Predicting Stroke Risk With an Interpretable Classifier
Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting m...
        Saved in:
      
    
          | Published in | IEEE access Vol. 9; pp. 1154 - 1166 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2020.3047195 | 
Cover
| Abstract | Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting medical data about their own population with the purpose of using artificial intelligence methods for making those predictions. The most accurate ones are based on so called black-box methods which give little or no information about why they make a certain prediction. However, in the medical field the explanations are sometimes more important than the accuracy since they allow specialists to gain insight about the factors that influence the risk level. It is also frequent to find medical information records with some missing data. In this work, we present the development of a prediction method which not only outperforms some other existing ones but it also gives information about the most probable causes of a high stroke risk and can deal with incomplete data records. It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups by law. This article presents experiments comparing the results of the Dempster-Shafer method with the ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data. It also presents an analysis of the interpretation of rules produced by the method for doing the classification. The rules were validated by both medical literature and human specialists. | 
    
|---|---|
| AbstractList | Predicting an individual’s risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting medical data about their own population with the purpose of using artificial intelligence methods for making those predictions. The most accurate ones are based on so called black-box methods which give little or no information about why they make a certain prediction. However, in the medical field the explanations are sometimes more important than the accuracy since they allow specialists to gain insight about the factors that influence the risk level. It is also frequent to find medical information records with some missing data. In this work, we present the development of a prediction method which not only outperforms some other existing ones but it also gives information about the most probable causes of a high stroke risk and can deal with incomplete data records. It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups by law. This article presents experiments comparing the results of the Dempster-Shafer method with the ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data. It also presents an analysis of the interpretation of rules produced by the method for doing the classification. The rules were validated by both medical literature and human specialists. | 
    
| Author | Penafiel, Sergio Sanson, Horacio Baloian, Nelson Pino, Jose A.  | 
    
| Author_xml | – sequence: 1 givenname: Sergio orcidid: 0000-0002-0025-7805 surname: Penafiel fullname: Penafiel, Sergio email: spenafie@dcc.uchile.cl organization: Department of Computer Science, Universidad de Chile, Santiago, Chile – sequence: 2 givenname: Nelson surname: Baloian fullname: Baloian, Nelson organization: Department of Computer Science, Universidad de Chile, Santiago, Chile – sequence: 3 givenname: Horacio surname: Sanson fullname: Sanson, Horacio organization: Allm Inc., Tokyo, Japan – sequence: 4 givenname: Jose A. orcidid: 0000-0002-5835-988X surname: Pino fullname: Pino, Jose A. organization: Department of Computer Science, Universidad de Chile, Santiago, Chile  | 
    
| BookMark | eNqFkV1LHDEUhoNY0Fp_gTcDvd5tviYflzJoXRBaui29DGeTM5p1OlmTLOK_d-yIiL1obhIO53ly8uYjORzTiIScMbpkjNov5113sV4vOeV0KajUzLYH5JgzZReiFerwzfmInJaypdMyU6nVx0R_zxiir3G8adY1pztsfsRy1_yO9baBsVmNFfMuY4XNgE03QCmxj5g_kQ89DAVPX_YT8uvy4md3tbj-9nXVnV8vvKSmLiTDVmw8VQDKT2NQOY3MvPat0UC54htvbL8JQjBuQt9ya4UMQakgwWsjxQlZzd6QYOt2Of6B_OgSRPe3kPKNg1yjH9BphaitV9QoLaEP4ANH06ugvUGj_OSSs2s_7uDxAYbhVcioe87SgfdYinvO0r1kOWGfZ2yX0_0eS3XbtM_j9GrHpW5ta7XVU5eYu3xOpWTs_3HP__Tebd9RPlaoMY01Qxz-w57NbETE19usoMpwJZ4AsSCfhA | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1109_JBHI_2021_3123657 crossref_primary_10_1142_S0219649222500794 crossref_primary_10_1016_j_jneumeth_2024_110210 crossref_primary_10_4108_eetsis_7022 crossref_primary_10_1109_ACCESS_2024_3406748 crossref_primary_10_1007_s00530_022_00960_4 crossref_primary_10_1007_s10462_022_10304_3 crossref_primary_10_3389_fnins_2023_1118376 crossref_primary_10_1002_hsr2_70062 crossref_primary_10_1155_2022_8167821  | 
    
| Cites_doi | 10.2471/BLT.16.181636 10.1002/humu.22161 10.1016/j.atherosclerosis.2017.08.032 10.1016/j.eswa.2020.113262 10.1212/WNL.48.4.891 10.1109/CBMS.2013.6627810 10.1161/01.STR.29.1.126 10.1023/A:1007465528199 10.1109/JBHI.2017.2767063 10.1001/archinte.167.13.1420 10.1038/323533a0 10.2486/indhealth.46.223 10.1161/01.STR.13.3.290 10.1161/STROKEAHA.111.675918 10.1161/CIR.0000000000000659 10.1161/01.STR.22.2.155 10.1016/j.cmpb.2017.10.007 10.1001/jama.285.22.2864 10.1371/journal.pone.0174944 10.1111/j.1749-6632.2000.tb06501.x 10.1186/s12911-018-0702-y 10.1214/15-AOAS848 10.1145/2939672.2939778 10.1093/oxfordjournals.aje.a008892 10.1001/jama.1987.03390070069025 10.1007/978-3-7091-2668-4_10 10.1162/neco.1997.9.8.1735 10.1016/S0304-3800(02)00064-9 10.2337/diacare.22.7.1077 10.1016/j.ijar.2015.12.009 10.1515/9780691214696 10.1016/j.jacc.2003.08.061  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2020.3047195 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 1166 | 
    
| ExternalDocumentID | oai_doaj_org_article_76ee79c608674afdacd2e8f6d7c8e86c 10.1109/access.2020.3047195 10_1109_ACCESS_2020_3047195 9306826  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Conicyt (Chile) Master Scholarship grantid: 22180506 funderid: 10.13039/501100008736  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-41e53bc06aa6c216041101c7c587a0262bc89fbd33128df529934dd66d4ac7843 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:53:06 EDT 2025 Tue Aug 19 17:08:19 EDT 2025 Mon Jun 30 06:29:24 EDT 2025 Wed Oct 01 04:43:45 EDT 2025 Thu Apr 24 23:44:01 EDT 2025 Wed Aug 27 06:01:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-41e53bc06aa6c216041101c7c587a0262bc89fbd33128df529934dd66d4ac7843 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5835-988X 0000-0002-0025-7805  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9306826 | 
    
| PQID | 2475959797 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | ieee_primary_9306826 doaj_primary_oai_doaj_org_article_76ee79c608674afdacd2e8f6d7c8e86c crossref_citationtrail_10_1109_ACCESS_2020_3047195 unpaywall_primary_10_1109_access_2020_3047195 proquest_journals_2475959797 crossref_primary_10_1109_ACCESS_2020_3047195  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref39 ref16 ref19 ref18 farinde (ref25) 2019 rumelhart (ref17) 1986; 323 (ref4) 2014 shafer (ref22) 1976; 1 d’erasmo (ref33) 1993; 24 ref23 ref20 (ref24) 2001 peñafiel (ref10) 2020; 148 ref41 ref21 doshi-velez (ref8) 2017 (ref1) 2018 ref28 ref29 ref7 ref3 breiman (ref27) 1984 ref6 ref5 gotto (ref38) 2004; 43 kingma (ref26) 2014 ref40 benjamin (ref2) 2019; 139 penafiel (ref9) 2018  | 
    
| References_xml | – year: 2014 ident: ref26 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref3 doi: 10.2471/BLT.16.181636 – ident: ref16 doi: 10.1002/humu.22161 – ident: ref39 doi: 10.1016/j.atherosclerosis.2017.08.032 – volume: 148 year: 2020 ident: ref10 article-title: Applying dempster-shafer theory for developing a flexible, accurate and interpretable classifier publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113262 – ident: ref29 doi: 10.1212/WNL.48.4.891 – ident: ref5 doi: 10.1109/CBMS.2013.6627810 – year: 2019 ident: ref25 article-title: Lab values, normal adult: Laboratory reference ranges in healthy adults – ident: ref32 doi: 10.1161/01.STR.29.1.126 – ident: ref18 doi: 10.1023/A:1007465528199 – ident: ref21 doi: 10.1109/JBHI.2017.2767063 – ident: ref40 doi: 10.1001/archinte.167.13.1420 – volume: 323 start-page: 533 year: 1986 ident: ref17 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref6 doi: 10.2486/indhealth.46.223 – ident: ref30 doi: 10.1161/01.STR.13.3.290 – ident: ref34 doi: 10.1161/STROKEAHA.111.675918 – volume: 139 start-page: 56e year: 2019 ident: ref2 article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000659 – ident: ref31 doi: 10.1161/01.STR.22.2.155 – year: 1984 ident: ref27 publication-title: Classification Regression Trees – year: 2017 ident: ref8 article-title: Towards a rigorous science of interpretable machine learning publication-title: arXiv 1702 08608 – ident: ref7 doi: 10.1016/j.cmpb.2017.10.007 – ident: ref11 doi: 10.1001/jama.285.22.2864 – ident: ref15 doi: 10.1371/journal.pone.0174944 – year: 2014 ident: ref4 publication-title: Noncommunicable Diseases Country Profiles 2014 – ident: ref41 doi: 10.1111/j.1749-6632.2000.tb06501.x – ident: ref13 doi: 10.1186/s12911-018-0702-y – ident: ref12 doi: 10.1214/15-AOAS848 – ident: ref28 doi: 10.1145/2939672.2939778 – start-page: 239 year: 2018 ident: ref9 article-title: Associating risks of getting strokes with data from health checkup records using dempster-shafer theory publication-title: Proc 20th Int Conf Adv Commun Technol (ICACT) – volume: 24 start-page: 185 year: 1993 ident: ref33 article-title: Plasma fibrinogen and platelet count in stroke publication-title: J Med – year: 2018 ident: ref1 publication-title: Global Health Estimates 2016 Deaths by Cause Age Sex by Country and by Region 2000-2016 – ident: ref36 doi: 10.1093/oxfordjournals.aje.a008892 – ident: ref35 doi: 10.1001/jama.1987.03390070069025 – ident: ref20 doi: 10.1007/978-3-7091-2668-4_10 – year: 2001 ident: ref24 publication-title: International classification of functioning disability and health ICF – ident: ref14 doi: 10.1162/neco.1997.9.8.1735 – ident: ref19 doi: 10.1016/S0304-3800(02)00064-9 – ident: ref37 doi: 10.2337/diacare.22.7.1077 – ident: ref23 doi: 10.1016/j.ijar.2015.12.009 – volume: 1 year: 1976 ident: ref22 publication-title: A Mathematical Theory of Evidence doi: 10.1515/9780691214696 – volume: 43 start-page: 717 year: 2004 ident: ref38 article-title: Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: A working group report and update publication-title: J Amer College Cardiol doi: 10.1016/j.jacc.2003.08.061  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.3369007 | 
    
| Snippet | Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong... Predicting an individual’s risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong...  | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1154 | 
    
| SubjectTerms | Artificial intelligence Bayes methods Computational modeling Data models Dempster-Shafer Method Dempster-Shafer theory expert systems interpretable classification Machine learning Medical diagnostic imaging Missing data Multilayer perceptrons Predictive models Risk levels Stroke Stroke (medical condition) Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3oQnxitkoNHQ_PY7OOoRRFBER_Y27JPLC2xtBHx3zubpDFF0IvXsAmzs5Od-TaT70PoNKMKS4Vd5ADqRDhPXMQ4AFd_AKkU8Y0K_n_n2zty_YxvhvmwI_Xle8JqeuDacX1KrKVcEyi9KZbOSG1SyxwxVDPLiPa7b8x4B0xVezBLCM9pQzOUxLx_PhjAjAAQpoBTY9iSvaJEJxVVjP2NxMpStbn2Xkzl54ecTDqJ52oLbTYVY3heW7qNVmyxgzY6PIK7iN7P_PcW38EcPpazt7ENH0bzcfgyKl9DWYTfnYVqYsNKB3PkIB_uoeery6fBddQoIkQax6yMcGLzTOmYSEl0mpAYw9wSTXXOqAQ0lSrNuFMmyyDtGJdDrsmwMYQYLDVlONtHq8VbYQ9QaGwmLc4IYYxjkzvJnSXKpgbwoAKME6B04RyhG7pwr1oxERVsiLmoPSq8R0Xj0QCdtTdNa7aM34dfeK-3Qz3VdXUBAkA0ASD-CoAA7fo1ax_CAQQBZgpQb7GGonkt5yL17IYAoTgNUNSu6w9TZaVVuWTq4X-YeoTWU98SU53g9NBqOXu3x1DTlOqkCt8vmG_v7g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BekAcKFBQXQrygSNO_Fjv45hGVBUSVQVElNNqH7MiiuVGqSPa_npmnU1IQUKCm2WtrfHMrGe-3dlvCHlbcUO1oT7zCHUyWhc-ExKBa1iANIaFQoVw3vnjOTub0g-X9WVccOvPwgBAX3wGw3DZ7-XPoLnhI1YG8jQ5klVRYlgcIRTPGSbHw4XzD8keqzEXH5C96fnF-FvoKFcwmVX93uSrSKw50n0PQgSFJWLVHH_LoavETjjqWftjm5V7GeejVbvQtz900-wEn9N9ojZir2tO5sNVZ4b27jdGx___rqfkScxL0_HakZ6RB9A-J4932AoPCL9Yhl2dUCedfu6WV3NIP82u5-nXWfc91W36q37RNJD23TZnHqPuCzI9ff9lcpbFvguZpbnoMlpAXRmbM62ZRT3mFLVXWG5rwTVittJYIb1xFUosnK8xolXUOcYc1ZYLWr0kg_aqhUOSOqg00IoxISR1tdfSAzNQOkSdBpFUQsqN-pWNpOShN0ajenCSSzWeTNATVbCZijZLyLvtQ4s1J8ffh58Eu26HBkLt_gbaQMX5qTgD4NIyRHicau-0dSUIzxy3AgSzCTkIdtu-JBopIccbL1Fx8l-rMnAoIlCTPCHZ1nP-EHXtjfdEPfrH8cdk0C1X8Brzos68ic7_E1R5BhI priority: 102 providerName: Unpaywall  | 
    
| Title | Predicting Stroke Risk With an Interpretable Classifier | 
    
| URI | https://ieeexplore.ieee.org/document/9306826 https://www.proquest.com/docview/2475959797 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306826.pdf https://doaj.org/article/76ee79c608674afdacd2e8f6d7c8e86c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAceBVEoKxy4Nhs83D8OC4rqgqpVQWsKKfIT3W1q2y1zQrBr2fseMMWEOIWRU5ie8aZ-cbjbwDeVkwRqYjLHEKdjNSFy7hA4OoDkEpRn6jgzzufX9CzGflwVV_twfFwFsZaG5LP7Nhfhr18s9IbHyo7Eejfoju8D_uM0_6s1hBP8QUkRM0isVCRi5PJdIpjQAhYIjLN8Sfsa0jsGJ_A0R-LqtzxL-9v2hv5_ZtcLndMzeljON92ss8wWYw3nRrrH7_xN_7vKJ7Ao-hzppNeSZ7Cnm2fwcMdJsJDYJdrv2Pjc6DTT916tbDpx_ntIv0y765T2aa_chPV0qahkubcoUV9DrPT95-nZ1msqZBpkvMuI4WtK6VzKiXVZUFzgnNVaKZrziTisVJpLpwyVYWGy7garVVFjKHUEKkZJ9ULOGhXrX0JqbGVtKSilHNBTO2kcJYqWxpElApRUgLldrIbHQnHfd2LZROARy6aXkKNl1ATJZTA8fDQTc-38e_m77wUh6aeLDvcwBlv4tprGLWWCU0RvTEinZHalJY7apjmllOdwKGX0vCSKKAEjrY60cSFfduUnh8RQZhgCWSDnvzRVRmqXd7p6qu_f-U1PCh9mkyI6hzBQbfe2Dfo53RqFOIDo6DmI7g3u7icfP0Jyqv6lQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcigceBWEoYAPHOvUj30eS0QVoKkQtKK31T5FlMipUkcIfj2ztmNSQIibZa3t3Z1Zz3yzs98AvK64IdqQkAWEOhmhRciEROAaA5DGsJioEM87T8_Y5IK8v6SXO3A4nIXx3rfJZ34UL9u9fLe06xgqO5Lo36I7fAtuU0II7U5rDRGVWEJCUt5TCxW5PDoej3EUCAJLxKY5_oZjFYkt89Oy9PdlVW54mHvr-kp__6YXiy1jc3Ifpptudjkm89G6MSP74zcGx_8dxwO413ud6XGnJg9hx9eP4O4WF-E-8I-ruGcTs6DTz81qOffpp9n1PP0ya76muk5_ZSeahU_bWpqzgDb1MVycvD0fT7K-qkJmSS6ajBSeVsbmTGtmy4LlBOeqsNxSwTUistJYIYNxVYWmywWK9qoizjHmiLZckOoJ7NbL2j-F1PlKe1IxJoQkjgYtg2fGlw4xpUGclEC5mWxle8rxWPlioVrokUvVSUhFCaleQgkcDg9ddYwb_27-JkpxaBrpstsbOOOqX32KM--5tAzxGyc6OG1d6UVgjlvhBbMJ7EcpDS_pBZTAwUYnVL-0r1UZGRIRhkmeQDboyR9d1W29yxtdffb3r7yCvcn59FSdvjv78BzulDFppo3xHMBus1r7F-j1NOZlq-w_AUqe-z0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BekAcKFBQXQrygSNO_Fjv45hGVBUSVQVElNNqH7MiiuVGqSPa_npmnU1IQUKCm2WtrfHMrGe-3dlvCHlbcUO1oT7zCHUyWhc-ExKBa1iANIaFQoVw3vnjOTub0g-X9WVccOvPwgBAX3wGw3DZ7-XPoLnhI1YG8jQ5klVRYlgcIRTPGSbHw4XzD8keqzEXH5C96fnF-FvoKFcwmVX93uSrSKw50n0PQgSFJWLVHH_LoavETjjqWftjm5V7GeejVbvQtz900-wEn9N9ojZir2tO5sNVZ4b27jdGx___rqfkScxL0_HakZ6RB9A-J4932AoPCL9Yhl2dUCedfu6WV3NIP82u5-nXWfc91W36q37RNJD23TZnHqPuCzI9ff9lcpbFvguZpbnoMlpAXRmbM62ZRT3mFLVXWG5rwTVittJYIb1xFUosnK8xolXUOcYc1ZYLWr0kg_aqhUOSOqg00IoxISR1tdfSAzNQOkSdBpFUQsqN-pWNpOShN0ajenCSSzWeTNATVbCZijZLyLvtQ4s1J8ffh58Eu26HBkLt_gbaQMX5qTgD4NIyRHicau-0dSUIzxy3AgSzCTkIdtu-JBopIccbL1Fx8l-rMnAoIlCTPCHZ1nP-EHXtjfdEPfrH8cdk0C1X8Brzos68ic7_E1R5BhI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Stroke+Risk+With+an+Interpretable+Classifier&rft.jtitle=IEEE+access&rft.au=Penafiel%2C+Sergio&rft.au=Baloian%2C+Nelson&rft.au=Sanson%2C+Horacio&rft.au=Pino%2C+Jose+A.&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=1154&rft.epage=1166&rft_id=info:doi/10.1109%2FACCESS.2020.3047195&rft.externalDocID=9306826 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |