Comparison of Econometric Models and Artificial Neural Networks Algorithms for the Prediction of Baltic Dry Index
The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index prediction...
Saved in:
| Published in | IEEE access Vol. 7; pp. 1647 - 1657 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2018.2884877 |
Cover
| Abstract | The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index predictions. The most prominent techniques utilize either econometric or artificial intelligence computing. We compare the forecasting accuracy of two typical univariant econometric models and three artificial neural networks (ANNs)-based algorithms. We find that when using daily data, econometric forecasting models produce better one-step-ahead predictions than ANN-based algorithms. When forecasting weekly and monthly data, ANN-based algorithms produce fewer errors and a higher direction matching rate than econometric models. We also compare the predictive power of a number of different models when applied to the 2008 financial crisis and find that the generalized autoregressive conditional heteroskedasticity model and the back propagation neural network algorithm produce the best one-step-ahead and seven-steps ahead predictions, respectively. |
|---|---|
| AbstractList | The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in the world shipping market and international trade. Several studies have used a variety of techniques to generate Baltic dry index predictions. The most prominent techniques utilize either econometric or artificial intelligence computing. We compare the forecasting accuracy of two typical univariant econometric models and three artificial neural networks (ANNs)-based algorithms. We find that when using daily data, econometric forecasting models produce better one-step-ahead predictions than ANN-based algorithms. When forecasting weekly and monthly data, ANN-based algorithms produce fewer errors and a higher direction matching rate than econometric models. We also compare the predictive power of a number of different models when applied to the 2008 financial crisis and find that the generalized autoregressive conditional heteroskedasticity model and the back propagation neural network algorithm produce the best one-step-ahead and seven-steps ahead predictions, respectively. |
| Author | Zhang, Xin Eugene Stanley, H. Xue, Tianyuan |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-2067-8009 surname: Zhang fullname: Zhang, Xin email: zhangxin@shmtu.edu.cn organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China – sequence: 2 givenname: Tianyuan surname: Xue fullname: Xue, Tianyuan organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China – sequence: 3 givenname: H. surname: Eugene Stanley fullname: Eugene Stanley, H. organization: College of Communication and Transport, Shanghai Maritime University, Shanghai, China |
| BookMark | eNqFkc1OGzEUhUcVSKXAE7Cx1HVSezwztpfpNC2RaKlEu7bu-AecOuNgO6J5exwGoYou8OZYV_d81vH5UB2NYTRVdUHwnBAsPi36fnlzM68x4fOa84Yz9q46qUknZrSl3dE_9_fVeUprXA4vo5adVPd92GwhuhRGFCxaqjCGjcnRKfQ9aOMTglGjRczOOuXAox9mF58kP4T4J6GFvw3R5btNQjZElO8M-hmNdiq7CfkZfC60L3GPVqM2f8-qYws-mfNnPa1-f13-6i9nV9ffVv3iaqYazPOs0aS2qmWDLUopq8GaWjFdEvMO2rbtrCGio6TDWCvN6QBYCdthK0TDOaOn1Wri6gBruY1uA3EvAzj5NAjxVkKJpbyRQogWmBXDwKDRDRFWk44wLYZWMUVEYTUTazduYf8A3r8ACZaHFiQoZVKShxbkcwvF9nGybWO435mU5Trs4lhSy7opCQgloilbdNpSMaQUjf2PPTX8mi1euZTLcPj0HMH5N7wXk9cZY15e4y0jtK7pIwmftK8 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_30520_tjsosci_524826 crossref_primary_10_1016_j_martra_2022_100057 crossref_primary_10_1109_TEM_2020_3046930 crossref_primary_10_1007_s12204_022_2449_y crossref_primary_10_1016_j_asoc_2022_109726 crossref_primary_10_1109_ACCESS_2023_3314329 crossref_primary_10_1109_MCOM_001_2000990 crossref_primary_10_1061__ASCE_ME_1943_5479_0001008 crossref_primary_10_1002_for_3176 crossref_primary_10_3390_math13010168 crossref_primary_10_1002_for_2780 crossref_primary_10_1057_s41278_023_00278_6 crossref_primary_10_3390_app10041504 crossref_primary_10_3390_jrfm14020076 crossref_primary_10_1057_s41278_020_00156_5 crossref_primary_10_1590_0103_6513_20210043 crossref_primary_10_3390_fi13100241 crossref_primary_10_1109_ACCESS_2019_2924353 crossref_primary_10_2478_jaiscr_2022_0006 crossref_primary_10_1016_j_eswa_2024_125233 crossref_primary_10_1371_journal_pone_0280504 crossref_primary_10_1016_j_eswa_2024_123451 crossref_primary_10_1016_j_physa_2019_121086 |
| Cites_doi | 10.1109/TPAMI.2009.187 10.1057/mel.2012.18 10.1002/for.1009 10.1016/j.ajsl.2017.03.005 10.1162/REST_a_00026 10.1016/j.econlet.2011.08.010 10.1080/09603100110046045 10.1080/03088839.2013.780216 10.1016/0954-1810(94)00011-S 10.1109/TPWRS.2005.846044 10.1198/073500102753410444 10.1016/S0305-0548(97)00074-9 10.1080/07350015.2014.983236 10.1109/72.478403 10.1057/mel.2012.9 10.3386/w8554 10.1016/j.euroecorev.2012.12.004 10.1016/j.eswa.2014.08.018 10.1057/mel.2015.2 10.1016/j.ymssp.2009.08.004 10.1016/j.jhydrol.2009.06.019 10.1109/JCN.2011.6157478 10.1016/j.tre.2017.10.014 10.1057/mel.2012.10 10.1016/j.physa.2014.07.068 10.1016/j.eswa.2011.07.082 10.1257/aer.20140832 10.1097/EDE.0b013e3181c30fb2 10.1155/2014/460684 10.1016/j.neucom.2014.05.068 10.4324/9780203442661 10.1016/S1366-5545(01)00004-7 10.1016/j.neucom.2015.12.114 10.1016/j.apenergy.2018.03.148 10.1038/nature14541 10.1109/TSMCB.2011.2168604 10.1080/20464177.2018.1495886 10.1016/S0952-1976(03)00063-0 10.2307/2109358 10.1016/S0261-5177(99)00067-9 10.1016/j.ijforecast.2006.03.001 10.1016/j.ijforecast.2006.07.004 10.1109/72.182710 10.1057/ijme.1999.10 10.1007/s00521-010-0504-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2018.2884877 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1657 |
| ExternalDocumentID | oai_doaj_org_article_9995a7f9bb7a4d419fd1617d9b5c7c19 10.1109/access.2018.2884877 10_1109_ACCESS_2018_2884877 8571322 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71601112 funderid: 10.13039/501100001809 – fundername: National Science Foundation grantid: PHY-1505000; CMMI-1125290; CHE-1213217 funderid: 10.13039/100000001 – fundername: Shanghai Pujiang Program grantid: 15PJC061 – fundername: DTRA grantid: HDTRA1-14-1-0017 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-4d12fc57bf12f3372afe2c7d10986a5556fe19631600dcd83ba0c9f60f9948873 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:30 EDT 2025 Wed Oct 01 16:54:56 EDT 2025 Mon Jun 30 05:32:25 EDT 2025 Wed Oct 01 02:58:07 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Aug 27 02:59:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-4d12fc57bf12f3372afe2c7d10986a5556fe19631600dcd83ba0c9f60f9948873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2067-8009 |
| OpenAccessLink | https://doaj.org/article/9995a7f9bb7a4d419fd1617d9b5c7c19 |
| PQID | 2455613194 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2018_2884877 crossref_primary_10_1109_ACCESS_2018_2884877 doaj_primary_oai_doaj_org_article_9995a7f9bb7a4d419fd1617d9b5c7c19 unpaywall_primary_10_1109_access_2018_2884877 ieee_primary_8571322 proquest_journals_2455613194 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 stopford (ref14) 2013 ref47 ref42 ref41 ref44 ref43 ref49 dai (ref15) 2016; 43 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 stopford (ref1) 2010; 7 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 chatfield (ref24) 2016 de monie (ref4) 2009 ahin (ref22) 2018; 26 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref35 doi: 10.1109/TPAMI.2009.187 – ident: ref11 doi: 10.1057/mel.2012.18 – ident: ref30 doi: 10.1002/for.1009 – ident: ref12 doi: 10.1016/j.ajsl.2017.03.005 – ident: ref5 doi: 10.1162/REST_a_00026 – ident: ref46 doi: 10.1016/j.econlet.2011.08.010 – ident: ref27 doi: 10.1080/09603100110046045 – ident: ref2 doi: 10.1080/03088839.2013.780216 – ident: ref36 doi: 10.1016/0954-1810(94)00011-S – ident: ref28 doi: 10.1109/TPWRS.2005.846044 – ident: ref49 doi: 10.1198/073500102753410444 – volume: 26 start-page: 1673 year: 2018 ident: ref22 article-title: Forecasting the baltic dry index by using an artificial neural network approach publication-title: Turkish J Electr Eng Comput Sci – ident: ref23 doi: 10.1016/S0305-0548(97)00074-9 – ident: ref50 doi: 10.1080/07350015.2014.983236 – ident: ref40 doi: 10.1109/72.478403 – ident: ref17 doi: 10.1057/mel.2012.9 – ident: ref26 doi: 10.3386/w8554 – ident: ref6 doi: 10.1016/j.euroecorev.2012.12.004 – ident: ref37 doi: 10.1016/j.eswa.2014.08.018 – ident: ref20 doi: 10.1057/mel.2015.2 – ident: ref31 doi: 10.1016/j.ymssp.2009.08.004 – ident: ref48 doi: 10.1016/j.jhydrol.2009.06.019 – ident: ref29 doi: 10.1109/JCN.2011.6157478 – start-page: 9 year: 2009 ident: ref4 article-title: Economic cycles in maritime shipping and ports: The path to the crisis of 2008 publication-title: Proc Int Workshop Integrating Maritime Transport Value Chains – ident: ref13 doi: 10.1016/j.tre.2017.10.014 – ident: ref16 doi: 10.1057/mel.2012.10 – ident: ref3 doi: 10.1016/j.physa.2014.07.068 – ident: ref18 doi: 10.1016/j.eswa.2011.07.082 – ident: ref7 doi: 10.1257/aer.20140832 – ident: ref45 doi: 10.1097/EDE.0b013e3181c30fb2 – ident: ref19 doi: 10.1155/2014/460684 – ident: ref43 doi: 10.1016/j.neucom.2014.05.068 – year: 2013 ident: ref14 publication-title: Maritime Economics doi: 10.4324/9780203442661 – ident: ref9 doi: 10.1016/S1366-5545(01)00004-7 – ident: ref44 doi: 10.1016/j.neucom.2015.12.114 – volume: 43 start-page: 85 year: 2016 ident: ref15 article-title: The scaling behavior of bulk freight rate volatility publication-title: Int J Transport Econ – ident: ref33 doi: 10.1016/j.apenergy.2018.03.148 – ident: ref32 doi: 10.1038/nature14541 – ident: ref42 doi: 10.1109/TSMCB.2011.2168604 – ident: ref21 doi: 10.1080/20464177.2018.1495886 – ident: ref41 doi: 10.1016/S0952-1976(03)00063-0 – ident: ref25 doi: 10.2307/2109358 – ident: ref38 doi: 10.1016/S0261-5177(99)00067-9 – ident: ref47 doi: 10.1016/j.ijforecast.2006.03.001 – ident: ref10 doi: 10.1016/j.ijforecast.2006.07.004 – ident: ref39 doi: 10.1109/72.182710 – year: 2016 ident: ref24 publication-title: The Analysis of Time Series An Introduction – ident: ref8 doi: 10.1057/ijme.1999.10 – volume: 7 start-page: 1 year: 2010 ident: ref1 article-title: How shipping has changed the world and the social impact of shipping publication-title: Global Maritime Environmental Congress – ident: ref34 doi: 10.1007/s00521-010-0504-3 |
| SSID | ssj0000816957 |
| Score | 2.2891784 |
| Snippet | The shipping market, a major component of the global economy, is characterized by high risk and volatility. The Baltic dry index is an influential indicator in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1647 |
| SubjectTerms | Algorithms ARIMA ARIMA,GARCH Artificial intelligence Artificial neural networks artificial neural networks(ANN) Autoregressive models Back propagation networks Baltic dry index prediction Biological system modeling BP neural network Econometrics ELM Forecasting GARCH Global economy Indexes International trade Model accuracy Neural networks Predictive models RBFNN Shipping Time series analysis Volatility |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL1quwEWvAoipSAvWDbTTGLH9nI6UBWkIhZU6i5y_ADUkCkzGVXl67nXyUQdQIhVoshx7Bw_jl_nALxxpS-80EXquMUBSrA6NUrxlFaYpArYYyg6KHz-sTy74B8uxeUOHI1nYbz3cfOZn9BtXMt3C7umqbJjJSQNnnZhV6qyP6s1zqeQgYQWchAWmmb6eDafYx5o95aa5Ph9JeVW5xM1-gdTlS1-eW_dXpvbG9M0d7qa00dwvklkv8PkarLu6on9-Zt-4__m4jE8HDgnm_WF5Ans-PYpPLijRLgPP-ajHyFbBNYfVyazLcvILa1ZMdO6GEOvOMFI1CNe4i7yFZs1XxbLb93X7yuGNJghrWSflrQIRMBTlCeGdD7Y2-Ute08Kjc_g4vTd5_lZOrgxpJZnqku5m-bBClkHvBaFzE3wuZUOf7UqjRCiDJ6q8xQplLNOFbXJrA5lFrTGVkIWz2GvXbT-BTBhVFbwGvtOo3hRB2Ud8iBnMx2QUIYsgXwDU2UHqXJyzGiqOGTJdNVjWxG21YBtAkfjS9e9Use_g58Q_mNQktmODxCraqi1FbJnYWTQdS0NdxzT5mg86HQtrLRTncA-4TtGMkCbwOGmNFVDk7Cqck5OpNji8QTSsYT9kVQTfTK3knrw96-8hPsYSvfzQYew1y3X_hUypK5-HavGL-wyDEs priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJsHnZsH7cLVUGi6oGVysly_ICqIbvsZgXl1-NxvFEXJCQ4JYoca5wZ29_E9vch9MrUtrJUVKkh2icoTotUcU5SWGFi3PkZg8NB4Q9n9emCvL-gF_GHWzgLY60Nm89sBrdhLf_Stj_YtC6BPE1MOTCq58UUqNkhlcpWxt1GBzX1WHyCDhZn57NPoChX1CKtwtrk80isOVVBgxD2c_Gs9BZxxvamo8DaH2VW9hDnnW23UtffVdvemHxO7iO5M3vYc3KVbfsm0z9_Y3T8_3Y9QPciLsWzIZAeolu2e4Tu3mArPETf5qNmIV46PBxpBkEujUFRrd1g1ZlQw8BKgYH4I1zCTvMNnrWfl-vL_svXDfZQGXvoic_XsFAEwQFVHivgAsFv1tf4HbA4PkaLk7cf56dpVGxINcl5nxJTlE5T1jh_rSpWKmdLzYz_-LxWlNLaWejyhW-r0YZXjcq1cHXuhPAjCaueoEm37OxThKnieUUaP78qTqrGcW08VjI6F86DTpcnqNw5TupIZw6qGq0MaU0u5Gw-9zEswdsyejtBr8eXVgObx9-LH0NEjEWBijs88N6TsWdLj7CpYk40DVPEEG-bgZzRiIZqpguRoEPw-FhJdG-CjnbxJeOwsZElAbVSPyqSBKVjzP1h6hDHe6Y--8fyR2jSr7f2hUdUffMydptfwaUacQ priority: 102 providerName: Unpaywall |
| Title | Comparison of Econometric Models and Artificial Neural Networks Algorithms for the Prediction of Baltic Dry Index |
| URI | https://ieeexplore.ieee.org/document/8571322 https://www.proquest.com/docview/2455613194 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08571322.pdf https://doaj.org/article/9995a7f9bb7a4d419fd1617d9b5c7c19 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hcqAcENBWBMrKhx5Jmw87to_bhaogteqBlcrJcuy4RQrZsrsV6r9nxkmjXSHBhZOlyBlNPGP7ObbfAzjyVVM2Qpep5w4XKMHp1CrFU9phkirgjKHoovDFZXU-51-uxfWG1BedCevpgfuGO0EAI6wMuq6l5Z7nOniC5F7XwkkXCT8LNLyxmIpjsMorLeRAM5Rn-mQ6m-EX0VkudVygN0rKrakoMvYPEitbaPPZfXdnH37Ztt2YeM5ewosBMbJp7-kreNJ0r-H5Bo_gHvycjWqCbBFYf9mYpLIcI62zdsVs56OFni-CESVHLOIZ8BWbtjeL5ff17Y8VQxDLEBSyqyVt4VDYyOSpJZYO9nH5wD4Tv-I-zM8-fZ2dp4OWQup4ptYp93kRnJB1wLIsZWFDUzjpsWlUZYUQVWioM-YIgLzzqqxt5nSosqA19nFZHsBOt-iaN8CEVVnJa5z5rOJlHZTziGK8y3RAOBiyBIrHZjVuIBonvYvWxAVHpk0fC0OxMEMsEvgwvnTX82z8vfopxWusSiTZ8QGmjhlSx_wrdRLYo2iPRpSQtDZP4PAx-mbo0CtTcNIRxfGKJ5COGfGHqzaqXG65-vZ_uPoOdtGm7v_9HMLOennfvEc0tK4nMfEn8eLiBJ7OL6-m334D-lcF4A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwGP1UyqFwYCuogQI-cGymmcSO7eN0oJpCp-LQSr1ZjpeCSDNlFqHy6_HnZKIOIMQpUZQ4X_K8PG_vAbyzpSsck0VqqQkdFG9kqoWgKc4wceFDiyFwo_D0rJxc0I-X7HILDvq9MM65uPjMDfA0zuXbmVnhUNmhYBw7T_fgPqOUsna3Vj-ighYSkvFOWmiYycPReBy-AtdviUEeIhCcbzQ_UaW_s1XZYJg7q-ZG3_7QdX2nsTl-DNN1mO0ak2-D1bIamJ-_KTj-73c8gUcd6ySjNps8hS3XPIOHd7QId-H7uHckJDNP2g3LaLdlCPql1QuiGxtTaDUnCMp6xENcR74go_pqNv-6_HK9IIEIk0Asyec5TgMh9JjkkUalD_J-fktOUKPxOVwcfzgfT9LOjyE1NBPLlNph7g3jlQ_HouC59i433IZfLUrNGCu9wwI9DCTKGiuKSmdG-jLzUoZ6ghcvYLuZNW4PCNMiK2gVWk8taFF5YWxgQtZk0gdK6bME8jVMynRi5eiZUavYacmkarFViK3qsE3goH_optXq-PftR4h_fysKbccLASvVlVsV-DPT3Muq4ppaGmKz2CO0smKGm6FMYBfx7RPpoE1gf52bVFcpLFRO0Ys01Hk0gbTPYX-EqqNT5kaoL__-lrewMzmfnqrTk7NPr-BBeEK2o0P7sL2cr9zrwJeW1ZtYTH4BFHMPmA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoCAfOJJsHnZsH7cLVUGi6oGVysly_ICqIbvsZgXl1-NxvFEXJCQ4JYoca5wZ29_E9vch9MrUtrJUVKkh2icoTotUcU5SWGFi3PkZg8NB4Q9n9emCvL-gF_GHWzgLY60Nm89sBrdhLf_Stj_YtC6BPE1MOTCq58UUqNkhlcpWxt1GBzX1WHyCDhZn57NPoChX1CKtwtrk80isOVVBgxD2c_Gs9BZxxvamo8DaH2VW9hDnnW23UtffVdvemHxO7iO5M3vYc3KVbfsm0z9_Y3T8_3Y9QPciLsWzIZAeolu2e4Tu3mArPETf5qNmIV46PBxpBkEujUFRrd1g1ZlQw8BKgYH4I1zCTvMNnrWfl-vL_svXDfZQGXvoic_XsFAEwQFVHivgAsFv1tf4HbA4PkaLk7cf56dpVGxINcl5nxJTlE5T1jh_rSpWKmdLzYz_-LxWlNLaWejyhW-r0YZXjcq1cHXuhPAjCaueoEm37OxThKnieUUaP78qTqrGcW08VjI6F86DTpcnqNw5TupIZw6qGq0MaU0u5Gw-9zEswdsyejtBr8eXVgObx9-LH0NEjEWBijs88N6TsWdLj7CpYk40DVPEEG-bgZzRiIZqpguRoEPw-FhJdG-CjnbxJeOwsZElAbVSPyqSBKVjzP1h6hDHe6Y--8fyR2jSr7f2hUdUffMydptfwaUacQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Econometric+Models+and+Artificial+Neural+Networks+Algorithms+for+the+Prediction+of+Baltic+Dry+Index&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Xin&rft.au=Xue%2C+Tianyuan&rft.au=Eugene+Stanley%2C+H.&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=1647&rft.epage=1657&rft_id=info:doi/10.1109%2FACCESS.2018.2884877&rft.externalDocID=8571322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |