primary_10_1039_D2NR01561G
crossref_primary_10_1109_JSTQE_2024_3359185
Cites_doi 10.1088/0957-4484/24/34/345203
10.1063/1.3541652
10.1109/7260.966036
10.1021/nn3055835
10.1016/j.polymer.2007.04.010
10.1038/nphoton.2007.3
10.1103/RevModPhys.77.633
10.1070/PU1968v010n04ABEH003699
10.1103/PhysRevB.88.195203
10.1021/nn2037626
10.1103/PhysRevLett.96.107401
10.1364/OE.17.016527
10.1038/nphoton.2013.57
10.1364/OL.32.001620
10.1103/PhysRevLett.101.047401
10.1063/1.4859636
10.1021/nl404042h
10.1063/1.3079419
10.1103/PhysRevLett.84.4184
10.1038/nphoton.2006.49
10.1063/1.4895595
10.1103/PhysRevLett.85.3966
10.1021/nl901073g
10.1038/nphoton.2014.109
10.1038/nature05343
10.1021/nl802509r
10.1126/science.1108759
10.1038/nature03040
10.1126/science.1058847
10.1126/science.1094025
10.1126/science.291.5505.849
10.1126/science.1133628
10.1063/1.3525925
10.1007/s10762-012-9946-2
10.1103/PhysRevE.71.036617
10.1364/OE.19.006312
10.1103/RevModPhys.82.2257
10.1016/j.carbon.2014.10.066
10.1021/acsnano.5b04258
10.1038/ncomms2153
10.1021/nl101629g
10.1126/science.1136481
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
DOI 10.1039/c6nr02321e
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1524
ExternalDocumentID 27337105
10_1039_C6NR02321E
c6nr02321e
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
R56
NPM
7X8
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
ID FETCH-LOGICAL-c408t-503511a3585358b48d0fb594810863e4a9a7f1c822578a40fd2902d6f18ed6d13
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 19:03:51 EDT 2025
Fri Jul 11 04:24:24 EDT 2025
Wed Feb 19 02:42:57 EST 2025
Tue Jul 01 00:33:35 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Dec 17 20:59:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-503511a3585358b48d0fb594810863e4a9a7f1c822578a40fd2902d6f18ed6d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27337105
PQID 1812892243
PQPubID 23479
PageCount 9
ParticipantIDs pubmed_primary_27337105
rsc_primary_c6nr02321e
crossref_citationtrail_10_1039_C6NR02321E
crossref_primary_10_1039_C6NR02321E
proquest_miscellaneous_1812892243
proquest_miscellaneous_1835568715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160818
PublicationDateYYYYMMDD 2016-08-18
PublicationDate_xml – month: 8
  year: 2016
  text: 20160818
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2016
References Obradovic (C6NR02321E-(cit1)/*[position()=1]) 2007; 48
Smith (C6NR02321E-(cit8)/*[position()=1]) 2000; 84
Xiao (C6NR02321E-(cit16)/*[position()=1]) 2011; 98
Chen (C6NR02321E-(cit25)/*[position()=1]) 2006; 444
Singh (C6NR02321E-(cit13)/*[position()=1]) 2011; 19
Yen (C6NR02321E-(cit7)/*[position()=1]) 2004; 303
Wiltshire (C6NR02321E-(cit9)/*[position()=1]) 2001; 291
He (C6NR02321E-(cit30)/*[position()=1]) 2013; 24
Zhang (C6NR02321E-(cit40)/*[position()=1]) 2008; 101
Yan (C6NR02321E-(cit29)/*[position()=1]) 2013; 7
Huang (C6NR02321E-(cit35)/*[position()=1]) 2015; 9
Pendry (C6NR02321E-(cit4)/*[position()=1]) 2000; 85
Rahm (C6NR02321E-(cit24)/*[position()=1]) 2013; 34
Fleischhauer (C6NR02321E-(cit39)/*[position()=1]) 2005; 77
Hang (C6NR02321E-(cit43)/*[position()=1]) 2010; 97
Schurig (C6NR02321E-(cit10)/*[position()=1]) 2006; 314
Fang (C6NR02321E-(cit37)/*[position()=1]) 2013; 7
Wang (C6NR02321E-(cit18)/*[position()=1]) 2004; 432
Chiam (C6NR02321E-(cit23)/*[position()=1]) 2009; 94
Padilla (C6NR02321E-(cit27)/*[position()=1]) 2006; 96
Robinson (C6NR02321E-(cit33)/*[position()=1]) 2009; 9
Hao (C6NR02321E-(cit15)/*[position()=1]) 2008; 8
Shalaev (C6NR02321E-(cit5)/*[position()=1]) 2007; 1
He (C6NR02321E-(cit38)/*[position()=1]) 2015; 82
Han (C6NR02321E-(cit21)/*[position()=1]) 2009; 17
Smith (C6NR02321E-(cit42)/*[position()=1]) 2005; 71
Veselago (C6NR02321E-(cit3)/*[position()=1]) 1968; 10
Shelby (C6NR02321E-(cit12)/*[position()=1]) 2001; 292
Fang (C6NR02321E-(cit36)/*[position()=1]) 2013; 14
Mendis (C6NR02321E-(cit19)/*[position()=1]) 2001; 11
Tamagnone (C6NR02321E-(cit22)/*[position()=1]) 2014; 8
Li (C6NR02321E-(cit34)/*[position()=1]) 2010; 10
Miroshnichenko (C6NR02321E-(cit17)/*[position()=1]) 2010; 82
Tonouchi (C6NR02321E-(cit2)/*[position()=1]) 2007; 1
Fang (C6NR02321E-(cit11)/*[position()=1]) 2005; 308
Singh (C6NR02321E-(cit14)/*[position()=1]) 2014; 105
Al-Naib (C6NR02321E-(cit28)/*[position()=1]) 2013; 88
Soukoulis (C6NR02321E-(cit6)/*[position()=1]) 2007; 315
Benz (C6NR02321E-(cit20)/*[position()=1]) 2013; 103
Christensen (C6NR02321E-(cit32)/*[position()=1]) 2011; 6
Chen (C6NR02321E-(cit26)/*[position()=1]) 2007; 32
Gu (C6NR02321E-(cit41)/*[position()=1]) 2012; 3
References_xml – issn: 2008
  volume-title: Optical properties of graphene//Journal of Physics, Conference Series
  doi: Falkovsky
– volume: 24
  start-page: 345203
  issue: 34
  year: 2013
  ident: C6NR02321E-(cit30)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/34/345203
– volume: 98
  start-page: 011911
  issue: 1
  year: 2011
  ident: C6NR02321E-(cit16)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3541652
– volume: 11
  start-page: 444
  issue: 11
  year: 2001
  ident: C6NR02321E-(cit19)/*[position()=1]
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/7260.966036
– volume: 7
  start-page: 2388
  issue: 3
  year: 2013
  ident: C6NR02321E-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3055835
– volume: 48
  start-page: 3494
  issue: 12
  year: 2007
  ident: C6NR02321E-(cit1)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.04.010
– volume: 1
  start-page: 97
  issue: 2
  year: 2007
  ident: C6NR02321E-(cit2)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.3
– volume: 77
  start-page: 633
  issue: 2
  year: 2005
  ident: C6NR02321E-(cit39)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.633
– volume: 10
  start-page: 509
  issue: 4
  year: 1968
  ident: C6NR02321E-(cit3)/*[position()=1]
  publication-title: Sov. Phys.-Usp.
  doi: 10.1070/PU1968v010n04ABEH003699
– volume: 88
  start-page: 195203
  issue: 19
  year: 2013
  ident: C6NR02321E-(cit28)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.88.195203
– volume: 6
  start-page: 431
  issue: 1
  year: 2011
  ident: C6NR02321E-(cit32)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2037626
– volume: 96
  start-page: 107401
  issue: 10
  year: 2006
  ident: C6NR02321E-(cit27)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.107401
– volume: 17
  start-page: 16527
  issue: 19
  year: 2009
  ident: C6NR02321E-(cit21)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.17.016527
– volume: 7
  start-page: 394
  issue: 5
  year: 2013
  ident: C6NR02321E-(cit29)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.57
– volume: 32
  start-page: 1620
  issue: 12
  year: 2007
  ident: C6NR02321E-(cit26)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.001620
– volume: 101
  start-page: 047401
  issue: 4
  year: 2008
  ident: C6NR02321E-(cit40)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.047401
– volume: 103
  start-page: 263116
  issue: 26
  year: 2013
  ident: C6NR02321E-(cit20)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4859636
– volume: 14
  start-page: 299
  issue: 1
  year: 2013
  ident: C6NR02321E-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl404042h
– volume: 94
  start-page: 064102
  issue: 6
  year: 2009
  ident: C6NR02321E-(cit23)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3079419
– volume: 84
  start-page: 4184
  issue: 18
  year: 2000
  ident: C6NR02321E-(cit8)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4184
– volume: 1
  start-page: 41
  issue: 1
  year: 2007
  ident: C6NR02321E-(cit5)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2006.49
– volume: 105
  start-page: 171101
  issue: 17
  year: 2014
  ident: C6NR02321E-(cit14)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4895595
– volume: 85
  start-page: 3966
  issue: 18
  year: 2000
  ident: C6NR02321E-(cit4)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 9
  start-page: 2873
  issue: 8
  year: 2009
  ident: C6NR02321E-(cit33)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl901073g
– volume: 8
  start-page: 556
  issue: 7
  year: 2014
  ident: C6NR02321E-(cit22)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.109
– volume: 444
  start-page: 597
  issue: 7119
  year: 2006
  ident: C6NR02321E-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature05343
– volume: 8
  start-page: 3983
  issue: 11
  year: 2008
  ident: C6NR02321E-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl802509r
– volume: 308
  start-page: 534
  issue: 5721
  year: 2005
  ident: C6NR02321E-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1108759
– volume: 432
  start-page: 376
  issue: 7015
  year: 2004
  ident: C6NR02321E-(cit18)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature03040
– volume: 292
  start-page: 77
  issue: 5514
  year: 2001
  ident: C6NR02321E-(cit12)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 303
  start-page: 1494
  issue: 5663
  year: 2004
  ident: C6NR02321E-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1094025
– volume: 291
  start-page: 849
  issue: 5505
  year: 2001
  ident: C6NR02321E-(cit9)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.291.5505.849
– volume: 314
  start-page: 977
  issue: 5801
  year: 2006
  ident: C6NR02321E-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1133628
– volume: 97
  start-page: 241904
  issue: 24
  year: 2010
  ident: C6NR02321E-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3525925
– volume: 34
  start-page: 1
  issue: 1
  year: 2013
  ident: C6NR02321E-(cit24)/*[position()=1]
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-012-9946-2
– volume: 71
  start-page: 036617
  issue: 3
  year: 2005
  ident: C6NR02321E-(cit42)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.71.036617
– volume: 19
  start-page: 6312
  issue: 7
  year: 2011
  ident: C6NR02321E-(cit13)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.19.006312
– volume: 82
  start-page: 2257
  issue: 3
  year: 2010
  ident: C6NR02321E-(cit17)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2257
– volume: 82
  start-page: 229
  year: 2015
  ident: C6NR02321E-(cit38)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.10.066
– volume: 9
  start-page: 10612
  issue: 11
  year: 2015
  ident: C6NR02321E-(cit35)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04258
– volume: 3
  start-page: 1151
  year: 2012
  ident: C6NR02321E-(cit41)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2153
– volume: 10
  start-page: 4328
  issue: 11
  year: 2010
  ident: C6NR02321E-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101629g
– volume: 315
  start-page: 47
  issue: 5808
  year: 2007
  ident: C6NR02321E-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1136481
SSID ssj0069363
Score 2.5253344
Snippet Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15196
SubjectTerms Detection
Electric components
Graphene
Mathematical models
Metamaterials
Modulation
Nanostructure
Resonators
Title Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications
URI https://www.ncbi.nlm.nih.gov/pubmed/27337105
https://www.proquest.com/docview/1812892243
https://www.proquest.com/docview/1835568715
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4rVQXjKCC4oCSey4yXFVWi2oFIFS0VvkNPYSaeWgJhUSv56x4yRedoUWDo0qN3WizJeZbzzjGYReFyIQlBDmSyoTnxYx8ZMYsAzGigMjL8KU6_WOT2t2uqEft_F2zNM1u0va4u3u15X7Sv5HqjAGctW7ZP9BssOkMADfQb5wBAnD8Voyft-1k9dtoDkwT3NJT9ul0sYAPFOPGtSZ1wDZbD2TbKcrFPtfvCVXtQ_Odq2UdrxNvmGj09n1rkUnrO3SV9DFdQNSHdCQ2eXmb6L6Kapxdb4bXVUD9OZ2F8i24nXz_cCtwdSpQNXBxv3V2Xltx-06RMj0wqqrOiOdmwhS75YHhDs2u6BvEwdWhDjKE8hHyhxLDNSia018Sc0HRFdJ3TG1B8oRhWI0Zn0Af_05X25WqzxbbLOb6CiaAbOaoKOTRfZh1VtqlhLTaW-48758LUnfjXNfJCyXvBDgJPu-V4zhJNlddMc6E_ikQ8Y9dEOo--i2U2LyARIWI9jFCDYYwbXCgBHcYwQbjGD9P9xhBP-BEQwYwRYj2MXIQ7RZLrL5qW9ba_g7GiStH5sAMifgLMKnoEkZyMJU7gEXlwjK4RWV4Q7YI2h0TgNZRmkQlUyGiShZGZJjNFG1Eo8RDgvwYCMRylIKmgYyIZIJTtMo4aWO4k7Rm_755Ttbd163PznPTf4DSfM5W381z3oxRa-Gc3901VauPOtlL4YclKGOcHEl6kOTa7qapMBKyd_OIbrq3iyMp-hRJ8PhWsDlCVBu-OUYhDoMj2B4co1pn6Jb4_vxDE3a_UE8B-baFi8sAH8Dg_yZtw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+metamaterial+based+on+the+graphene+split+ring+high-Q+Fano-resonnator+for+sensing+applications&rft.jtitle=Nanoscale&rft.au=Tang%2C+Weiwei&rft.au=Wang%2C+Lin&rft.au=Chen%2C+Xiaoshuang&rft.au=Liu%2C+Changlong&rft.date=2016-08-18&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=8&rft.issue=33&rft.spage=15196&rft.epage=15204&rft_id=info:doi/10.1039%2Fc6nr02321e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon