Predicting Stroke Risk With an Interpretable Classifier

Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting m...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 1154 - 1166
Main Authors Penafiel, Sergio, Baloian, Nelson, Sanson, Horacio, Pino, Jose A.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3047195

Cover

Abstract Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting medical data about their own population with the purpose of using artificial intelligence methods for making those predictions. The most accurate ones are based on so called black-box methods which give little or no information about why they make a certain prediction. However, in the medical field the explanations are sometimes more important than the accuracy since they allow specialists to gain insight about the factors that influence the risk level. It is also frequent to find medical information records with some missing data. In this work, we present the development of a prediction method which not only outperforms some other existing ones but it also gives information about the most probable causes of a high stroke risk and can deal with incomplete data records. It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups by law. This article presents experiments comparing the results of the Dempster-Shafer method with the ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data. It also presents an analysis of the interpretation of rules produced by the method for doing the classification. The rules were validated by both medical literature and human specialists.
AbstractList Predicting an individual’s risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong evidence that early awareness of having that risk can be beneficial for prevention and treatment. Many Governments have been collecting medical data about their own population with the purpose of using artificial intelligence methods for making those predictions. The most accurate ones are based on so called black-box methods which give little or no information about why they make a certain prediction. However, in the medical field the explanations are sometimes more important than the accuracy since they allow specialists to gain insight about the factors that influence the risk level. It is also frequent to find medical information records with some missing data. In this work, we present the development of a prediction method which not only outperforms some other existing ones but it also gives information about the most probable causes of a high stroke risk and can deal with incomplete data records. It is based on the Dempster-Shafer theory of plausibility. For the testing we used data provided by the regional hospital in Okayama, Japan, a country in which people are compelled to undergo annual health checkups by law. This article presents experiments comparing the results of the Dempster-Shafer method with the ones obtained using other well-known machine learning methods like Multilayer perceptron, Support Vector Machines and Naive Bayes. Our approach performed the best in these experiments with some missing data. It also presents an analysis of the interpretation of rules produced by the method for doing the classification. The rules were validated by both medical literature and human specialists.
Author Penafiel, Sergio
Sanson, Horacio
Baloian, Nelson
Pino, Jose A.
Author_xml – sequence: 1
  givenname: Sergio
  orcidid: 0000-0002-0025-7805
  surname: Penafiel
  fullname: Penafiel, Sergio
  email: spenafie@dcc.uchile.cl
  organization: Department of Computer Science, Universidad de Chile, Santiago, Chile
– sequence: 2
  givenname: Nelson
  surname: Baloian
  fullname: Baloian, Nelson
  organization: Department of Computer Science, Universidad de Chile, Santiago, Chile
– sequence: 3
  givenname: Horacio
  surname: Sanson
  fullname: Sanson, Horacio
  organization: Allm Inc., Tokyo, Japan
– sequence: 4
  givenname: Jose A.
  orcidid: 0000-0002-5835-988X
  surname: Pino
  fullname: Pino, Jose A.
  organization: Department of Computer Science, Universidad de Chile, Santiago, Chile
BookMark eNqFkV1LHDEUhoNY0Fp_gTcDvd5tviYflzJoXRBaui29DGeTM5p1OlmTLOK_d-yIiL1obhIO53ly8uYjORzTiIScMbpkjNov5113sV4vOeV0KajUzLYH5JgzZReiFerwzfmInJaypdMyU6nVx0R_zxiir3G8adY1pztsfsRy1_yO9baBsVmNFfMuY4XNgE03QCmxj5g_kQ89DAVPX_YT8uvy4md3tbj-9nXVnV8vvKSmLiTDVmw8VQDKT2NQOY3MvPat0UC54htvbL8JQjBuQt9ya4UMQakgwWsjxQlZzd6QYOt2Of6B_OgSRPe3kPKNg1yjH9BphaitV9QoLaEP4ANH06ugvUGj_OSSs2s_7uDxAYbhVcioe87SgfdYinvO0r1kOWGfZ2yX0_0eS3XbtM_j9GrHpW5ta7XVU5eYu3xOpWTs_3HP__Tebd9RPlaoMY01Qxz-w57NbETE19usoMpwJZ4AsSCfhA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JBHI_2021_3123657
crossref_primary_10_1142_S0219649222500794
crossref_primary_10_1016_j_jneumeth_2024_110210
crossref_primary_10_4108_eetsis_7022
crossref_primary_10_1109_ACCESS_2024_3406748
crossref_primary_10_1007_s00530_022_00960_4
crossref_primary_10_1007_s10462_022_10304_3
crossref_primary_10_3389_fnins_2023_1118376
crossref_primary_10_1002_hsr2_70062
crossref_primary_10_1155_2022_8167821
Cites_doi 10.2471/BLT.16.181636
10.1002/humu.22161
10.1016/j.atherosclerosis.2017.08.032
10.1016/j.eswa.2020.113262
10.1212/WNL.48.4.891
10.1109/CBMS.2013.6627810
10.1161/01.STR.29.1.126
10.1023/A:1007465528199
10.1109/JBHI.2017.2767063
10.1001/archinte.167.13.1420
10.1038/323533a0
10.2486/indhealth.46.223
10.1161/01.STR.13.3.290
10.1161/STROKEAHA.111.675918
10.1161/CIR.0000000000000659
10.1161/01.STR.22.2.155
10.1016/j.cmpb.2017.10.007
10.1001/jama.285.22.2864
10.1371/journal.pone.0174944
10.1111/j.1749-6632.2000.tb06501.x
10.1186/s12911-018-0702-y
10.1214/15-AOAS848
10.1145/2939672.2939778
10.1093/oxfordjournals.aje.a008892
10.1001/jama.1987.03390070069025
10.1007/978-3-7091-2668-4_10
10.1162/neco.1997.9.8.1735
10.1016/S0304-3800(02)00064-9
10.2337/diacare.22.7.1077
10.1016/j.ijar.2015.12.009
10.1515/9780691214696
10.1016/j.jacc.2003.08.061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2020.3047195
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1166
ExternalDocumentID oai_doaj_org_article_76ee79c608674afdacd2e8f6d7c8e86c
10.1109/access.2020.3047195
10_1109_ACCESS_2020_3047195
9306826
Genre orig-research
GrantInformation_xml – fundername: Conicyt (Chile) Master Scholarship
  grantid: 22180506
  funderid: 10.13039/501100008736
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-41e53bc06aa6c216041101c7c587a0262bc89fbd33128df529934dd66d4ac7843
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:06 EDT 2025
Tue Aug 19 17:08:19 EDT 2025
Mon Jun 30 06:29:24 EDT 2025
Wed Oct 01 04:43:45 EDT 2025
Thu Apr 24 23:44:01 EDT 2025
Wed Aug 27 06:01:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-41e53bc06aa6c216041101c7c587a0262bc89fbd33128df529934dd66d4ac7843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5835-988X
0000-0002-0025-7805
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9306826
PQID 2475959797
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_9306826
doaj_primary_oai_doaj_org_article_76ee79c608674afdacd2e8f6d7c8e86c
crossref_citationtrail_10_1109_ACCESS_2020_3047195
unpaywall_primary_10_1109_access_2020_3047195
proquest_journals_2475959797
crossref_primary_10_1109_ACCESS_2020_3047195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref39
ref16
ref19
ref18
farinde (ref25) 2019
rumelhart (ref17) 1986; 323
(ref4) 2014
shafer (ref22) 1976; 1
d’erasmo (ref33) 1993; 24
ref23
ref20
(ref24) 2001
peñafiel (ref10) 2020; 148
ref41
ref21
doshi-velez (ref8) 2017
(ref1) 2018
ref28
ref29
ref7
ref3
breiman (ref27) 1984
ref6
ref5
gotto (ref38) 2004; 43
kingma (ref26) 2014
ref40
benjamin (ref2) 2019; 139
penafiel (ref9) 2018
References_xml – year: 2014
  ident: ref26
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref3
  doi: 10.2471/BLT.16.181636
– ident: ref16
  doi: 10.1002/humu.22161
– ident: ref39
  doi: 10.1016/j.atherosclerosis.2017.08.032
– volume: 148
  year: 2020
  ident: ref10
  article-title: Applying dempster-shafer theory for developing a flexible, accurate and interpretable classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113262
– ident: ref29
  doi: 10.1212/WNL.48.4.891
– ident: ref5
  doi: 10.1109/CBMS.2013.6627810
– year: 2019
  ident: ref25
  article-title: Lab values, normal adult: Laboratory reference ranges in healthy adults
– ident: ref32
  doi: 10.1161/01.STR.29.1.126
– ident: ref18
  doi: 10.1023/A:1007465528199
– ident: ref21
  doi: 10.1109/JBHI.2017.2767063
– ident: ref40
  doi: 10.1001/archinte.167.13.1420
– volume: 323
  start-page: 533
  year: 1986
  ident: ref17
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref6
  doi: 10.2486/indhealth.46.223
– ident: ref30
  doi: 10.1161/01.STR.13.3.290
– ident: ref34
  doi: 10.1161/STROKEAHA.111.675918
– volume: 139
  start-page: 56e
  year: 2019
  ident: ref2
  article-title: Heart disease and stroke statistics-2019 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– ident: ref31
  doi: 10.1161/01.STR.22.2.155
– year: 1984
  ident: ref27
  publication-title: Classification Regression Trees
– year: 2017
  ident: ref8
  article-title: Towards a rigorous science of interpretable machine learning
  publication-title: arXiv 1702 08608
– ident: ref7
  doi: 10.1016/j.cmpb.2017.10.007
– ident: ref11
  doi: 10.1001/jama.285.22.2864
– ident: ref15
  doi: 10.1371/journal.pone.0174944
– year: 2014
  ident: ref4
  publication-title: Noncommunicable Diseases Country Profiles 2014
– ident: ref41
  doi: 10.1111/j.1749-6632.2000.tb06501.x
– ident: ref13
  doi: 10.1186/s12911-018-0702-y
– ident: ref12
  doi: 10.1214/15-AOAS848
– ident: ref28
  doi: 10.1145/2939672.2939778
– start-page: 239
  year: 2018
  ident: ref9
  article-title: Associating risks of getting strokes with data from health checkup records using dempster-shafer theory
  publication-title: Proc 20th Int Conf Adv Commun Technol (ICACT)
– volume: 24
  start-page: 185
  year: 1993
  ident: ref33
  article-title: Plasma fibrinogen and platelet count in stroke
  publication-title: J Med
– year: 2018
  ident: ref1
  publication-title: Global Health Estimates 2016 Deaths by Cause Age Sex by Country and by Region 2000-2016
– ident: ref36
  doi: 10.1093/oxfordjournals.aje.a008892
– ident: ref35
  doi: 10.1001/jama.1987.03390070069025
– ident: ref20
  doi: 10.1007/978-3-7091-2668-4_10
– year: 2001
  ident: ref24
  publication-title: International classification of functioning disability and health ICF
– ident: ref14
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref19
  doi: 10.1016/S0304-3800(02)00064-9
– ident: ref37
  doi: 10.2337/diacare.22.7.1077
– ident: ref23
  doi: 10.1016/j.ijar.2015.12.009
– volume: 1
  year: 1976
  ident: ref22
  publication-title: A Mathematical Theory of Evidence
  doi: 10.1515/9780691214696
– volume: 43
  start-page: 717
  year: 2004
  ident: ref38
  article-title: Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: A working group report and update
  publication-title: J Amer College Cardiol
  doi: 10.1016/j.jacc.2003.08.061
SSID ssj0000816957
Score 2.3369007
Snippet Predicting an individual's risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong...
Predicting an individual’s risk of getting a stroke has been a research subject for many authors worldwide since it is a frequent illness and there is strong...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1154
SubjectTerms Artificial intelligence
Bayes methods
Computational modeling
Data models
Dempster-Shafer Method
Dempster-Shafer theory
expert systems
interpretable classification
Machine learning
Medical diagnostic imaging
Missing data
Multilayer perceptrons
Predictive models
Risk levels
Stroke
Stroke (medical condition)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3oQnxitkoNHQ_PY7OOoRRFBER_Y27JPLC2xtBHx3zubpDFF0IvXsAmzs5Od-TaT70PoNKMKS4Vd5ADqRDhPXMQ4AFd_AKkU8Y0K_n_n2zty_YxvhvmwI_Xle8JqeuDacX1KrKVcEyi9KZbOSG1SyxwxVDPLiPa7b8x4B0xVezBLCM9pQzOUxLx_PhjAjAAQpoBTY9iSvaJEJxVVjP2NxMpStbn2Xkzl54ecTDqJ52oLbTYVY3heW7qNVmyxgzY6PIK7iN7P_PcW38EcPpazt7ENH0bzcfgyKl9DWYTfnYVqYsNKB3PkIB_uoeery6fBddQoIkQax6yMcGLzTOmYSEl0mpAYw9wSTXXOqAQ0lSrNuFMmyyDtGJdDrsmwMYQYLDVlONtHq8VbYQ9QaGwmLc4IYYxjkzvJnSXKpgbwoAKME6B04RyhG7pwr1oxERVsiLmoPSq8R0Xj0QCdtTdNa7aM34dfeK-3Qz3VdXUBAkA0ASD-CoAA7fo1ax_CAQQBZgpQb7GGonkt5yL17IYAoTgNUNSu6w9TZaVVuWTq4X-YeoTWU98SU53g9NBqOXu3x1DTlOqkCt8vmG_v7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BekAcKFBQXQrygSNO_Fjv45hGVBUSVQVElNNqH7MiiuVGqSPa_npmnU1IQUKCm2WtrfHMrGe-3dlvCHlbcUO1oT7zCHUyWhc-ExKBa1iANIaFQoVw3vnjOTub0g-X9WVccOvPwgBAX3wGw3DZ7-XPoLnhI1YG8jQ5klVRYlgcIRTPGSbHw4XzD8keqzEXH5C96fnF-FvoKFcwmVX93uSrSKw50n0PQgSFJWLVHH_LoavETjjqWftjm5V7GeejVbvQtz900-wEn9N9ojZir2tO5sNVZ4b27jdGx___rqfkScxL0_HakZ6RB9A-J4932AoPCL9Yhl2dUCedfu6WV3NIP82u5-nXWfc91W36q37RNJD23TZnHqPuCzI9ff9lcpbFvguZpbnoMlpAXRmbM62ZRT3mFLVXWG5rwTVittJYIb1xFUosnK8xolXUOcYc1ZYLWr0kg_aqhUOSOqg00IoxISR1tdfSAzNQOkSdBpFUQsqN-pWNpOShN0ajenCSSzWeTNATVbCZijZLyLvtQ4s1J8ffh58Eu26HBkLt_gbaQMX5qTgD4NIyRHicau-0dSUIzxy3AgSzCTkIdtu-JBopIccbL1Fx8l-rMnAoIlCTPCHZ1nP-EHXtjfdEPfrH8cdk0C1X8Brzos68ic7_E1R5BhI
  priority: 102
  providerName: Unpaywall
Title Predicting Stroke Risk With an Interpretable Classifier
URI https://ieeexplore.ieee.org/document/9306826
https://www.proquest.com/docview/2475959797
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09306826.pdf
https://doaj.org/article/76ee79c608674afdacd2e8f6d7c8e86c
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAceBVEoKxy4Nhs83D8OC4rqgqpVQWsKKfIT3W1q2y1zQrBr2fseMMWEOIWRU5ie8aZ-cbjbwDeVkwRqYjLHEKdjNSFy7hA4OoDkEpRn6jgzzufX9CzGflwVV_twfFwFsZaG5LP7Nhfhr18s9IbHyo7Eejfoju8D_uM0_6s1hBP8QUkRM0isVCRi5PJdIpjQAhYIjLN8Sfsa0jsGJ_A0R-LqtzxL-9v2hv5_ZtcLndMzeljON92ss8wWYw3nRrrH7_xN_7vKJ7Ao-hzppNeSZ7Cnm2fwcMdJsJDYJdrv2Pjc6DTT916tbDpx_ntIv0y765T2aa_chPV0qahkubcoUV9DrPT95-nZ1msqZBpkvMuI4WtK6VzKiXVZUFzgnNVaKZrziTisVJpLpwyVYWGy7garVVFjKHUEKkZJ9ULOGhXrX0JqbGVtKSilHNBTO2kcJYqWxpElApRUgLldrIbHQnHfd2LZROARy6aXkKNl1ATJZTA8fDQTc-38e_m77wUh6aeLDvcwBlv4tprGLWWCU0RvTEinZHalJY7apjmllOdwKGX0vCSKKAEjrY60cSFfduUnh8RQZhgCWSDnvzRVRmqXd7p6qu_f-U1PCh9mkyI6hzBQbfe2Dfo53RqFOIDo6DmI7g3u7icfP0Jyqv6lQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcigceBWEoYAPHOvUj30eS0QVoKkQtKK31T5FlMipUkcIfj2ztmNSQIibZa3t3Z1Zz3yzs98AvK64IdqQkAWEOhmhRciEROAaA5DGsJioEM87T8_Y5IK8v6SXO3A4nIXx3rfJZ34UL9u9fLe06xgqO5Lo36I7fAtuU0II7U5rDRGVWEJCUt5TCxW5PDoej3EUCAJLxKY5_oZjFYkt89Oy9PdlVW54mHvr-kp__6YXiy1jc3Ifpptudjkm89G6MSP74zcGx_8dxwO413ud6XGnJg9hx9eP4O4WF-E-8I-ruGcTs6DTz81qOffpp9n1PP0ya76muk5_ZSeahU_bWpqzgDb1MVycvD0fT7K-qkJmSS6ajBSeVsbmTGtmy4LlBOeqsNxSwTUistJYIYNxVYWmywWK9qoizjHmiLZckOoJ7NbL2j-F1PlKe1IxJoQkjgYtg2fGlw4xpUGclEC5mWxle8rxWPlioVrokUvVSUhFCaleQgkcDg9ddYwb_27-JkpxaBrpstsbOOOqX32KM--5tAzxGyc6OG1d6UVgjlvhBbMJ7EcpDS_pBZTAwUYnVL-0r1UZGRIRhkmeQDboyR9d1W29yxtdffb3r7yCvcn59FSdvjv78BzulDFppo3xHMBus1r7F-j1NOZlq-w_AUqe-z0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BekAcKFBQXQrygSNO_Fjv45hGVBUSVQVElNNqH7MiiuVGqSPa_npmnU1IQUKCm2WtrfHMrGe-3dlvCHlbcUO1oT7zCHUyWhc-ExKBa1iANIaFQoVw3vnjOTub0g-X9WVccOvPwgBAX3wGw3DZ7-XPoLnhI1YG8jQ5klVRYlgcIRTPGSbHw4XzD8keqzEXH5C96fnF-FvoKFcwmVX93uSrSKw50n0PQgSFJWLVHH_LoavETjjqWftjm5V7GeejVbvQtz900-wEn9N9ojZir2tO5sNVZ4b27jdGx___rqfkScxL0_HakZ6RB9A-J4932AoPCL9Yhl2dUCedfu6WV3NIP82u5-nXWfc91W36q37RNJD23TZnHqPuCzI9ff9lcpbFvguZpbnoMlpAXRmbM62ZRT3mFLVXWG5rwTVittJYIb1xFUosnK8xolXUOcYc1ZYLWr0kg_aqhUOSOqg00IoxISR1tdfSAzNQOkSdBpFUQsqN-pWNpOShN0ajenCSSzWeTNATVbCZijZLyLvtQ4s1J8ffh58Eu26HBkLt_gbaQMX5qTgD4NIyRHicau-0dSUIzxy3AgSzCTkIdtu-JBopIccbL1Fx8l-rMnAoIlCTPCHZ1nP-EHXtjfdEPfrH8cdk0C1X8Brzos68ic7_E1R5BhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Stroke+Risk+With+an+Interpretable+Classifier&rft.jtitle=IEEE+access&rft.au=Penafiel%2C+Sergio&rft.au=Baloian%2C+Nelson&rft.au=Sanson%2C+Horacio&rft.au=Pino%2C+Jose+A.&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=1154&rft.epage=1166&rft_id=info:doi/10.1109%2FACCESS.2020.3047195&rft.externalDocID=9306826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon