Groundwater contamination source identification using improved differential evolution Markov chain algorithm
The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due t...
        Saved in:
      
    
          | Published in | Environmental science and pollution research international Vol. 29; no. 13; pp. 19679 - 19692 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.03.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0944-1344 1614-7499 1614-7499  | 
| DOI | 10.1007/s11356-021-17120-2 | 
Cover
| Abstract | The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model’s complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter
F
of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources’ characteristics and simulation model’s parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms. | 
    
|---|---|
| AbstractList | The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms. The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms. The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model’s complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources’ characteristics and simulation model’s parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.  | 
    
| Author | Bai, Yukun Li, Jiuhui Lu, Wenxi Wang, Han Chang, Zhengbo  | 
    
| Author_xml | – sequence: 1 givenname: Yukun surname: Bai fullname: Bai, Yukun organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University – sequence: 2 givenname: Wenxi surname: Lu fullname: Lu, Wenxi email: luwx999@163.com organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University – sequence: 3 givenname: Jiuhui surname: Li fullname: Li, Jiuhui organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University – sequence: 4 givenname: Zhengbo surname: Chang fullname: Chang, Zhengbo organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University – sequence: 5 givenname: Han surname: Wang fullname: Wang, Han organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34718970$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9v1DAQxS1URLeFL8ABReLSS2D8J7F9RBW0SEVc4Gx5ncnWJbGL7WzFt8fdFJB6KHOxNPo9z8x7J-QoxICEvKbwjgLI95lS3vUtMNpSSRm07BnZ0J6KVgqtj8gGtBAt5UIck5OcbwAYaCZfkGMuJFVawoZMFykuYbizBVPjYih29sEWH0OT45IcNn7AUPzo3dpdsg-7xs-3Ke5xaAY_jpjuCTs1uI_TcqC-2PQj7ht3bX1o7LSLyZfr-SV5Ptop46uH95R8__Tx2_lle_X14vP5h6vWCVCl5XY7ILit7DtgSOWW6Z4qpFYNtaN64ZjmI46sG7iiOIKy4CRo7GWnHOX8lJyt_9Ylfy6Yi5l9djhNNmBcsmH1esaZBvg_2unqrFRMVfTtI_SmOhTqIYb1vJYG2lXqzQO1bGcczG3ys02_zB_LK8BWwKWYc8LxL0LB3Odq1lxNzdUccjWsitQjkfPlEEhJ1k9PS_kqzXVO2GH6t_YTqt-eaLde | 
    
| CitedBy_id | crossref_primary_10_1016_j_aej_2024_11_007 crossref_primary_10_1016_j_jenvman_2023_119555 crossref_primary_10_1016_j_jhydrol_2023_130258 crossref_primary_10_1016_j_jhydrol_2023_129965 crossref_primary_10_1016_j_jhydrol_2022_128854 crossref_primary_10_1186_s13104_023_06610_w crossref_primary_10_1007_s00477_024_02795_z crossref_primary_10_3390_w16131907 crossref_primary_10_1007_s11356_023_27574_1 crossref_primary_10_3390_w16162274 crossref_primary_10_1007_s11356_023_28091_x crossref_primary_10_1016_j_enceco_2025_02_012 crossref_primary_10_3390_w15203582  | 
    
| Cites_doi | 10.1007/s10661-012-2971-8 10.2166/hydro.2016.002 10.1016/j.jconhyd.2016.01.004 10.2307/3318737 10.1006/enfo.2001.0055 10.1016/j.jhydrol.2008.05.003 10.24200/sci.2019.21500 10.1029/2005wr004745 10.1007/978-3-540-89332-5 10.1029/1999wr900099 10.1007/b11442 10.1046/j.1365-246x.1999.00904.x 10.1007/s00477-012-0622-9 10.2307/3006914 10.1145/1143997.1144086 10.1029/2009wr008648 10.1007/s001800050022 10.1029/WR004i005p01069 10.4236/jep.2013.45A004 10.1093/biomet/57.1.97 10.1029/2002wr001642 10.1007/s11222-006-9438-0 10.1080/00221680409500042 10.1007/s10661-020-08691-7 10.1002/2016wr018598 10.1007/s10040-017-1690-1 10.1089/ees.2015.0055 10.1016/j.jhydrol.2020.125343 10.1016/j.advwatres.2007.05.013 10.1007/s11269-015-1078-8 10.1023/a:1020281327116 10.1016/s0169-7722(97)00088-0 10.1016/j.advwatres.2011.09.011 10.1002/9780470061336.ch8 10.1016/j.advwatres.2009.06.001 10.1016/j.jconhyd.2020.103681 10.1002/2014wr015740 10.1016/j.jhydrol.2009.07.014 10.1002/2013wr013755 10.1029/2011wr010608 10.1016/s0022-1694(01)00421-8 10.1007/s11270-019-4369-5 10.1007/s11222-008-9104-9 10.1007/s10040-020-02257-0 10.1016/j.jconhyd.2010.06.004 10.1109/tevc.2010.2059031 10.1061/(asce)0733-9496(2001)127:1(20)  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6  | 
    
| DOI | 10.1007/s11356-021-17120-2 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 1614-7499 | 
    
| EndPage | 19692 | 
    
| ExternalDocumentID | 34718970 10_1007_s11356_021_17120_2  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c408t-3abde0cb76502e17b29618e1a8d650864c293fef25d381ef08a0c709e6758c133 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0944-1344 1614-7499  | 
    
| IngestDate | Thu Oct 02 11:05:31 EDT 2025 Thu Sep 04 20:01:41 EDT 2025 Tue Oct 07 06:22:05 EDT 2025 Thu Apr 03 07:03:54 EDT 2025 Wed Oct 01 02:54:04 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Fri Feb 21 02:47:43 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | Groundwater contamination Differential evolution Kriging surrogate model Bayesian theory Kent mapping chaotic sequence Hybrid mutation  | 
    
| Language | English | 
    
| License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-3abde0cb76502e17b29618e1a8d650864c293fef25d381ef08a0c709e6758c133 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 34718970 | 
    
| PQID | 2633339015 | 
    
| PQPubID | 54208 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_2718232900 proquest_miscellaneous_2591207828 proquest_journals_2633339015 pubmed_primary_34718970 crossref_primary_10_1007_s11356_021_17120_2 crossref_citationtrail_10_1007_s11356_021_17120_2 springer_journals_10_1007_s11356_021_17120_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220300 2022-03-00 2022-Mar 20220301  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Environmental science and pollution research international | 
    
| PublicationTitleAbbrev | Environ Sci Pollut Res | 
    
| PublicationTitleAlternate | Environ Sci Pollut Res Int | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | WoodburyASudickyEUlrychTJLudwigRThree-dimensional plume source reconstruction using minimum relative entropy inversionJ Contam Hydrol1998321-21311581:CAS:528:DyaK1cXivF2kurw%3D10.1016/s0169-7722(97)00088-0 ChangZLuWWangHLiJLuoJSimultaneous identification of groundwater contaminant sources and simulation of model parameters based on an improved single-component adaptive Metropolis algorithmHydrogeol J20202928598731:CAS:528:DC%2BB3MXmtFSltrk%3D10.1007/s10040-020-02257-0 HouZLuWComparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sitesHydrogeol J201826392393210.1007/s10040-017-1690-1 GrandisHMenvielleMRoussignolMBayesian inversion with Markov chains—I. The magnetotelluric one-dimensional caseGeophys J Int1999138375776810.1046/j.1365-246x.1999.00904.x Chen Z, Zhou Q, Ieee (2011) Kent chaos mapping application in the digital fountain codes, 2011 30th Chinese Control Conference. Chinese Control Conference, pp 4371-4376. HaarioHSaksmanETamminenJAn adaptive Metropolis algorithmBernoulli20017222324210.2307/3318737 Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97. https://doi.org/10.1093/biomet/57.1.97 PinderGFBredehoeftJDApplication of the digital computer for aquifer evaluationWater Resour Res1968451069109310.1029/WR004i005p01069 PrakashODattaBSequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locationsEnviron Monit Assess201318575611562610.1007/s10661-012-2971-8 Schoups G, Vrugt JA, Fenicia F, de Giesen NCV (2010) Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models. Water Resour Res 46. https://doi.org/10.1029/2009wr008648 AtmadjaJBagtzoglouACState of the art report on mathematical methods for groundwater pollution source identificationEnviron Forensic2001232052141:CAS:528:DC%2BD38XitVGnsrg%3D10.1006/enfo.2001.0055 Han K et al (2020) Application of a genetic algorithm to groundwater pollution source identification. J Hydrol 589. https://doi.org/10.1016/j.jhydrol.2020.125343 KrzysztofowiczRBayesian theory of probabilistic forecasting via deterministic hydrologic modelWater Resour Res19993592739275010.1029/1999wr900099 WeiGChiZYuLLiuHZhouHSource identification of sudden contamination based on the parameter uncertainty analysisJ Hydroinf201618691992710.2166/hydro.2016.002 Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution source identification, water pollution. The Handbook of Environmental Chemistry, pp:65–96. https://doi.org/10.1007/b11442 BevenKFreerJEquifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodologyJ Hydrol20012491-4112910.1016/s0022-1694(01)00421-8 Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1). https://doi.org/10.1029/2005wr004745 ChakrabortyAPrakashOIdentification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimizationEnviron Monit Assess2020192127917911:CAS:528:DC%2BB3MXosVeku7c%3D10.1007/s10661-020-08691-7 ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol2016185-18651601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004 MirghaniBYMahinthakumarKGTrybyMERanjithanRSZechmanEMA parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problemsAdv Water Resour20093291373138510.1016/j.advwatres.2009.06.001 Zhang S, Qiang J, Liu H, Li Y (2020) Optimization design of groundwater pollution monitoring scheme and inverse identification of pollution source parameters using Bayes’ theorem. Water Air Soil Pollut 231(1). https://doi.org/10.1007/s11270-019-4369-5 Ter BraakCJFVrugtJADifferential evolution Markov chain with snooker updater and fewer chainsStat Comput200818443544610.1007/s11222-008-9104-9 AyvazMTA linked simulation-optimization model for solving the unknown groundwater pollution source identification problemsJ Contam Hydrol20101171-446591:CAS:528:DC%2BC3cXhtVyjurvK10.1016/j.jconhyd.2010.06.004 DattaBChakrabartyDDharASimultaneous identification of unknown groundwater pollution sources and estimation of aquifer parametersJ Hydrol20093761-248571:CAS:528:DC%2BD1MXhtFelsLfP10.1016/j.jhydrol.2009.07.014 SrivastavaDSinghRMGroundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterizationWater Resour Manag201529134607462710.1007/s11269-015-1078-8 HouZLuWChuHLuoJSelecting parameter-optimized surrogate models in DNAPL-contaminated aquifer remediation strategiesEnviron Eng Sci20153212101610261:CAS:528:DC%2BC2MXhvVOrtrfP10.1089/ees.2015.0055 Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing. Water Resour Res, 48. https://doi.org/10.1029/2011wr010608 ZhengCWangPPMT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guideAJR Am J Roentgenol1999169411961197 Mezura-Montes E, Velazquez-Reyes J, Coello CAC (2006) A comparative study of differential evolution variants for global optimization. Gecco 2006: Genetic and Evolutionary Computation Conference, Vol 1 and 2, 485-+ pp. https://doi.org/10.1145/1143997.1144086 AyvazMTKarahanHA simulation/optimization model for the identification of unknown groundwater well locations and pumping ratesJ Hydrol20083571-2769210.1016/j.jhydrol.2008.05.003 ZhangJZengLChenCChenDWuLEfficient Bayesian experimental design for contaminant source identificationWater Resour Res201551157659810.1002/2014wr015740 MilnesEPerrochetPSimultaneous identification of a single pollution point-source location and contamination time under known flow field conditionsAdv Water Resour200730122439244610.1016/j.advwatres.2007.05.013 AmirabdollahianMDattaBIdentification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overviewJ Environ Prot2013040526411:CAS:528:DC%2BC2cXlsVSisb4%3D10.4236/jep.2013.45A004 SerfozoRBasics of applied stochastic processes2009Springer, Berlin, Heidelberg, XIVProbability and its applications10.1007/978-3-540-89332-5443 pp WangHLuWLiJGroundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic methodJ Contam Hydrol20202341036811:CAS:528:DC%2BB3cXhsV2lsrrE10.1016/j.jconhyd.2020.103681 Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South Afr 52(6). https://doi.org/10.2307/3006914 MichalakAMKitanidisPKApplication of geostatistical inverse modeling to contaminant source identification at Dover AFB, DelawareJ Hydraul Res20044291810.1080/00221680409500042 DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/tevc.2010.2059031 ZengLShiLZhangDWuLA sparse grid based Bayesian method for contaminant source identificationAdv Water Resour201237191:CAS:528:DC%2BC38Xhslalsbc%3D10.1016/j.advwatres.2011.09.011 Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8). https://doi.org/10.1029/2002wr001642 NaeiniMRAnaluiBGuptaHVDuanQSorooshianSThree decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: review and applicationsScientia Iranica20192642015203110.24200/sci.2019.21500 ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol201618551601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004 Price KV, Storn RM, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Nat Comput 141(2) MaharPSDattaBOptimal identification of ground-water pollution sources and parameter estimationJ Water Resour Plan Manag-Asce20011271202910.1061/(asce)0733-9496(2001)127:1(20) AndrieuCde FreitasNDoucetAJordanMIAn introduction to MCMC for machine learningMach Learn2003501-254310.1023/a:1020281327116 ShiXAssessment of parametric uncertainty for groundwater reactive transport modelingWater Resour Res20145054416443910.1002/2013wr013755 HaarioHSaksmanETamminenJAdaptive proposal distribution for random walk Metropolis algorithmComput Stat199914337539510.1007/s001800050022 HaarioHLaineMMiraASaksmanEDRAM: Efficient adaptive MCMCStat Comput200616433935410.1007/s11222-006-9438-0 ZhangJLiWZengLWuLAn adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problemsWater Resour Res20165285971598410.1002/2016wr018598 WangHJinXCharacterization of groundwater contaminant source using Bayesian methodStoch Env Res Risk A201327486787610.1007/s00477-012-0622-9 BrooksSPRobertsGOConvergence assessment techniques for Markov chain Monte CarloStat Comput19988431933510.1002/9780470061336.ch8 17120_CR1 B Datta (17120_CR14) 2009; 376 17120_CR12 SP Brooks (17120_CR9) 1998; 8 C Andrieu (17120_CR3) 2003; 50 H Haario (17120_CR17) 1999; 14 Z Hou (17120_CR22) 2015; 32 17120_CR19 17120_CR7 G Wei (17120_CR43) 2016; 18 X Shi (17120_CR37) 2014; 50 H Wang (17120_CR42) 2020; 234 J Atmadja (17120_CR4) 2001; 2 MT Ayvaz (17120_CR5) 2010; 117 A Chakraborty (17120_CR10) 2020; 192 Y Zhao (17120_CR49) 2016; 185-186 17120_CR23 PS Mahar (17120_CR26) 2001; 127 Z Hou (17120_CR21) 2018; 26 Y Zhao (17120_CR50) 2016; 185 17120_CR20 D Srivastava (17120_CR38) 2015; 29 A Woodbury (17120_CR44) 1998; 32 17120_CR27 17120_CR25 H Grandis (17120_CR15) 1999; 138 H Wang (17120_CR41) 2013; 27 J Zhang (17120_CR46) 2016; 52 MR Naeini (17120_CR31) 2019; 26 MT Ayvaz (17120_CR6) 2008; 357 O Prakash (17120_CR33) 2013; 185 H Haario (17120_CR16) 2006; 16 Z Chang (17120_CR11) 2020; 29 17120_CR34 17120_CR35 CJF Ter Braak (17120_CR39) 2008; 18 R Serfozo (17120_CR36) 2009 GF Pinder (17120_CR32) 1968; 4 J Zhang (17120_CR47) 2015; 51 L Zeng (17120_CR45) 2012; 37 M Amirabdollahian (17120_CR2) 2013; 04 BY Mirghani (17120_CR30) 2009; 32 E Milnes (17120_CR29) 2007; 30 K Beven (17120_CR8) 2001; 249 AM Michalak (17120_CR28) 2004; 42 17120_CR40 S Das (17120_CR13) 2011; 15 R Krzysztofowicz (17120_CR24) 1999; 35 H Haario (17120_CR18) 2001; 7 17120_CR48 C Zheng (17120_CR51) 1999; 169  | 
    
| References_xml | – reference: HouZLuWComparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sitesHydrogeol J201826392393210.1007/s10040-017-1690-1 – reference: Chen Z, Zhou Q, Ieee (2011) Kent chaos mapping application in the digital fountain codes, 2011 30th Chinese Control Conference. Chinese Control Conference, pp 4371-4376. – reference: KrzysztofowiczRBayesian theory of probabilistic forecasting via deterministic hydrologic modelWater Resour Res19993592739275010.1029/1999wr900099 – reference: ZhangJZengLChenCChenDWuLEfficient Bayesian experimental design for contaminant source identificationWater Resour Res201551157659810.1002/2014wr015740 – reference: AmirabdollahianMDattaBIdentification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overviewJ Environ Prot2013040526411:CAS:528:DC%2BC2cXlsVSisb4%3D10.4236/jep.2013.45A004 – reference: HaarioHSaksmanETamminenJAdaptive proposal distribution for random walk Metropolis algorithmComput Stat199914337539510.1007/s001800050022 – reference: PinderGFBredehoeftJDApplication of the digital computer for aquifer evaluationWater Resour Res1968451069109310.1029/WR004i005p01069 – reference: Han K et al (2020) Application of a genetic algorithm to groundwater pollution source identification. J Hydrol 589. https://doi.org/10.1016/j.jhydrol.2020.125343 – reference: BevenKFreerJEquifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodologyJ Hydrol20012491-4112910.1016/s0022-1694(01)00421-8 – reference: AyvazMTA linked simulation-optimization model for solving the unknown groundwater pollution source identification problemsJ Contam Hydrol20101171-446591:CAS:528:DC%2BC3cXhtVyjurvK10.1016/j.jconhyd.2010.06.004 – reference: Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1). https://doi.org/10.1029/2005wr004745 – reference: ShiXAssessment of parametric uncertainty for groundwater reactive transport modelingWater Resour Res20145054416443910.1002/2013wr013755 – reference: WoodburyASudickyEUlrychTJLudwigRThree-dimensional plume source reconstruction using minimum relative entropy inversionJ Contam Hydrol1998321-21311581:CAS:528:DyaK1cXivF2kurw%3D10.1016/s0169-7722(97)00088-0 – reference: Mezura-Montes E, Velazquez-Reyes J, Coello CAC (2006) A comparative study of differential evolution variants for global optimization. Gecco 2006: Genetic and Evolutionary Computation Conference, Vol 1 and 2, 485-+ pp. https://doi.org/10.1145/1143997.1144086 – reference: MilnesEPerrochetPSimultaneous identification of a single pollution point-source location and contamination time under known flow field conditionsAdv Water Resour200730122439244610.1016/j.advwatres.2007.05.013 – reference: Zhang S, Qiang J, Liu H, Li Y (2020) Optimization design of groundwater pollution monitoring scheme and inverse identification of pollution source parameters using Bayes’ theorem. Water Air Soil Pollut 231(1). https://doi.org/10.1007/s11270-019-4369-5 – reference: GrandisHMenvielleMRoussignolMBayesian inversion with Markov chains—I. The magnetotelluric one-dimensional caseGeophys J Int1999138375776810.1046/j.1365-246x.1999.00904.x – reference: Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing. Water Resour Res, 48. https://doi.org/10.1029/2011wr010608 – reference: ChakrabortyAPrakashOIdentification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimizationEnviron Monit Assess2020192127917911:CAS:528:DC%2BB3MXosVeku7c%3D10.1007/s10661-020-08691-7 – reference: WangHLuWLiJGroundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic methodJ Contam Hydrol20202341036811:CAS:528:DC%2BB3cXhsV2lsrrE10.1016/j.jconhyd.2020.103681 – reference: ChangZLuWWangHLiJLuoJSimultaneous identification of groundwater contaminant sources and simulation of model parameters based on an improved single-component adaptive Metropolis algorithmHydrogeol J20202928598731:CAS:528:DC%2BB3MXmtFSltrk%3D10.1007/s10040-020-02257-0 – reference: Price KV, Storn RM, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Nat Comput 141(2) – reference: MirghaniBYMahinthakumarKGTrybyMERanjithanRSZechmanEMA parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problemsAdv Water Resour20093291373138510.1016/j.advwatres.2009.06.001 – reference: ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol2016185-18651601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004 – reference: ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol201618551601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004 – reference: ZengLShiLZhangDWuLA sparse grid based Bayesian method for contaminant source identificationAdv Water Resour201237191:CAS:528:DC%2BC38Xhslalsbc%3D10.1016/j.advwatres.2011.09.011 – reference: AndrieuCde FreitasNDoucetAJordanMIAn introduction to MCMC for machine learningMach Learn2003501-254310.1023/a:1020281327116 – reference: Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South Afr 52(6). https://doi.org/10.2307/3006914 – reference: Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution source identification, water pollution. The Handbook of Environmental Chemistry, pp:65–96. https://doi.org/10.1007/b11442 – reference: MichalakAMKitanidisPKApplication of geostatistical inverse modeling to contaminant source identification at Dover AFB, DelawareJ Hydraul Res20044291810.1080/00221680409500042 – reference: ZhengCWangPPMT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guideAJR Am J Roentgenol1999169411961197 – reference: PrakashODattaBSequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locationsEnviron Monit Assess201318575611562610.1007/s10661-012-2971-8 – reference: Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97. https://doi.org/10.1093/biomet/57.1.97 – reference: Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8). https://doi.org/10.1029/2002wr001642 – reference: AtmadjaJBagtzoglouACState of the art report on mathematical methods for groundwater pollution source identificationEnviron Forensic2001232052141:CAS:528:DC%2BD38XitVGnsrg%3D10.1006/enfo.2001.0055 – reference: HaarioHLaineMMiraASaksmanEDRAM: Efficient adaptive MCMCStat Comput200616433935410.1007/s11222-006-9438-0 – reference: Ter BraakCJFVrugtJADifferential evolution Markov chain with snooker updater and fewer chainsStat Comput200818443544610.1007/s11222-008-9104-9 – reference: WangHJinXCharacterization of groundwater contaminant source using Bayesian methodStoch Env Res Risk A201327486787610.1007/s00477-012-0622-9 – reference: Schoups G, Vrugt JA, Fenicia F, de Giesen NCV (2010) Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models. Water Resour Res 46. https://doi.org/10.1029/2009wr008648 – reference: WeiGChiZYuLLiuHZhouHSource identification of sudden contamination based on the parameter uncertainty analysisJ Hydroinf201618691992710.2166/hydro.2016.002 – reference: BrooksSPRobertsGOConvergence assessment techniques for Markov chain Monte CarloStat Comput19988431933510.1002/9780470061336.ch8 – reference: ZhangJLiWZengLWuLAn adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problemsWater Resour Res20165285971598410.1002/2016wr018598 – reference: HaarioHSaksmanETamminenJAn adaptive Metropolis algorithmBernoulli20017222324210.2307/3318737 – reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/tevc.2010.2059031 – reference: NaeiniMRAnaluiBGuptaHVDuanQSorooshianSThree decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: review and applicationsScientia Iranica20192642015203110.24200/sci.2019.21500 – reference: SrivastavaDSinghRMGroundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterizationWater Resour Manag201529134607462710.1007/s11269-015-1078-8 – reference: SerfozoRBasics of applied stochastic processes2009Springer, Berlin, Heidelberg, XIVProbability and its applications10.1007/978-3-540-89332-5443 pp – reference: HouZLuWChuHLuoJSelecting parameter-optimized surrogate models in DNAPL-contaminated aquifer remediation strategiesEnviron Eng Sci20153212101610261:CAS:528:DC%2BC2MXhvVOrtrfP10.1089/ees.2015.0055 – reference: AyvazMTKarahanHA simulation/optimization model for the identification of unknown groundwater well locations and pumping ratesJ Hydrol20083571-2769210.1016/j.jhydrol.2008.05.003 – reference: DattaBChakrabartyDDharASimultaneous identification of unknown groundwater pollution sources and estimation of aquifer parametersJ Hydrol20093761-248571:CAS:528:DC%2BD1MXhtFelsLfP10.1016/j.jhydrol.2009.07.014 – reference: MaharPSDattaBOptimal identification of ground-water pollution sources and parameter estimationJ Water Resour Plan Manag-Asce20011271202910.1061/(asce)0733-9496(2001)127:1(20) – volume: 185 start-page: 5611 issue: 7 year: 2013 ident: 17120_CR33 publication-title: Environ Monit Assess doi: 10.1007/s10661-012-2971-8 – volume: 18 start-page: 919 issue: 6 year: 2016 ident: 17120_CR43 publication-title: J Hydroinf doi: 10.2166/hydro.2016.002 – volume: 185 start-page: 51 year: 2016 ident: 17120_CR50 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2016.01.004 – volume: 7 start-page: 223 issue: 2 year: 2001 ident: 17120_CR18 publication-title: Bernoulli doi: 10.2307/3318737 – volume: 2 start-page: 205 issue: 3 year: 2001 ident: 17120_CR4 publication-title: Environ Forensic doi: 10.1006/enfo.2001.0055 – volume: 357 start-page: 76 issue: 1-2 year: 2008 ident: 17120_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2008.05.003 – volume: 26 start-page: 2015 issue: 4 year: 2019 ident: 17120_CR31 publication-title: Scientia Iranica doi: 10.24200/sci.2019.21500 – ident: 17120_CR1 doi: 10.1029/2005wr004745 – volume-title: Basics of applied stochastic processes year: 2009 ident: 17120_CR36 doi: 10.1007/978-3-540-89332-5 – volume: 35 start-page: 2739 issue: 9 year: 1999 ident: 17120_CR24 publication-title: Water Resour Res doi: 10.1029/1999wr900099 – ident: 17120_CR7 doi: 10.1007/b11442 – volume: 138 start-page: 757 issue: 3 year: 1999 ident: 17120_CR15 publication-title: Geophys J Int doi: 10.1046/j.1365-246x.1999.00904.x – volume: 27 start-page: 867 issue: 4 year: 2013 ident: 17120_CR41 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-012-0622-9 – ident: 17120_CR23 doi: 10.2307/3006914 – ident: 17120_CR27 doi: 10.1145/1143997.1144086 – ident: 17120_CR35 doi: 10.1029/2009wr008648 – volume: 14 start-page: 375 issue: 3 year: 1999 ident: 17120_CR17 publication-title: Comput Stat doi: 10.1007/s001800050022 – volume: 4 start-page: 1069 issue: 5 year: 1968 ident: 17120_CR32 publication-title: Water Resour Res doi: 10.1029/WR004i005p01069 – volume: 04 start-page: 26 issue: 05 year: 2013 ident: 17120_CR2 publication-title: J Environ Prot doi: 10.4236/jep.2013.45A004 – ident: 17120_CR20 doi: 10.1093/biomet/57.1.97 – ident: 17120_CR40 doi: 10.1029/2002wr001642 – ident: 17120_CR12 – volume: 16 start-page: 339 issue: 4 year: 2006 ident: 17120_CR16 publication-title: Stat Comput doi: 10.1007/s11222-006-9438-0 – volume: 42 start-page: 9 year: 2004 ident: 17120_CR28 publication-title: J Hydraul Res doi: 10.1080/00221680409500042 – volume: 192 start-page: 791 issue: 12 year: 2020 ident: 17120_CR10 publication-title: Environ Monit Assess doi: 10.1007/s10661-020-08691-7 – volume: 52 start-page: 5971 issue: 8 year: 2016 ident: 17120_CR46 publication-title: Water Resour Res doi: 10.1002/2016wr018598 – volume: 26 start-page: 923 issue: 3 year: 2018 ident: 17120_CR21 publication-title: Hydrogeol J doi: 10.1007/s10040-017-1690-1 – volume: 32 start-page: 1016 issue: 12 year: 2015 ident: 17120_CR22 publication-title: Environ Eng Sci doi: 10.1089/ees.2015.0055 – ident: 17120_CR19 doi: 10.1016/j.jhydrol.2020.125343 – volume: 30 start-page: 2439 issue: 12 year: 2007 ident: 17120_CR29 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2007.05.013 – volume: 29 start-page: 4607 issue: 13 year: 2015 ident: 17120_CR38 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1078-8 – volume: 169 start-page: 1196 issue: 4 year: 1999 ident: 17120_CR51 publication-title: AJR Am J Roentgenol – volume: 50 start-page: 5 issue: 1-2 year: 2003 ident: 17120_CR3 publication-title: Mach Learn doi: 10.1023/a:1020281327116 – volume: 32 start-page: 131 issue: 1-2 year: 1998 ident: 17120_CR44 publication-title: J Contam Hydrol doi: 10.1016/s0169-7722(97)00088-0 – ident: 17120_CR34 – volume: 37 start-page: 1 year: 2012 ident: 17120_CR45 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2011.09.011 – volume: 8 start-page: 319 issue: 4 year: 1998 ident: 17120_CR9 publication-title: Stat Comput doi: 10.1002/9780470061336.ch8 – volume: 32 start-page: 1373 issue: 9 year: 2009 ident: 17120_CR30 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2009.06.001 – volume: 234 start-page: 103681 year: 2020 ident: 17120_CR42 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2020.103681 – volume: 51 start-page: 576 issue: 1 year: 2015 ident: 17120_CR47 publication-title: Water Resour Res doi: 10.1002/2014wr015740 – volume: 376 start-page: 48 issue: 1-2 year: 2009 ident: 17120_CR14 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.07.014 – volume: 50 start-page: 4416 issue: 5 year: 2014 ident: 17120_CR37 publication-title: Water Resour Res doi: 10.1002/2013wr013755 – ident: 17120_CR25 doi: 10.1029/2011wr010608 – volume: 249 start-page: 11 issue: 1-4 year: 2001 ident: 17120_CR8 publication-title: J Hydrol doi: 10.1016/s0022-1694(01)00421-8 – ident: 17120_CR48 doi: 10.1007/s11270-019-4369-5 – volume: 18 start-page: 435 issue: 4 year: 2008 ident: 17120_CR39 publication-title: Stat Comput doi: 10.1007/s11222-008-9104-9 – volume: 29 start-page: 859 issue: 2 year: 2020 ident: 17120_CR11 publication-title: Hydrogeol J doi: 10.1007/s10040-020-02257-0 – volume: 117 start-page: 46 issue: 1-4 year: 2010 ident: 17120_CR5 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2010.06.004 – volume: 185-186 start-page: 51 year: 2016 ident: 17120_CR49 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2016.01.004 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 17120_CR13 publication-title: IEEE Trans Evol Comput doi: 10.1109/tevc.2010.2059031 – volume: 127 start-page: 20 issue: 1 year: 2001 ident: 17120_CR26 publication-title: J Water Resour Plan Manag-Asce doi: 10.1061/(asce)0733-9496(2001)127:1(20)  | 
    
| SSID | ssj0020927 | 
    
| Score | 2.4107378 | 
    
| Snippet | The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 19679 | 
    
| SubjectTerms | Accuracy Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bayes Theorem Bayesian analysis Bayesian theory Computer applications Computer simulation Contamination Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Evolution Evolutionary algorithms Evolutionary computation Groundwater groundwater contamination Groundwater pollution hybrids Iterative methods kriging Markov analysis Markov chain Markov Chains Mathematical models Monte Carlo Method Monte Carlo simulation Mutation Parameter identification Pollution sources remediation Research Article simulation models Waste Water Technology Water Management Water Pollution - analysis Water Pollution Control  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8rKXCdjYOhjypL1t1vyVpnlAiKEiNGnVNA2Jt8jxB1QqKYO2_PvcJU6rCdE8xk5k-c6-n8939wP4IrySIUTPcxkVNwj4uUVkwHXUihI_RWh4yH6NBxeX5udVdrUF4y4XhsIquz2x2aj9zJGP_LsaaHzIep3c_ePEGkW3qx2Fhk3UCv64KTH2CrYVVcbqwfaP0fj3n9URTBQtiWthDJfamJRG0ybTSZ1RQK7kMpd4qFL_m6pn-PPZ3Wljks534E3Ckuy0Ff4ubIV6D_ZH69Q1bExr9-EtTMnNVPtHBJf3jCLULUXBkFxY68FnE59Ch9q3FBJ_zSaN1yF41lGp4JYwZWGZVJZRss9sydyNndTMTq9xzuY3t-_g8nz09-yCJ64F7owYzrm2lQ_CVTkiNhVkXimiggnSDj1huIFxiAtiiCrzaONDFEMrXC6KQAcOhwfdfejVszp8AIYCd5HyW4UfGOqYOS1j5pQ2VczzrA-ym9bSpULkxIcxLdcllEkUJYqibERRqj58XX1z15bh2Nj7sJNWmZbkQ7lWoD58XjXjYqIbEluH2QL7ZAX-AEHTcEMftOYIQwsh-vC-1YTVkDSZ-iLHlm-daqwH8PJ4P24e7wG8VpR00US-HUJvfr8InxAKzaujpN9PBnsEWg priority: 102 providerName: ProQuest  | 
    
| Title | Groundwater contamination source identification using improved differential evolution Markov chain algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11356-021-17120-2 https://www.ncbi.nlm.nih.gov/pubmed/34718970 https://www.proquest.com/docview/2633339015 https://www.proquest.com/docview/2591207828 https://www.proquest.com/docview/2718232900  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9sILgsGgMCoj8QaW_JU6eSxTxzTEhBCVylOU-GOr1KWo7ca_z13itEJjk5aHRIovluXz5X5n3wfAB-GVDCF6bmVU3CDg5xUiA66jVhT4KUJbh-zb-eh0as5m2SwFha17b_f-SLL9U--C3aTOyGFWcmklGj34493PKJ0XruKpGm_NLFF0hVoLY7jUxqRQmf_38a86uoUxb52Ptmrn5Bk8TXiRjTsGP4dHoTmAw8kuPA0bk3yuX8CCtpIa_wcB5IqRF3pFni4096zbpWdzn9yDurfk9n7B5u3OQvCsL5eCYr9g4SYtS0YBPcsb5i6recOqxcVyNd9cXr2E6cnk5_EpT_UUuDMi33Bd1T4IV1tEZSpIWysq9xJklXvCaSPjUPfHEFXmUY-HKPJKOCuKQEaFQ2P2EPaaZRNeA0OmukgxrMKPDBFmTsuYOaVNHa3NBiD7aS1dSjZONS8W5S5NMrGiRFaULStKNYCP229-d6k27qU-6rlVJrFbl2qk8SKIM4D322YUGDoFqZqwvEaarMAOEBjl99CgxkaoWQgxgFfdStgOSZM6Lyy2fOqXxm4Ad4_3zcPI38ITRYEWrbfbEextVtfhHcKfTT2Ex3Zm8Z4fyyHsj7_8-jrB5-fJ-fcfw1YS_gLk5P-F | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QEuqAUKKS0sEpxgxb4cx4cK8UiV0jZCqJV6M_Y-2kipU5q0FX-O38aMvU6EKnKrj9mNtfLMzny7O99-AG-EU9L74Hgqg-IGAT8vEBlwHbQi4qfwtQ7Z0bA7ODHfTpPTFfjTcmGorLKNiXWgdhNLe-QfVFfjQ9nr4-UvTqpRdLraSmgUUVrB7dZXjEVix4H_fYtLuOnu_le091ul9vrHXwY8qgxwa0RvxnVROi9smSJWUV6mpSIRFC-LniP00jUWM2LwQSUOs5sPolcIm4rME9S2kjZEMQWsGW0yXPytfe4Pv_-YL_lE1ojGZsZwqY2JtJ2GvCd1QgXAkstU4iJO_Zsa7-DdO2e1dQrcW4dHEbuyT42zbcCKrx7DZn9BlcPGGCumT2BM21qVu0Uwe8WoIr6gqhvyA9acGLCRi6VKza9Ugn_GRvUuh3eslW7BEDRm_iZOEUbkoskNs-fFqGLF-AxtNDu_eAon9_LVN2G1mlT-OTB0MBuITytc11DHxGoZEqu0KUOaJh2Q7WfNbbz4nPQ3xvniymYyRY6myGtT5KoD7-b_uWyu_Vjae7u1Vh5DwDRfOGwHXs-bcfLSiUxR-ck19kkyfAGCtN6SPogeEPZmQnTgWeMJ8yFpghZZii3vW9dYDOD_491aPt5X8GBwfHSYH-4PD17AQ0WEj7rqbhtWZ1fXfgdh2Kx8GX2dwc_7nl5_AbQDQFw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJcEK9CoMAiwQlW3Zez8QEhRBu1FCoOVMrN2PtoIwWnNGkr_hq_jhl7HQtV5FYfsxtr5Hl9u_vNDsBr4ZUMIXpuZVTcIODnJSIDrqNWVPgpQtOH7OvRcP_YfJ5kkw3409XCEK2yi4lNoPZzR3vkO2qo8aHstRMTLeLb7vjD2S9OHaTopLVrp9GayGH4fYXLt8X7g13U9RulxnvfP-3z1GGAOyNGS67LygfhKos4RQVpK0UNUIIsR56Qy9A4zIYxRJV5zGwhilEpnBV5IJjtJG2GYvi_ZVEwohPaSb_YE3nbLjY3hkttTCrYacv2pM6I-iu5tBKXb-rfpHgN6V47pW2S3_ge3E2olX1szew-bIT6AWzt9UVyOJiixOIhzGhDq_ZXCGPPGXHhS-LbkAWw9qyATX0iKbW_Evn-hE2b_Y3gWde0BYPPjIXL5ByMyorml8ydltOalbMT1Mjy9OcjOL6Rb74Fm_W8Dk-AoWm5SJW0wg8NTcycljFzSpsqWpsNQHaftXDpynPqvDEr-suaSRUFqqJoVFGoAbxd_eesvfBj7eztTltFcv5F0ZvqAF6thtFt6SymrMP8AudkOb4A4dlozRzEDQh4cyEG8Li1hJVImkBFbnHkXWcavQD_l_fpenlfwm10quLLwdHhM7ijqNKjodttw-by_CI8R_y1rF40hs7gx0171l_fzD32 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+contamination+source+identification+using+improved+differential+evolution+Markov+chain+algorithm&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Bai%2C+Yukun&rft.au=Lu%2C+Wenxi&rft.au=Li%2C+Jiuhui&rft.au=Chang%2C+Zhengbo&rft.date=2022-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=13&rft.spage=19679&rft.epage=19692&rft_id=info:doi/10.1007%2Fs11356-021-17120-2&rft.externalDocID=10_1007_s11356_021_17120_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |