Comparison of Econometric Models and Artificial Neural Networks Algorithms for the Prediction of Baltic Dry Index

The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index prediction...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 1647 - 1657
Main Authors Zhang, Xin, Xue, Tianyuan, Eugene Stanley, H.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2884877

Cover

Abstract The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index predictions. The most prominent techniques utilize either econometric or artificial intelligence computing. We compare the forecasting accuracy of two typical univariant econometric models and three artificial neural networks (ANNs)-based algorithms. We find that when using daily data, econometric forecasting models produce better one-step-ahead predictions than ANN-based algorithms. When forecasting weekly and monthly data, ANN-based algorithms produce fewer errors and a higher direction matching rate than econometric models. We also compare the predictive power of a number of different models when applied to the 2008 financial crisis and find that the generalized autoregressive conditional heteroskedasticity model and the back propagation neural network algorithm produce the best one-step-ahead and seven-steps ahead predictions, respectively.
AbstractList The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index predictions. The most prominent techniques utilize either econometric or artificial intelligence computing. We compare the forecasting accuracy of two typical univariant econometric models and three artificial neural networks (ANNs)-based algorithms. We find that when using daily data, econometric forecasting models produce better one-step-ahead predictions than ANN-based algorithms. When forecasting weekly and monthly data, ANN-based algorithms produce fewer errors and a higher direction matching rate than econometric models. We also compare the predictive power of a number of different models when applied to the 2008 financial crisis and find that the generalized autoregressive conditional heteroskedasticity model and the back propagation neural network algorithm produce the best one-step-ahead and seven-steps ahead predictions, respectively.
Author Zhang, Xin
Eugene Stanley, H.
Xue, Tianyuan
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-2067-8009
  surname: Zhang
  fullname: Zhang, Xin
  email: zhangxin@shmtu.edu.cn
  organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China
– sequence: 2
  givenname: Tianyuan
  surname: Xue
  fullname: Xue, Tianyuan
  organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China
– sequence: 3
  givenname: H.
  surname: Eugene Stanley
  fullname: Eugene Stanley, H.
  organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China
BookMark eNqFkc1OGzEUhUcVSKXAE7Cx1HVSezwztpfpNC2RaKlEu7bu-AecOuNgO6J5exwGoYou8OZYV_d81vH5UB2NYTRVdUHwnBAsPi36fnlzM68x4fOa84Yz9q46qUknZrSl3dE_9_fVeUprXA4vo5adVPd92GwhuhRGFCxaqjCGjcnRKfQ9aOMTglGjRczOOuXAox9mF58kP4T4J6GFvw3R5btNQjZElO8M-hmNdiq7CfkZfC60L3GPVqM2f8-qYws-mfNnPa1-f13-6i9nV9ffVv3iaqYazPOs0aS2qmWDLUopq8GaWjFdEvMO2rbtrCGio6TDWCvN6QBYCdthK0TDOaOn1Wri6gBruY1uA3EvAzj5NAjxVkKJpbyRQogWmBXDwKDRDRFWk44wLYZWMUVEYTUTazduYf8A3r8ACZaHFiQoZVKShxbkcwvF9nGybWO435mU5Trs4lhSy7opCQgloilbdNpSMaQUjf2PPTX8mi1euZTLcPj0HMH5N7wXk9cZY15e4y0jtK7pIwmftK8
CODEN IAECCG
CitedBy_id crossref_primary_10_30520_tjsosci_524826
crossref_primary_10_1016_j_martra_2022_100057
crossref_primary_10_1109_TEM_2020_3046930
crossref_primary_10_1007_s12204_022_2449_y
crossref_primary_10_1016_j_asoc_2022_109726
crossref_primary_10_1109_ACCESS_2023_3314329
crossref_primary_10_1109_MCOM_001_2000990
crossref_primary_10_1061__ASCE_ME_1943_5479_0001008
crossref_primary_10_1002_for_3176
crossref_primary_10_3390_math13010168
crossref_primary_10_1002_for_2780
crossref_primary_10_1057_s41278_023_00278_6
crossref_primary_10_3390_app10041504
crossref_primary_10_3390_jrfm14020076
crossref_primary_10_1057_s41278_020_00156_5
crossref_primary_10_1590_0103_6513_20210043
crossref_primary_10_3390_fi13100241
crossref_primary_10_1109_ACCESS_2019_2924353
crossref_primary_10_2478_jaiscr_2022_0006
crossref_primary_10_1016_j_eswa_2024_125233
crossref_primary_10_1371_journal_pone_0280504
crossref_primary_10_1016_j_eswa_2024_123451
crossref_primary_10_1016_j_physa_2019_121086
Cites_doi 10.1109/TPAMI.2009.187
10.1057/mel.2012.18
10.1002/for.1009
10.1016/j.ajsl.2017.03.005
10.1162/REST_a_00026
10.1016/j.econlet.2011.08.010
10.1080/09603100110046045
10.1080/03088839.2013.780216
10.1016/0954-1810(94)00011-S
10.1109/TPWRS.2005.846044
10.1198/073500102753410444
10.1016/S0305-0548(97)00074-9
10.1080/07350015.2014.983236
10.1109/72.478403
10.1057/mel.2012.9
10.3386/w8554
10.1016/j.euroecorev.2012.12.004
10.1016/j.eswa.2014.08.018
10.1057/mel.2015.2
10.1016/j.ymssp.2009.08.004
10.1016/j.jhydrol.2009.06.019
10.1109/JCN.2011.6157478
10.1016/j.tre.2017.10.014
10.1057/mel.2012.10
10.1016/j.physa.2014.07.068
10.1016/j.eswa.2011.07.082
10.1257/aer.20140832
10.1097/EDE.0b013e3181c30fb2
10.1155/2014/460684
10.1016/j.neucom.2014.05.068
10.4324/9780203442661
10.1016/S1366-5545(01)00004-7
10.1016/j.neucom.2015.12.114
10.1016/j.apenergy.2018.03.148
10.1038/nature14541
10.1109/TSMCB.2011.2168604
10.1080/20464177.2018.1495886
10.1016/S0952-1976(03)00063-0
10.2307/2109358
10.1016/S0261-5177(99)00067-9
10.1016/j.ijforecast.2006.03.001
10.1016/j.ijforecast.2006.07.004
10.1109/72.182710
10.1057/ijme.1999.10
10.1007/s00521-010-0504-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2018.2884877
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1657
ExternalDocumentID oai_doaj_org_article_9995a7f9bb7a4d419fd1617d9b5c7c19
10.1109/access.2018.2884877
10_1109_ACCESS_2018_2884877
8571322
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71601112
  funderid: 10.13039/501100001809
– fundername: National Science Foundation
  grantid: PHY-1505000; CMMI-1125290; CHE-1213217
  funderid: 10.13039/100000001
– fundername: Shanghai Pujiang Program
  grantid: 15PJC061
– fundername: DTRA
  grantid: HDTRA1-14-1-0017
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-4d12fc57bf12f3372afe2c7d10986a5556fe19631600dcd83ba0c9f60f9948873
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:30 EDT 2025
Wed Oct 01 16:54:56 EDT 2025
Mon Jun 30 05:32:25 EDT 2025
Wed Oct 01 02:58:07 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Aug 27 02:59:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-4d12fc57bf12f3372afe2c7d10986a5556fe19631600dcd83ba0c9f60f9948873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2067-8009
OpenAccessLink https://doaj.org/article/9995a7f9bb7a4d419fd1617d9b5c7c19
PQID 2455613194
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2018_2884877
crossref_primary_10_1109_ACCESS_2018_2884877
doaj_primary_oai_doaj_org_article_9995a7f9bb7a4d419fd1617d9b5c7c19
unpaywall_primary_10_1109_access_2018_2884877
ieee_primary_8571322
proquest_journals_2455613194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
stopford (ref14) 2013
ref47
ref42
ref41
ref44
ref43
ref49
dai (ref15) 2016; 43
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
stopford (ref1) 2010; 7
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
chatfield (ref24) 2016
de monie (ref4) 2009
ahin (ref22) 2018; 26
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1109/TPAMI.2009.187
– ident: ref11
  doi: 10.1057/mel.2012.18
– ident: ref30
  doi: 10.1002/for.1009
– ident: ref12
  doi: 10.1016/j.ajsl.2017.03.005
– ident: ref5
  doi: 10.1162/REST_a_00026
– ident: ref46
  doi: 10.1016/j.econlet.2011.08.010
– ident: ref27
  doi: 10.1080/09603100110046045
– ident: ref2
  doi: 10.1080/03088839.2013.780216
– ident: ref36
  doi: 10.1016/0954-1810(94)00011-S
– ident: ref28
  doi: 10.1109/TPWRS.2005.846044
– ident: ref49
  doi: 10.1198/073500102753410444
– volume: 26
  start-page: 1673
  year: 2018
  ident: ref22
  article-title: Forecasting the baltic dry index by using an artificial neural network approach
  publication-title: Turkish J Electr Eng Comput Sci
– ident: ref23
  doi: 10.1016/S0305-0548(97)00074-9
– ident: ref50
  doi: 10.1080/07350015.2014.983236
– ident: ref40
  doi: 10.1109/72.478403
– ident: ref17
  doi: 10.1057/mel.2012.9
– ident: ref26
  doi: 10.3386/w8554
– ident: ref6
  doi: 10.1016/j.euroecorev.2012.12.004
– ident: ref37
  doi: 10.1016/j.eswa.2014.08.018
– ident: ref20
  doi: 10.1057/mel.2015.2
– ident: ref31
  doi: 10.1016/j.ymssp.2009.08.004
– ident: ref48
  doi: 10.1016/j.jhydrol.2009.06.019
– ident: ref29
  doi: 10.1109/JCN.2011.6157478
– start-page: 9
  year: 2009
  ident: ref4
  article-title: Economic cycles in maritime shipping and ports: The path to the crisis of 2008
  publication-title: Proc Int Workshop Integrating Maritime Transport Value Chains
– ident: ref13
  doi: 10.1016/j.tre.2017.10.014
– ident: ref16
  doi: 10.1057/mel.2012.10
– ident: ref3
  doi: 10.1016/j.physa.2014.07.068
– ident: ref18
  doi: 10.1016/j.eswa.2011.07.082
– ident: ref7
  doi: 10.1257/aer.20140832
– ident: ref45
  doi: 10.1097/EDE.0b013e3181c30fb2
– ident: ref19
  doi: 10.1155/2014/460684
– ident: ref43
  doi: 10.1016/j.neucom.2014.05.068
– year: 2013
  ident: ref14
  publication-title: Maritime Economics
  doi: 10.4324/9780203442661
– ident: ref9
  doi: 10.1016/S1366-5545(01)00004-7
– ident: ref44
  doi: 10.1016/j.neucom.2015.12.114
– volume: 43
  start-page: 85
  year: 2016
  ident: ref15
  article-title: The scaling behavior of bulk freight rate volatility
  publication-title: Int J Transport Econ
– ident: ref33
  doi: 10.1016/j.apenergy.2018.03.148
– ident: ref32
  doi: 10.1038/nature14541
– ident: ref42
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref21
  doi: 10.1080/20464177.2018.1495886
– ident: ref41
  doi: 10.1016/S0952-1976(03)00063-0
– ident: ref25
  doi: 10.2307/2109358
– ident: ref38
  doi: 10.1016/S0261-5177(99)00067-9
– ident: ref47
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: ref10
  doi: 10.1016/j.ijforecast.2006.07.004
– ident: ref39
  doi: 10.1109/72.182710
– year: 2016
  ident: ref24
  publication-title: The Analysis of Time Series An Introduction
– ident: ref8
  doi: 10.1057/ijme.1999.10
– volume: 7
  start-page: 1
  year: 2010
  ident: ref1
  article-title: How shipping has changed the world and the social impact of shipping
  publication-title: Global Maritime Environmental Congress
– ident: ref34
  doi: 10.1007/s00521-010-0504-3
SSID ssj0000816957
Score 2.2891784
Snippet The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1647
SubjectTerms Algorithms
ARIMA
ARIMA,GARCH
Artificial intelligence
Artificial neural networks
artificial neural networks(ANN)
Autoregressive models
Back propagation networks
Baltic dry index prediction
Biological system modeling
BP neural network
Econometrics
ELM
Forecasting
GARCH
Global economy
Indexes
International trade
Model accuracy
Neural networks
Predictive models
RBFNN
Shipping
Time series analysis
Volatility
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL1quwEWvAoipSAvWDbTTGLH9nI6UBWkIhZU6i5y_ADUkCkzGVXl67nXyUQdQIhVoshx7Bw_jl_nALxxpS-80EXquMUBSrA6NUrxlFaYpArYYyg6KHz-sTy74B8uxeUOHI1nYbz3cfOZn9BtXMt3C7umqbJjJSQNnnZhV6qyP6s1zqeQgYQWchAWmmb6eDafYx5o95aa5Ph9JeVW5xM1-gdTlS1-eW_dXpvbG9M0d7qa00dwvklkv8PkarLu6on9-Zt-4__m4jE8HDgnm_WF5Ans-PYpPLijRLgPP-ajHyFbBNYfVyazLcvILa1ZMdO6GEOvOMFI1CNe4i7yFZs1XxbLb93X7yuGNJghrWSflrQIRMBTlCeGdD7Y2-Ute08Kjc_g4vTd5_lZOrgxpJZnqku5m-bBClkHvBaFzE3wuZUOf7UqjRCiDJ6q8xQplLNOFbXJrA5lFrTGVkIWz2GvXbT-BTBhVFbwGvtOo3hRB2Ud8iBnMx2QUIYsgXwDU2UHqXJyzGiqOGTJdNVjWxG21YBtAkfjS9e9Use_g58Q_mNQktmODxCraqi1FbJnYWTQdS0NdxzT5mg86HQtrLRTncA-4TtGMkCbwOGmNFVDk7Cqck5OpNji8QTSsYT9kVQTfTK3knrw96-8hPsYSvfzQYew1y3X_hUypK5-HavGL-wyDEs
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJsHnZsH7cLVUGi6oGVysly_ICqIbvsZgXl1-NxvFEXJCQ4JYoca5wZ29_E9vch9MrUtrJUVKkh2icoTotUcU5SWGFi3PkZg8NB4Q9n9emCvL-gF_GHWzgLY60Nm89sBrdhLf_Stj_YtC6BPE1MOTCq58UUqNkhlcpWxt1GBzX1WHyCDhZn57NPoChX1CKtwtrk80isOVVBgxD2c_Gs9BZxxvamo8DaH2VW9hDnnW23UtffVdvemHxO7iO5M3vYc3KVbfsm0z9_Y3T8_3Y9QPciLsWzIZAeolu2e4Tu3mArPETf5qNmIV46PBxpBkEujUFRrd1g1ZlQw8BKgYH4I1zCTvMNnrWfl-vL_svXDfZQGXvoic_XsFAEwQFVHivgAsFv1tf4HbA4PkaLk7cf56dpVGxINcl5nxJTlE5T1jh_rSpWKmdLzYz_-LxWlNLaWejyhW-r0YZXjcq1cHXuhPAjCaueoEm37OxThKnieUUaP78qTqrGcW08VjI6F86DTpcnqNw5TupIZw6qGq0MaU0u5Gw-9zEswdsyejtBr8eXVgObx9-LH0NEjEWBijs88N6TsWdLj7CpYk40DVPEEG-bgZzRiIZqpguRoEPw-FhJdG-CjnbxJeOwsZElAbVSPyqSBKVjzP1h6hDHe6Y--8fyR2jSr7f2hUdUffMydptfwaUacQ
  priority: 102
  providerName: Unpaywall
Title Comparison of Econometric Models and Artificial Neural Networks Algorithms for the Prediction of Baltic Dry Index
URI https://ieeexplore.ieee.org/document/8571322
https://www.proquest.com/docview/2455613194
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08571322.pdf
https://doaj.org/article/9995a7f9bb7a4d419fd1617d9b5c7c19
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hcqAcENBWBMrKhx5Jmw87to_bhaogteqBlcrJcuy4RQrZsrsV6r9nxkmjXSHBhZOlyBlNPGP7ObbfAzjyVVM2Qpep5w4XKMHp1CrFU9phkirgjKHoovDFZXU-51-uxfWG1BedCevpgfuGO0EAI6wMuq6l5Z7nOniC5F7XwkkXCT8LNLyxmIpjsMorLeRAM5Rn-mQ6m-EX0VkudVygN0rKrakoMvYPEitbaPPZfXdnH37Ztt2YeM5ewosBMbJp7-kreNJ0r-H5Bo_gHvycjWqCbBFYf9mYpLIcI62zdsVs56OFni-CESVHLOIZ8BWbtjeL5ff17Y8VQxDLEBSyqyVt4VDYyOSpJZYO9nH5wD4Tv-I-zM8-fZ2dp4OWQup4ptYp93kRnJB1wLIsZWFDUzjpsWlUZYUQVWioM-YIgLzzqqxt5nSosqA19nFZHsBOt-iaN8CEVVnJa5z5rOJlHZTziGK8y3RAOBiyBIrHZjVuIBonvYvWxAVHpk0fC0OxMEMsEvgwvnTX82z8vfopxWusSiTZ8QGmjhlSx_wrdRLYo2iPRpSQtDZP4PAx-mbo0CtTcNIRxfGKJ5COGfGHqzaqXG65-vZ_uPoOdtGm7v_9HMLOennfvEc0tK4nMfEn8eLiBJ7OL6-m334D-lcF4A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwGP1UyqFwYCuogQI-cGymmcSO7eN0oJpCp-LQSr1ZjpeCSDNlFqHy6_HnZKIOIMQpUZQ4X_K8PG_vAbyzpSsck0VqqQkdFG9kqoWgKc4wceFDiyFwo_D0rJxc0I-X7HILDvq9MM65uPjMDfA0zuXbmVnhUNmhYBw7T_fgPqOUsna3Vj-ighYSkvFOWmiYycPReBy-AtdviUEeIhCcbzQ_UaW_s1XZYJg7q-ZG3_7QdX2nsTl-DNN1mO0ak2-D1bIamJ-_KTj-73c8gUcd6ySjNps8hS3XPIOHd7QId-H7uHckJDNP2g3LaLdlCPql1QuiGxtTaDUnCMp6xENcR74go_pqNv-6_HK9IIEIk0Asyec5TgMh9JjkkUalD_J-fktOUKPxOVwcfzgfT9LOjyE1NBPLlNph7g3jlQ_HouC59i433IZfLUrNGCu9wwI9DCTKGiuKSmdG-jLzUoZ6ghcvYLuZNW4PCNMiK2gVWk8taFF5YWxgQtZk0gdK6bME8jVMynRi5eiZUavYacmkarFViK3qsE3goH_optXq-PftR4h_fysKbccLASvVlVsV-DPT3Muq4ppaGmKz2CO0smKGm6FMYBfx7RPpoE1gf52bVFcpLFRO0Ys01Hk0gbTPYX-EqqNT5kaoL__-lrewMzmfnqrTk7NPr-BBeEK2o0P7sL2cr9zrwJeW1ZtYTH4BFHMPmA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJsHnZsH7cLVUGi6oGVysly_ICqIbvsZgXl1-NxvFEXJCQ4JYoca5wZ29_E9vch9MrUtrJUVKkh2icoTotUcU5SWGFi3PkZg8NB4Q9n9emCvL-gF_GHWzgLY60Nm89sBrdhLf_Stj_YtC6BPE1MOTCq58UUqNkhlcpWxt1GBzX1WHyCDhZn57NPoChX1CKtwtrk80isOVVBgxD2c_Gs9BZxxvamo8DaH2VW9hDnnW23UtffVdvemHxO7iO5M3vYc3KVbfsm0z9_Y3T8_3Y9QPciLsWzIZAeolu2e4Tu3mArPETf5qNmIV46PBxpBkEujUFRrd1g1ZlQw8BKgYH4I1zCTvMNnrWfl-vL_svXDfZQGXvoic_XsFAEwQFVHivgAsFv1tf4HbA4PkaLk7cf56dpVGxINcl5nxJTlE5T1jh_rSpWKmdLzYz_-LxWlNLaWejyhW-r0YZXjcq1cHXuhPAjCaueoEm37OxThKnieUUaP78qTqrGcW08VjI6F86DTpcnqNw5TupIZw6qGq0MaU0u5Gw-9zEswdsyejtBr8eXVgObx9-LH0NEjEWBijs88N6TsWdLj7CpYk40DVPEEG-bgZzRiIZqpguRoEPw-FhJdG-CjnbxJeOwsZElAbVSPyqSBKVjzP1h6hDHe6Y--8fyR2jSr7f2hUdUffMydptfwaUacQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Econometric+Models+and+Artificial+Neural+Networks+Algorithms+for+the+Prediction+of+Baltic+Dry+Index&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Xin&rft.au=Xue%2C+Tianyuan&rft.au=Eugene+Stanley%2C+H.&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=1647&rft.epage=1657&rft_id=info:doi/10.1109%2FACCESS.2018.2884877&rft.externalDocID=8571322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon