Groundwater contamination source identification using improved differential evolution Markov chain algorithm

The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due t...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 13; pp. 19679 - 19692
Main Authors Bai, Yukun, Lu, Wenxi, Li, Jiuhui, Chang, Zhengbo, Wang, Han
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-021-17120-2

Cover

Abstract The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model’s complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources’ characteristics and simulation model’s parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.
AbstractList The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.
The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model's complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources' characteristics and simulation model's parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.
The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is commonly used in the GCSI problem. Usually, we use the Markov chain Monte Carlo (MCMC) method to realize the Bayesian framework. However, due to the ill-posed nature of the GCSI and the system model’s complexity, the conventional MCMC algorithm is time-consuming and has low accuracy. In this study, we proposed an adaptive mutation differential evolution Markov chain (AM-DEMC) algorithm. In this algorithm, the Kent mapping chaotic sequence method, combined with differential evolution (DE) algorithm, was used to generate the initial population. In the iteration process, we introduced a hybrid mutation strategy to generate the candidate vectors. Moreover, we adaptively adjust the essential parameter F of the AM-DEMC algorithm according to the individual fitness value. For further improving the efficiency of solving the GCSI problem, the Kriging method was used to establish a surrogate model to avoid the enormous computational load associated with the numerical simulation model. Finally, a hypothetical groundwater contamination case was given to verify the effectiveness of the AM-DEMC algorithm. The results indicated that the proposed AM-DEMC algorithm successfully identified the contamination sources’ characteristics and simulation model’s parameters. It also exhibited stronger search-ability and higher accuracy than the MCMC and DE-MC algorithms.
Author Bai, Yukun
Li, Jiuhui
Lu, Wenxi
Wang, Han
Chang, Zhengbo
Author_xml – sequence: 1
  givenname: Yukun
  surname: Bai
  fullname: Bai, Yukun
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University
– sequence: 2
  givenname: Wenxi
  surname: Lu
  fullname: Lu, Wenxi
  email: luwx999@163.com
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University
– sequence: 3
  givenname: Jiuhui
  surname: Li
  fullname: Li, Jiuhui
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University
– sequence: 4
  givenname: Zhengbo
  surname: Chang
  fullname: Chang, Zhengbo
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University
– sequence: 5
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, College of New Energy and Environment, Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34718970$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFL8ABReLSS2D8J7F9RBW0SEVc4Gx5ncnWJbGL7WzFt8fdFJB6KHOxNPo9z8x7J-QoxICEvKbwjgLI95lS3vUtMNpSSRm07BnZ0J6KVgqtj8gGtBAt5UIck5OcbwAYaCZfkGMuJFVawoZMFykuYbizBVPjYih29sEWH0OT45IcNn7AUPzo3dpdsg-7xs-3Ke5xaAY_jpjuCTs1uI_TcqC-2PQj7ht3bX1o7LSLyZfr-SV5Ptop46uH95R8__Tx2_lle_X14vP5h6vWCVCl5XY7ILit7DtgSOWW6Z4qpFYNtaN64ZjmI46sG7iiOIKy4CRo7GWnHOX8lJyt_9Ylfy6Yi5l9djhNNmBcsmH1esaZBvg_2unqrFRMVfTtI_SmOhTqIYb1vJYG2lXqzQO1bGcczG3ys02_zB_LK8BWwKWYc8LxL0LB3Odq1lxNzdUccjWsitQjkfPlEEhJ1k9PS_kqzXVO2GH6t_YTqt-eaLde
CitedBy_id crossref_primary_10_1016_j_aej_2024_11_007
crossref_primary_10_1016_j_jenvman_2023_119555
crossref_primary_10_1016_j_jhydrol_2023_130258
crossref_primary_10_1016_j_jhydrol_2023_129965
crossref_primary_10_1016_j_jhydrol_2022_128854
crossref_primary_10_1186_s13104_023_06610_w
crossref_primary_10_1007_s00477_024_02795_z
crossref_primary_10_3390_w16131907
crossref_primary_10_1007_s11356_023_27574_1
crossref_primary_10_3390_w16162274
crossref_primary_10_1007_s11356_023_28091_x
crossref_primary_10_1016_j_enceco_2025_02_012
crossref_primary_10_3390_w15203582
Cites_doi 10.1007/s10661-012-2971-8
10.2166/hydro.2016.002
10.1016/j.jconhyd.2016.01.004
10.2307/3318737
10.1006/enfo.2001.0055
10.1016/j.jhydrol.2008.05.003
10.24200/sci.2019.21500
10.1029/2005wr004745
10.1007/978-3-540-89332-5
10.1029/1999wr900099
10.1007/b11442
10.1046/j.1365-246x.1999.00904.x
10.1007/s00477-012-0622-9
10.2307/3006914
10.1145/1143997.1144086
10.1029/2009wr008648
10.1007/s001800050022
10.1029/WR004i005p01069
10.4236/jep.2013.45A004
10.1093/biomet/57.1.97
10.1029/2002wr001642
10.1007/s11222-006-9438-0
10.1080/00221680409500042
10.1007/s10661-020-08691-7
10.1002/2016wr018598
10.1007/s10040-017-1690-1
10.1089/ees.2015.0055
10.1016/j.jhydrol.2020.125343
10.1016/j.advwatres.2007.05.013
10.1007/s11269-015-1078-8
10.1023/a:1020281327116
10.1016/s0169-7722(97)00088-0
10.1016/j.advwatres.2011.09.011
10.1002/9780470061336.ch8
10.1016/j.advwatres.2009.06.001
10.1016/j.jconhyd.2020.103681
10.1002/2014wr015740
10.1016/j.jhydrol.2009.07.014
10.1002/2013wr013755
10.1029/2011wr010608
10.1016/s0022-1694(01)00421-8
10.1007/s11270-019-4369-5
10.1007/s11222-008-9104-9
10.1007/s10040-020-02257-0
10.1016/j.jconhyd.2010.06.004
10.1109/tevc.2010.2059031
10.1061/(asce)0733-9496(2001)127:1(20)
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-021-17120-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 19692
ExternalDocumentID 34718970
10_1007_s11356_021_17120_2
Genre Journal Article
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-3abde0cb76502e17b29618e1a8d650864c293fef25d381ef08a0c709e6758c133
IEDL.DBID U2A
ISSN 0944-1344
1614-7499
IngestDate Thu Oct 02 11:05:31 EDT 2025
Thu Sep 04 20:01:41 EDT 2025
Tue Oct 07 06:22:05 EDT 2025
Thu Apr 03 07:03:54 EDT 2025
Wed Oct 01 02:54:04 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Groundwater contamination
Differential evolution
Kriging surrogate model
Bayesian theory
Kent mapping chaotic sequence
Hybrid mutation
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-3abde0cb76502e17b29618e1a8d650864c293fef25d381ef08a0c709e6758c133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34718970
PQID 2633339015
PQPubID 54208
PageCount 14
ParticipantIDs proquest_miscellaneous_2718232900
proquest_miscellaneous_2591207828
proquest_journals_2633339015
pubmed_primary_34718970
crossref_primary_10_1007_s11356_021_17120_2
crossref_citationtrail_10_1007_s11356_021_17120_2
springer_journals_10_1007_s11356_021_17120_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
2022-Mar
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WoodburyASudickyEUlrychTJLudwigRThree-dimensional plume source reconstruction using minimum relative entropy inversionJ Contam Hydrol1998321-21311581:CAS:528:DyaK1cXivF2kurw%3D10.1016/s0169-7722(97)00088-0
ChangZLuWWangHLiJLuoJSimultaneous identification of groundwater contaminant sources and simulation of model parameters based on an improved single-component adaptive Metropolis algorithmHydrogeol J20202928598731:CAS:528:DC%2BB3MXmtFSltrk%3D10.1007/s10040-020-02257-0
HouZLuWComparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sitesHydrogeol J201826392393210.1007/s10040-017-1690-1
GrandisHMenvielleMRoussignolMBayesian inversion with Markov chains—I. The magnetotelluric one-dimensional caseGeophys J Int1999138375776810.1046/j.1365-246x.1999.00904.x
Chen Z, Zhou Q, Ieee (2011) Kent chaos mapping application in the digital fountain codes, 2011 30th Chinese Control Conference. Chinese Control Conference, pp 4371-4376.
HaarioHSaksmanETamminenJAn adaptive Metropolis algorithmBernoulli20017222324210.2307/3318737
Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97. https://doi.org/10.1093/biomet/57.1.97
PinderGFBredehoeftJDApplication of the digital computer for aquifer evaluationWater Resour Res1968451069109310.1029/WR004i005p01069
PrakashODattaBSequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locationsEnviron Monit Assess201318575611562610.1007/s10661-012-2971-8
Schoups G, Vrugt JA, Fenicia F, de Giesen NCV (2010) Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models. Water Resour Res 46. https://doi.org/10.1029/2009wr008648
AtmadjaJBagtzoglouACState of the art report on mathematical methods for groundwater pollution source identificationEnviron Forensic2001232052141:CAS:528:DC%2BD38XitVGnsrg%3D10.1006/enfo.2001.0055
Han K et al (2020) Application of a genetic algorithm to groundwater pollution source identification. J Hydrol 589. https://doi.org/10.1016/j.jhydrol.2020.125343
KrzysztofowiczRBayesian theory of probabilistic forecasting via deterministic hydrologic modelWater Resour Res19993592739275010.1029/1999wr900099
WeiGChiZYuLLiuHZhouHSource identification of sudden contamination based on the parameter uncertainty analysisJ Hydroinf201618691992710.2166/hydro.2016.002
Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution source identification, water pollution. The Handbook of Environmental Chemistry, pp:65–96. https://doi.org/10.1007/b11442
BevenKFreerJEquifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodologyJ Hydrol20012491-4112910.1016/s0022-1694(01)00421-8
Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1). https://doi.org/10.1029/2005wr004745
ChakrabortyAPrakashOIdentification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimizationEnviron Monit Assess2020192127917911:CAS:528:DC%2BB3MXosVeku7c%3D10.1007/s10661-020-08691-7
ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol2016185-18651601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004
MirghaniBYMahinthakumarKGTrybyMERanjithanRSZechmanEMA parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problemsAdv Water Resour20093291373138510.1016/j.advwatres.2009.06.001
Zhang S, Qiang J, Liu H, Li Y (2020) Optimization design of groundwater pollution monitoring scheme and inverse identification of pollution source parameters using Bayes’ theorem. Water Air Soil Pollut 231(1). https://doi.org/10.1007/s11270-019-4369-5
Ter BraakCJFVrugtJADifferential evolution Markov chain with snooker updater and fewer chainsStat Comput200818443544610.1007/s11222-008-9104-9
AyvazMTA linked simulation-optimization model for solving the unknown groundwater pollution source identification problemsJ Contam Hydrol20101171-446591:CAS:528:DC%2BC3cXhtVyjurvK10.1016/j.jconhyd.2010.06.004
DattaBChakrabartyDDharASimultaneous identification of unknown groundwater pollution sources and estimation of aquifer parametersJ Hydrol20093761-248571:CAS:528:DC%2BD1MXhtFelsLfP10.1016/j.jhydrol.2009.07.014
SrivastavaDSinghRMGroundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterizationWater Resour Manag201529134607462710.1007/s11269-015-1078-8
HouZLuWChuHLuoJSelecting parameter-optimized surrogate models in DNAPL-contaminated aquifer remediation strategiesEnviron Eng Sci20153212101610261:CAS:528:DC%2BC2MXhvVOrtrfP10.1089/ees.2015.0055
Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing. Water Resour Res, 48. https://doi.org/10.1029/2011wr010608
ZhengCWangPPMT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guideAJR Am J Roentgenol1999169411961197
Mezura-Montes E, Velazquez-Reyes J, Coello CAC (2006) A comparative study of differential evolution variants for global optimization. Gecco 2006: Genetic and Evolutionary Computation Conference, Vol 1 and 2, 485-+ pp. https://doi.org/10.1145/1143997.1144086
AyvazMTKarahanHA simulation/optimization model for the identification of unknown groundwater well locations and pumping ratesJ Hydrol20083571-2769210.1016/j.jhydrol.2008.05.003
ZhangJZengLChenCChenDWuLEfficient Bayesian experimental design for contaminant source identificationWater Resour Res201551157659810.1002/2014wr015740
MilnesEPerrochetPSimultaneous identification of a single pollution point-source location and contamination time under known flow field conditionsAdv Water Resour200730122439244610.1016/j.advwatres.2007.05.013
AmirabdollahianMDattaBIdentification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overviewJ Environ Prot2013040526411:CAS:528:DC%2BC2cXlsVSisb4%3D10.4236/jep.2013.45A004
SerfozoRBasics of applied stochastic processes2009Springer, Berlin, Heidelberg, XIVProbability and its applications10.1007/978-3-540-89332-5443 pp
WangHLuWLiJGroundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic methodJ Contam Hydrol20202341036811:CAS:528:DC%2BB3cXhsV2lsrrE10.1016/j.jconhyd.2020.103681
Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South Afr 52(6). https://doi.org/10.2307/3006914
MichalakAMKitanidisPKApplication of geostatistical inverse modeling to contaminant source identification at Dover AFB, DelawareJ Hydraul Res20044291810.1080/00221680409500042
DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/tevc.2010.2059031
ZengLShiLZhangDWuLA sparse grid based Bayesian method for contaminant source identificationAdv Water Resour201237191:CAS:528:DC%2BC38Xhslalsbc%3D10.1016/j.advwatres.2011.09.011
Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8). https://doi.org/10.1029/2002wr001642
NaeiniMRAnaluiBGuptaHVDuanQSorooshianSThree decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: review and applicationsScientia Iranica20192642015203110.24200/sci.2019.21500
ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol201618551601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004
Price KV, Storn RM, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Nat Comput 141(2)
MaharPSDattaBOptimal identification of ground-water pollution sources and parameter estimationJ Water Resour Plan Manag-Asce20011271202910.1061/(asce)0733-9496(2001)127:1(20)
AndrieuCde FreitasNDoucetAJordanMIAn introduction to MCMC for machine learningMach Learn2003501-254310.1023/a:1020281327116
ShiXAssessment of parametric uncertainty for groundwater reactive transport modelingWater Resour Res20145054416443910.1002/2013wr013755
HaarioHSaksmanETamminenJAdaptive proposal distribution for random walk Metropolis algorithmComput Stat199914337539510.1007/s001800050022
HaarioHLaineMMiraASaksmanEDRAM: Efficient adaptive MCMCStat Comput200616433935410.1007/s11222-006-9438-0
ZhangJLiWZengLWuLAn adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problemsWater Resour Res20165285971598410.1002/2016wr018598
WangHJinXCharacterization of groundwater contaminant source using Bayesian methodStoch Env Res Risk A201327486787610.1007/s00477-012-0622-9
BrooksSPRobertsGOConvergence assessment techniques for Markov chain Monte CarloStat Comput19988431933510.1002/9780470061336.ch8
17120_CR1
B Datta (17120_CR14) 2009; 376
17120_CR12
SP Brooks (17120_CR9) 1998; 8
C Andrieu (17120_CR3) 2003; 50
H Haario (17120_CR17) 1999; 14
Z Hou (17120_CR22) 2015; 32
17120_CR19
17120_CR7
G Wei (17120_CR43) 2016; 18
X Shi (17120_CR37) 2014; 50
H Wang (17120_CR42) 2020; 234
J Atmadja (17120_CR4) 2001; 2
MT Ayvaz (17120_CR5) 2010; 117
A Chakraborty (17120_CR10) 2020; 192
Y Zhao (17120_CR49) 2016; 185-186
17120_CR23
PS Mahar (17120_CR26) 2001; 127
Z Hou (17120_CR21) 2018; 26
Y Zhao (17120_CR50) 2016; 185
17120_CR20
D Srivastava (17120_CR38) 2015; 29
A Woodbury (17120_CR44) 1998; 32
17120_CR27
17120_CR25
H Grandis (17120_CR15) 1999; 138
H Wang (17120_CR41) 2013; 27
J Zhang (17120_CR46) 2016; 52
MR Naeini (17120_CR31) 2019; 26
MT Ayvaz (17120_CR6) 2008; 357
O Prakash (17120_CR33) 2013; 185
H Haario (17120_CR16) 2006; 16
Z Chang (17120_CR11) 2020; 29
17120_CR34
17120_CR35
CJF Ter Braak (17120_CR39) 2008; 18
R Serfozo (17120_CR36) 2009
GF Pinder (17120_CR32) 1968; 4
J Zhang (17120_CR47) 2015; 51
L Zeng (17120_CR45) 2012; 37
M Amirabdollahian (17120_CR2) 2013; 04
BY Mirghani (17120_CR30) 2009; 32
E Milnes (17120_CR29) 2007; 30
K Beven (17120_CR8) 2001; 249
AM Michalak (17120_CR28) 2004; 42
17120_CR40
S Das (17120_CR13) 2011; 15
R Krzysztofowicz (17120_CR24) 1999; 35
H Haario (17120_CR18) 2001; 7
17120_CR48
C Zheng (17120_CR51) 1999; 169
References_xml – reference: HouZLuWComparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sitesHydrogeol J201826392393210.1007/s10040-017-1690-1
– reference: Chen Z, Zhou Q, Ieee (2011) Kent chaos mapping application in the digital fountain codes, 2011 30th Chinese Control Conference. Chinese Control Conference, pp 4371-4376.
– reference: KrzysztofowiczRBayesian theory of probabilistic forecasting via deterministic hydrologic modelWater Resour Res19993592739275010.1029/1999wr900099
– reference: ZhangJZengLChenCChenDWuLEfficient Bayesian experimental design for contaminant source identificationWater Resour Res201551157659810.1002/2014wr015740
– reference: AmirabdollahianMDattaBIdentification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overviewJ Environ Prot2013040526411:CAS:528:DC%2BC2cXlsVSisb4%3D10.4236/jep.2013.45A004
– reference: HaarioHSaksmanETamminenJAdaptive proposal distribution for random walk Metropolis algorithmComput Stat199914337539510.1007/s001800050022
– reference: PinderGFBredehoeftJDApplication of the digital computer for aquifer evaluationWater Resour Res1968451069109310.1029/WR004i005p01069
– reference: Han K et al (2020) Application of a genetic algorithm to groundwater pollution source identification. J Hydrol 589. https://doi.org/10.1016/j.jhydrol.2020.125343
– reference: BevenKFreerJEquifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodologyJ Hydrol20012491-4112910.1016/s0022-1694(01)00421-8
– reference: AyvazMTA linked simulation-optimization model for solving the unknown groundwater pollution source identification problemsJ Contam Hydrol20101171-446591:CAS:528:DC%2BC3cXhtVyjurvK10.1016/j.jconhyd.2010.06.004
– reference: Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43(1). https://doi.org/10.1029/2005wr004745
– reference: ShiXAssessment of parametric uncertainty for groundwater reactive transport modelingWater Resour Res20145054416443910.1002/2013wr013755
– reference: WoodburyASudickyEUlrychTJLudwigRThree-dimensional plume source reconstruction using minimum relative entropy inversionJ Contam Hydrol1998321-21311581:CAS:528:DyaK1cXivF2kurw%3D10.1016/s0169-7722(97)00088-0
– reference: Mezura-Montes E, Velazquez-Reyes J, Coello CAC (2006) A comparative study of differential evolution variants for global optimization. Gecco 2006: Genetic and Evolutionary Computation Conference, Vol 1 and 2, 485-+ pp. https://doi.org/10.1145/1143997.1144086
– reference: MilnesEPerrochetPSimultaneous identification of a single pollution point-source location and contamination time under known flow field conditionsAdv Water Resour200730122439244610.1016/j.advwatres.2007.05.013
– reference: Zhang S, Qiang J, Liu H, Li Y (2020) Optimization design of groundwater pollution monitoring scheme and inverse identification of pollution source parameters using Bayes’ theorem. Water Air Soil Pollut 231(1). https://doi.org/10.1007/s11270-019-4369-5
– reference: GrandisHMenvielleMRoussignolMBayesian inversion with Markov chains—I. The magnetotelluric one-dimensional caseGeophys J Int1999138375776810.1046/j.1365-246x.1999.00904.x
– reference: Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM((ZS)) and high-performance computing. Water Resour Res, 48. https://doi.org/10.1029/2011wr010608
– reference: ChakrabortyAPrakashOIdentification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimizationEnviron Monit Assess2020192127917911:CAS:528:DC%2BB3MXosVeku7c%3D10.1007/s10661-020-08691-7
– reference: WangHLuWLiJGroundwater contaminant source characterization with simulation model parameter estimation utilizing a heuristic search strategy based on the stochastic-simulation statistic methodJ Contam Hydrol20202341036811:CAS:528:DC%2BB3cXhsV2lsrrE10.1016/j.jconhyd.2020.103681
– reference: ChangZLuWWangHLiJLuoJSimultaneous identification of groundwater contaminant sources and simulation of model parameters based on an improved single-component adaptive Metropolis algorithmHydrogeol J20202928598731:CAS:528:DC%2BB3MXmtFSltrk%3D10.1007/s10040-020-02257-0
– reference: Price KV, Storn RM, Lampinen JA (2005) Differential evolution—a practical approach to global optimization. Nat Comput 141(2)
– reference: MirghaniBYMahinthakumarKGTrybyMERanjithanRSZechmanEMA parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problemsAdv Water Resour20093291373138510.1016/j.advwatres.2009.06.001
– reference: ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol2016185-18651601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004
– reference: ZhaoYLuWXiaoCA Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sourcesJ Contam Hydrol201618551601:CAS:528:DC%2BC28Xhs1GjtL4%3D10.1016/j.jconhyd.2016.01.004
– reference: ZengLShiLZhangDWuLA sparse grid based Bayesian method for contaminant source identificationAdv Water Resour201237191:CAS:528:DC%2BC38Xhslalsbc%3D10.1016/j.advwatres.2011.09.011
– reference: AndrieuCde FreitasNDoucetAJordanMIAn introduction to MCMC for machine learningMach Learn2003501-254310.1023/a:1020281327116
– reference: Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South Afr 52(6). https://doi.org/10.2307/3006914
– reference: Bagtzoglou AC, Atmadja J (2005) Mathematical methods for hydrologic inversion: the case of pollution source identification, water pollution. The Handbook of Environmental Chemistry, pp:65–96. https://doi.org/10.1007/b11442
– reference: MichalakAMKitanidisPKApplication of geostatistical inverse modeling to contaminant source identification at Dover AFB, DelawareJ Hydraul Res20044291810.1080/00221680409500042
– reference: ZhengCWangPPMT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guideAJR Am J Roentgenol1999169411961197
– reference: PrakashODattaBSequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locationsEnviron Monit Assess201318575611562610.1007/s10661-012-2971-8
– reference: Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97. https://doi.org/10.1093/biomet/57.1.97
– reference: Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8). https://doi.org/10.1029/2002wr001642
– reference: AtmadjaJBagtzoglouACState of the art report on mathematical methods for groundwater pollution source identificationEnviron Forensic2001232052141:CAS:528:DC%2BD38XitVGnsrg%3D10.1006/enfo.2001.0055
– reference: HaarioHLaineMMiraASaksmanEDRAM: Efficient adaptive MCMCStat Comput200616433935410.1007/s11222-006-9438-0
– reference: Ter BraakCJFVrugtJADifferential evolution Markov chain with snooker updater and fewer chainsStat Comput200818443544610.1007/s11222-008-9104-9
– reference: WangHJinXCharacterization of groundwater contaminant source using Bayesian methodStoch Env Res Risk A201327486787610.1007/s00477-012-0622-9
– reference: Schoups G, Vrugt JA, Fenicia F, de Giesen NCV (2010) Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models. Water Resour Res 46. https://doi.org/10.1029/2009wr008648
– reference: WeiGChiZYuLLiuHZhouHSource identification of sudden contamination based on the parameter uncertainty analysisJ Hydroinf201618691992710.2166/hydro.2016.002
– reference: BrooksSPRobertsGOConvergence assessment techniques for Markov chain Monte CarloStat Comput19988431933510.1002/9780470061336.ch8
– reference: ZhangJLiWZengLWuLAn adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problemsWater Resour Res20165285971598410.1002/2016wr018598
– reference: HaarioHSaksmanETamminenJAn adaptive Metropolis algorithmBernoulli20017222324210.2307/3318737
– reference: DasSSuganthanPNDifferential evolution: a survey of the state-of-the-artIEEE Trans Evol Comput201115143110.1109/tevc.2010.2059031
– reference: NaeiniMRAnaluiBGuptaHVDuanQSorooshianSThree decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: review and applicationsScientia Iranica20192642015203110.24200/sci.2019.21500
– reference: SrivastavaDSinghRMGroundwater system modeling for simultaneous identification of pollution sources and parameters with uncertainty characterizationWater Resour Manag201529134607462710.1007/s11269-015-1078-8
– reference: SerfozoRBasics of applied stochastic processes2009Springer, Berlin, Heidelberg, XIVProbability and its applications10.1007/978-3-540-89332-5443 pp
– reference: HouZLuWChuHLuoJSelecting parameter-optimized surrogate models in DNAPL-contaminated aquifer remediation strategiesEnviron Eng Sci20153212101610261:CAS:528:DC%2BC2MXhvVOrtrfP10.1089/ees.2015.0055
– reference: AyvazMTKarahanHA simulation/optimization model for the identification of unknown groundwater well locations and pumping ratesJ Hydrol20083571-2769210.1016/j.jhydrol.2008.05.003
– reference: DattaBChakrabartyDDharASimultaneous identification of unknown groundwater pollution sources and estimation of aquifer parametersJ Hydrol20093761-248571:CAS:528:DC%2BD1MXhtFelsLfP10.1016/j.jhydrol.2009.07.014
– reference: MaharPSDattaBOptimal identification of ground-water pollution sources and parameter estimationJ Water Resour Plan Manag-Asce20011271202910.1061/(asce)0733-9496(2001)127:1(20)
– volume: 185
  start-page: 5611
  issue: 7
  year: 2013
  ident: 17120_CR33
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-012-2971-8
– volume: 18
  start-page: 919
  issue: 6
  year: 2016
  ident: 17120_CR43
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2016.002
– volume: 185
  start-page: 51
  year: 2016
  ident: 17120_CR50
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2016.01.004
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  ident: 17120_CR18
  publication-title: Bernoulli
  doi: 10.2307/3318737
– volume: 2
  start-page: 205
  issue: 3
  year: 2001
  ident: 17120_CR4
  publication-title: Environ Forensic
  doi: 10.1006/enfo.2001.0055
– volume: 357
  start-page: 76
  issue: 1-2
  year: 2008
  ident: 17120_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.05.003
– volume: 26
  start-page: 2015
  issue: 4
  year: 2019
  ident: 17120_CR31
  publication-title: Scientia Iranica
  doi: 10.24200/sci.2019.21500
– ident: 17120_CR1
  doi: 10.1029/2005wr004745
– volume-title: Basics of applied stochastic processes
  year: 2009
  ident: 17120_CR36
  doi: 10.1007/978-3-540-89332-5
– volume: 35
  start-page: 2739
  issue: 9
  year: 1999
  ident: 17120_CR24
  publication-title: Water Resour Res
  doi: 10.1029/1999wr900099
– ident: 17120_CR7
  doi: 10.1007/b11442
– volume: 138
  start-page: 757
  issue: 3
  year: 1999
  ident: 17120_CR15
  publication-title: Geophys J Int
  doi: 10.1046/j.1365-246x.1999.00904.x
– volume: 27
  start-page: 867
  issue: 4
  year: 2013
  ident: 17120_CR41
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-012-0622-9
– ident: 17120_CR23
  doi: 10.2307/3006914
– ident: 17120_CR27
  doi: 10.1145/1143997.1144086
– ident: 17120_CR35
  doi: 10.1029/2009wr008648
– volume: 14
  start-page: 375
  issue: 3
  year: 1999
  ident: 17120_CR17
  publication-title: Comput Stat
  doi: 10.1007/s001800050022
– volume: 4
  start-page: 1069
  issue: 5
  year: 1968
  ident: 17120_CR32
  publication-title: Water Resour Res
  doi: 10.1029/WR004i005p01069
– volume: 04
  start-page: 26
  issue: 05
  year: 2013
  ident: 17120_CR2
  publication-title: J Environ Prot
  doi: 10.4236/jep.2013.45A004
– ident: 17120_CR20
  doi: 10.1093/biomet/57.1.97
– ident: 17120_CR40
  doi: 10.1029/2002wr001642
– ident: 17120_CR12
– volume: 16
  start-page: 339
  issue: 4
  year: 2006
  ident: 17120_CR16
  publication-title: Stat Comput
  doi: 10.1007/s11222-006-9438-0
– volume: 42
  start-page: 9
  year: 2004
  ident: 17120_CR28
  publication-title: J Hydraul Res
  doi: 10.1080/00221680409500042
– volume: 192
  start-page: 791
  issue: 12
  year: 2020
  ident: 17120_CR10
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08691-7
– volume: 52
  start-page: 5971
  issue: 8
  year: 2016
  ident: 17120_CR46
  publication-title: Water Resour Res
  doi: 10.1002/2016wr018598
– volume: 26
  start-page: 923
  issue: 3
  year: 2018
  ident: 17120_CR21
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-017-1690-1
– volume: 32
  start-page: 1016
  issue: 12
  year: 2015
  ident: 17120_CR22
  publication-title: Environ Eng Sci
  doi: 10.1089/ees.2015.0055
– ident: 17120_CR19
  doi: 10.1016/j.jhydrol.2020.125343
– volume: 30
  start-page: 2439
  issue: 12
  year: 2007
  ident: 17120_CR29
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2007.05.013
– volume: 29
  start-page: 4607
  issue: 13
  year: 2015
  ident: 17120_CR38
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1078-8
– volume: 169
  start-page: 1196
  issue: 4
  year: 1999
  ident: 17120_CR51
  publication-title: AJR Am J Roentgenol
– volume: 50
  start-page: 5
  issue: 1-2
  year: 2003
  ident: 17120_CR3
  publication-title: Mach Learn
  doi: 10.1023/a:1020281327116
– volume: 32
  start-page: 131
  issue: 1-2
  year: 1998
  ident: 17120_CR44
  publication-title: J Contam Hydrol
  doi: 10.1016/s0169-7722(97)00088-0
– ident: 17120_CR34
– volume: 37
  start-page: 1
  year: 2012
  ident: 17120_CR45
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2011.09.011
– volume: 8
  start-page: 319
  issue: 4
  year: 1998
  ident: 17120_CR9
  publication-title: Stat Comput
  doi: 10.1002/9780470061336.ch8
– volume: 32
  start-page: 1373
  issue: 9
  year: 2009
  ident: 17120_CR30
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2009.06.001
– volume: 234
  start-page: 103681
  year: 2020
  ident: 17120_CR42
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2020.103681
– volume: 51
  start-page: 576
  issue: 1
  year: 2015
  ident: 17120_CR47
  publication-title: Water Resour Res
  doi: 10.1002/2014wr015740
– volume: 376
  start-page: 48
  issue: 1-2
  year: 2009
  ident: 17120_CR14
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.07.014
– volume: 50
  start-page: 4416
  issue: 5
  year: 2014
  ident: 17120_CR37
  publication-title: Water Resour Res
  doi: 10.1002/2013wr013755
– ident: 17120_CR25
  doi: 10.1029/2011wr010608
– volume: 249
  start-page: 11
  issue: 1-4
  year: 2001
  ident: 17120_CR8
  publication-title: J Hydrol
  doi: 10.1016/s0022-1694(01)00421-8
– ident: 17120_CR48
  doi: 10.1007/s11270-019-4369-5
– volume: 18
  start-page: 435
  issue: 4
  year: 2008
  ident: 17120_CR39
  publication-title: Stat Comput
  doi: 10.1007/s11222-008-9104-9
– volume: 29
  start-page: 859
  issue: 2
  year: 2020
  ident: 17120_CR11
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-020-02257-0
– volume: 117
  start-page: 46
  issue: 1-4
  year: 2010
  ident: 17120_CR5
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2010.06.004
– volume: 185-186
  start-page: 51
  year: 2016
  ident: 17120_CR49
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2016.01.004
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 17120_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/tevc.2010.2059031
– volume: 127
  start-page: 20
  issue: 1
  year: 2001
  ident: 17120_CR26
  publication-title: J Water Resour Plan Manag-Asce
  doi: 10.1061/(asce)0733-9496(2001)127:1(20)
SSID ssj0020927
Score 2.4107378
Snippet The groundwater contamination source identification (GCSI) can provide important bases for the design of pollution remediation plans. The Bayesian theory is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19679
SubjectTerms Accuracy
Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bayes Theorem
Bayesian analysis
Bayesian theory
Computer applications
Computer simulation
Contamination
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Evolution
Evolutionary algorithms
Evolutionary computation
Groundwater
groundwater contamination
Groundwater pollution
hybrids
Iterative methods
kriging
Markov analysis
Markov chain
Markov Chains
Mathematical models
Monte Carlo Method
Monte Carlo simulation
Mutation
Parameter identification
Pollution sources
remediation
Research Article
simulation models
Waste Water Technology
Water Management
Water Pollution - analysis
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8rKXCdjYOhjypL1t1vyVpnlAiKEiNGnVNA2Jt8jxB1QqKYO2_PvcJU6rCdE8xk5k-c6-n8939wP4IrySIUTPcxkVNwj4uUVkwHXUihI_RWh4yH6NBxeX5udVdrUF4y4XhsIquz2x2aj9zJGP_LsaaHzIep3c_ePEGkW3qx2Fhk3UCv64KTH2CrYVVcbqwfaP0fj3n9URTBQtiWthDJfamJRG0ybTSZ1RQK7kMpd4qFL_m6pn-PPZ3Wljks534E3Ckuy0Ff4ubIV6D_ZH69Q1bExr9-EtTMnNVPtHBJf3jCLULUXBkFxY68FnE59Ch9q3FBJ_zSaN1yF41lGp4JYwZWGZVJZRss9sydyNndTMTq9xzuY3t-_g8nz09-yCJ64F7owYzrm2lQ_CVTkiNhVkXimiggnSDj1huIFxiAtiiCrzaONDFEMrXC6KQAcOhwfdfejVszp8AIYCd5HyW4UfGOqYOS1j5pQ2VczzrA-ym9bSpULkxIcxLdcllEkUJYqibERRqj58XX1z15bh2Nj7sJNWmZbkQ7lWoD58XjXjYqIbEluH2QL7ZAX-AEHTcEMftOYIQwsh-vC-1YTVkDSZ-iLHlm-daqwH8PJ4P24e7wG8VpR00US-HUJvfr8InxAKzaujpN9PBnsEWg
  priority: 102
  providerName: ProQuest
Title Groundwater contamination source identification using improved differential evolution Markov chain algorithm
URI https://link.springer.com/article/10.1007/s11356-021-17120-2
https://www.ncbi.nlm.nih.gov/pubmed/34718970
https://www.proquest.com/docview/2633339015
https://www.proquest.com/docview/2591207828
https://www.proquest.com/docview/2718232900
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9sILgsGgMCoj8QaW_JU6eSxTxzTEhBCVylOU-GOr1KWo7ca_z13itEJjk5aHRIovluXz5X5n3wfAB-GVDCF6bmVU3CDg5xUiA66jVhT4KUJbh-zb-eh0as5m2SwFha17b_f-SLL9U--C3aTOyGFWcmklGj34493PKJ0XruKpGm_NLFF0hVoLY7jUxqRQmf_38a86uoUxb52Ptmrn5Bk8TXiRjTsGP4dHoTmAw8kuPA0bk3yuX8CCtpIa_wcB5IqRF3pFni4096zbpWdzn9yDurfk9n7B5u3OQvCsL5eCYr9g4SYtS0YBPcsb5i6recOqxcVyNd9cXr2E6cnk5_EpT_UUuDMi33Bd1T4IV1tEZSpIWysq9xJklXvCaSPjUPfHEFXmUY-HKPJKOCuKQEaFQ2P2EPaaZRNeA0OmukgxrMKPDBFmTsuYOaVNHa3NBiD7aS1dSjZONS8W5S5NMrGiRFaULStKNYCP229-d6k27qU-6rlVJrFbl2qk8SKIM4D322YUGDoFqZqwvEaarMAOEBjl99CgxkaoWQgxgFfdStgOSZM6Lyy2fOqXxm4Ad4_3zcPI38ITRYEWrbfbEextVtfhHcKfTT2Ex3Zm8Z4fyyHsj7_8-jrB5-fJ-fcfw1YS_gLk5P-F
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QEuqAUKKS0sEpxgxb4cx4cK8UiV0jZCqJV6M_Y-2kipU5q0FX-O38aMvU6EKnKrj9mNtfLMzny7O99-AG-EU9L74Hgqg-IGAT8vEBlwHbQi4qfwtQ7Z0bA7ODHfTpPTFfjTcmGorLKNiXWgdhNLe-QfVFfjQ9nr4-UvTqpRdLraSmgUUVrB7dZXjEVix4H_fYtLuOnu_le091ul9vrHXwY8qgxwa0RvxnVROi9smSJWUV6mpSIRFC-LniP00jUWM2LwQSUOs5sPolcIm4rME9S2kjZEMQWsGW0yXPytfe4Pv_-YL_lE1ojGZsZwqY2JtJ2GvCd1QgXAkstU4iJO_Zsa7-DdO2e1dQrcW4dHEbuyT42zbcCKrx7DZn9BlcPGGCumT2BM21qVu0Uwe8WoIr6gqhvyA9acGLCRi6VKza9Ugn_GRvUuh3eslW7BEDRm_iZOEUbkoskNs-fFqGLF-AxtNDu_eAon9_LVN2G1mlT-OTB0MBuITytc11DHxGoZEqu0KUOaJh2Q7WfNbbz4nPQ3xvniymYyRY6myGtT5KoD7-b_uWyu_Vjae7u1Vh5DwDRfOGwHXs-bcfLSiUxR-ck19kkyfAGCtN6SPogeEPZmQnTgWeMJ8yFpghZZii3vW9dYDOD_491aPt5X8GBwfHSYH-4PD17AQ0WEj7rqbhtWZ1fXfgdh2Kx8GX2dwc_7nl5_AbQDQFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJcEK9CoMAiwQlW3Zez8QEhRBu1FCoOVMrN2PtoIwWnNGkr_hq_jhl7HQtV5FYfsxtr5Hl9u_vNDsBr4ZUMIXpuZVTcIODnJSIDrqNWVPgpQtOH7OvRcP_YfJ5kkw3409XCEK2yi4lNoPZzR3vkO2qo8aHstRMTLeLb7vjD2S9OHaTopLVrp9GayGH4fYXLt8X7g13U9RulxnvfP-3z1GGAOyNGS67LygfhKos4RQVpK0UNUIIsR56Qy9A4zIYxRJV5zGwhilEpnBV5IJjtJG2GYvi_ZVEwohPaSb_YE3nbLjY3hkttTCrYacv2pM6I-iu5tBKXb-rfpHgN6V47pW2S3_ge3E2olX1szew-bIT6AWzt9UVyOJiixOIhzGhDq_ZXCGPPGXHhS-LbkAWw9qyATX0iKbW_Evn-hE2b_Y3gWde0BYPPjIXL5ByMyorml8ydltOalbMT1Mjy9OcjOL6Rb74Fm_W8Dk-AoWm5SJW0wg8NTcycljFzSpsqWpsNQHaftXDpynPqvDEr-suaSRUFqqJoVFGoAbxd_eesvfBj7eztTltFcv5F0ZvqAF6thtFt6SymrMP8AudkOb4A4dlozRzEDQh4cyEG8Li1hJVImkBFbnHkXWcavQD_l_fpenlfwm10quLLwdHhM7ijqNKjodttw-by_CI8R_y1rF40hs7gx0171l_fzD32
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+contamination+source+identification+using+improved+differential+evolution+Markov+chain+algorithm&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Bai%2C+Yukun&rft.au=Lu%2C+Wenxi&rft.au=Li%2C+Jiuhui&rft.au=Chang%2C+Zhengbo&rft.date=2022-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=13&rft.spage=19679&rft.epage=19692&rft_id=info:doi/10.1007%2Fs11356-021-17120-2&rft.externalDocID=10_1007_s11356_021_17120_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon