Remaining Useful Life Prediction of Rolling Bearings Based on RMS-MAVE and Dynamic Exponential Regression Model
The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the fi...
Saved in:
Published in | IEEE access Vol. 7; pp. 169705 - 169714 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2954915 |
Cover
Abstract | The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the first predicting time (FPT) selection is insensitive to incipient faults; (2) the parameter estimation must be based on the historical data, which are not available for some applications due to expensive experiment cost. To overcome the first shortcoming, this paper firstly adopts the mean absolute value of extremums (MAVE) of signals to feature signal energy. Then, the root mean square of the MAVE values (RMS-MAVE) is developed as a new HI to embody signal changes. After that, based on RMS-MAVE values, an adaptive FPT selection approach is proposed by the 3\sigma approach. For the second shortcoming, through coupling acquired measurement data with the exponential model, a dynamic exponential regression (DER) model based on RMS-MAVE values is proposed to predict the RUL of bearings. The comparison study indicates that RMS-MAVE is superior to the existed ones in FPT selection for distinguishing different health state of bearings, and the DER model performs better than the existed ones in RUL prediction. |
---|---|
AbstractList | The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the first predicting time (FPT) selection is insensitive to incipient faults; (2) the parameter estimation must be based on the historical data, which are not available for some applications due to expensive experiment cost. To overcome the first shortcoming, this paper firstly adopts the mean absolute value of extremums (MAVE) of signals to feature signal energy. Then, the root mean square of the MAVE values (RMS-MAVE) is developed as a new HI to embody signal changes. After that, based on RMS-MAVE values, an adaptive FPT selection approach is proposed by the 3\sigma approach. For the second shortcoming, through coupling acquired measurement data with the exponential model, a dynamic exponential regression (DER) model based on RMS-MAVE values is proposed to predict the RUL of bearings. The comparison study indicates that RMS-MAVE is superior to the existed ones in FPT selection for distinguishing different health state of bearings, and the DER model performs better than the existed ones in RUL prediction. |
Author | Kong, Xuefeng Yang, Jun |
Author_xml | – sequence: 1 givenname: Xuefeng orcidid: 0000-0002-0490-7190 surname: Kong fullname: Kong, Xuefeng organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Jun orcidid: 0000-0002-1428-0280 surname: Yang fullname: Yang, Jun email: tomyj2001@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China |
BookMark | eNqFkUGP0zAQhSO0SCzL_oK9WOKcYsd2Yh-7pcBKrUAty9WaOOPKVRoXO5XYf49DVivEBV_GGr_3zcjvbXE1hAGL4o7RBWNUf1iuVuv9flFRpheVlkIz-aq4rlitSy55ffXX_U1xm9KR5qNySzbXRdjhCfzghwN5TOguPdl4h-RbxM7b0YeBBEd2oe8nxT1CzDWRe0jYkfy42-7L7fLHmsDQkY9PA5y8Jetf57zhMHroyQ4PEVOaQNvQYf-ueO2gT3j7XG-Kx0_r76sv5ebr54fVclNaQdVYVi1waluhZFdTa6tO1lWNjDbAVSNaxZ3qGofAW1ezWoEToBXWsuEtUCEZvykeZm4X4GjO0Z8gPpkA3vxphHgwEEdvezSKSdEwwZCiyBjUFhznoLu2URZ0m1nvZ9Y5hp8XTKM5hksc8vqmElLWjOlKZRWfVTaGlCK6l6mMmikoMwdlpqDMc1DZpf9xWT_C9PFjBN__x3s3ez0ivkxTmqpGS_4bftiiOw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad25dc crossref_primary_10_1109_ACCESS_2020_3015783 crossref_primary_10_1109_TR_2022_3164976 crossref_primary_10_1177_16878132221100631 crossref_primary_10_3390_en16145312 crossref_primary_10_1016_j_ress_2024_110377 crossref_primary_10_1109_TIM_2020_3033471 crossref_primary_10_1007_s11668_024_01921_x crossref_primary_10_3390_app112311516 crossref_primary_10_1007_s12206_024_0402_8 crossref_primary_10_1016_j_ymssp_2021_108720 crossref_primary_10_3390_e23070791 crossref_primary_10_1016_j_ress_2022_108601 crossref_primary_10_1016_j_ymssp_2020_107451 crossref_primary_10_1109_JSEN_2023_3323417 crossref_primary_10_3390_s24072138 crossref_primary_10_1016_j_ress_2023_109854 crossref_primary_10_3390_s22176480 crossref_primary_10_1007_s10489_021_02503_2 crossref_primary_10_1016_j_engappai_2022_105582 crossref_primary_10_1088_1361_6501_ad2c51 crossref_primary_10_1016_j_ress_2021_108182 crossref_primary_10_1088_1742_6596_1983_1_012112 |
Cites_doi | 10.1016/j.procs.2015.07.321 10.1109/TIE.2017.2733487 10.1109/TR.2017.2739126 10.1121/1.4983341 10.1109/ACCESS.2019.2920297 10.1115/1.3656900 10.1016/j.ymssp.2011.10.009 10.1002/sam.11154 10.1016/j.ress.2010.12.023 10.7763/IJMLC.2012.V2.93 10.1109/28.777188 10.1109/TR.2008.2011659 10.1109/TIM.2014.2348613 10.1109/TIE.2013.2274415 10.1006/mssp.1997.0149 10.1016/j.eswa.2011.01.038 10.1109/TIE.2015.2455055 10.1016/j.ymssp.2013.08.022 10.1016/j.jsv.2014.04.058 10.1109/ICPHM.2013.6621413 10.1109/ACCESS.2019.2933854 10.1109/TR.2016.2570568 10.1016/j.ejor.2012.10.030 10.1109/TASE.2007.910302 10.1016/j.ymssp.2017.11.016 10.1109/AUTEST.2006.283625 10.1016/j.ress.2018.02.003 10.1007/s10845-016-1268-0 10.1080/07408170590929018 10.1109/TII.2016.2535368 10.1109/TIE.2013.2270212 10.1016/j.eswa.2011.08.159 10.1016/j.triboint.2014.11.021 10.1016/j.eswa.2009.01.007 10.1002/qre.1771 10.1109/TIE.2004.824875 10.1109/TR.2012.2194177 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2954915 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 169714 |
ExternalDocumentID | oai_doaj_org_article_81547141e0e44a9e9caf33a9db78ca9b 10_1109_ACCESS_2019_2954915 8908795 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71672006; 71971009 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: JSZL2017601B006 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: YWF-19-BJ-J-160 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-2ba30cb485d60cc2d5626e107a3874b83f8d7fea3bf6168af4a98e6573ba04513 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:24 EDT 2025 Mon Jun 30 05:58:03 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Tue Jul 01 01:21:52 EDT 2025 Wed Aug 27 02:40:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-2ba30cb485d60cc2d5626e107a3874b83f8d7fea3bf6168af4a98e6573ba04513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1428-0280 0000-0002-0490-7190 |
OpenAccessLink | https://doaj.org/article/81547141e0e44a9e9caf33a9db78ca9b |
PQID | 2455611928 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81547141e0e44a9e9caf33a9db78ca9b crossref_primary_10_1109_ACCESS_2019_2954915 crossref_citationtrail_10_1109_ACCESS_2019_2954915 proquest_journals_2455611928 ieee_primary_8908795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref14 ref31 ref30 ref33 ref11 ref32 ref10 saxena (ref35) 2010; 1 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 nectoux (ref36) 2012 ref26 ref25 ref20 ref22 ref21 liu (ref15) 2015; 64 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 ref40 liao (ref8) 2006 |
References_xml | – volume: 1 start-page: 2153 year: 2010 ident: ref35 article-title: Metrics for offline evaluation of prognostic performance publication-title: Int Conf Prognostics Health Manage – ident: ref18 doi: 10.1016/j.procs.2015.07.321 – ident: ref21 doi: 10.1109/TIE.2017.2733487 – ident: ref11 doi: 10.1109/TR.2017.2739126 – start-page: 127 year: 2006 ident: ref8 article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model publication-title: Proceedings of the Reliability and Maintainability Symposium (RAMS) – ident: ref29 doi: 10.1121/1.4983341 – ident: ref12 doi: 10.1109/ACCESS.2019.2920297 – ident: ref2 doi: 10.1115/1.3656900 – ident: ref20 doi: 10.1016/j.ymssp.2011.10.009 – ident: ref40 doi: 10.1002/sam.11154 – ident: ref7 doi: 10.1016/j.ress.2010.12.023 – ident: ref31 doi: 10.7763/IJMLC.2012.V2.93 – ident: ref1 doi: 10.1109/28.777188 – ident: ref39 doi: 10.1109/TR.2008.2011659 – volume: 64 start-page: 660 year: 2015 ident: ref15 article-title: An integrated probabilistic approach to lithium-ion battery remaining useful life estimation publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2014.2348613 – ident: ref28 doi: 10.1109/TIE.2013.2274415 – ident: ref34 doi: 10.1006/mssp.1997.0149 – ident: ref17 doi: 10.1016/j.eswa.2011.01.038 – ident: ref10 doi: 10.1109/TIE.2015.2455055 – ident: ref3 doi: 10.1016/j.ymssp.2013.08.022 – ident: ref24 doi: 10.1016/j.jsv.2014.04.058 – ident: ref25 doi: 10.1109/ICPHM.2013.6621413 – ident: ref13 doi: 10.1109/ACCESS.2019.2933854 – ident: ref5 doi: 10.1109/TR.2016.2570568 – start-page: 1 year: 2012 ident: ref36 article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests publication-title: Proc Int Conf Prognost Health Manage – ident: ref33 doi: 10.1016/j.ejor.2012.10.030 – ident: ref38 doi: 10.1109/TASE.2007.910302 – ident: ref27 doi: 10.1016/j.ymssp.2017.11.016 – ident: ref22 doi: 10.1109/AUTEST.2006.283625 – ident: ref37 doi: 10.1016/j.ress.2018.02.003 – ident: ref6 doi: 10.1007/s10845-016-1268-0 – ident: ref9 doi: 10.1080/07408170590929018 – ident: ref23 doi: 10.1109/TII.2016.2535368 – ident: ref4 doi: 10.1109/TIE.2013.2270212 – ident: ref16 doi: 10.1016/j.eswa.2011.08.159 – ident: ref26 doi: 10.1016/j.triboint.2014.11.021 – ident: ref19 doi: 10.1016/j.eswa.2009.01.007 – ident: ref32 doi: 10.1002/qre.1771 – ident: ref14 doi: 10.1109/TIE.2004.824875 – ident: ref30 doi: 10.1109/TR.2012.2194177 |
SSID | ssj0000816957 |
Score | 2.2696347 |
Snippet | The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 169705 |
SubjectTerms | Data acquisition Data models Degradation dynamic exponential regression model first predicting time Life prediction Machinery Parameter estimation Performance degradation Predictive models Regression models Remaining useful life Roller bearings Rolling bearings root mean square the mean absolute value of extremums Useful life Vibrations |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a9gQP3AaiMJAfeFw6J3Ec-7EtnSZEESoU7c3yFU2UdNpaCfHr8YndaAKEeIsSOz7W58uxffx9AG8YDVw4ZwsRKlawQOM4aKoQlyqGhiB5U2q8jbz4wC9W7N1lc3kAp8NdGO99H3zmx_jYn-W7jd3hVtmZkBS1sQ_hMDazdFdr2E9BAQnZtJlYqKTybDKbxTpg9JYc96dZKH17Z_LpOfqzqMofI3E_vZw_hMXesBRV8m2825qx_fkbZ-P_Wv4IHmQ_k0xSw3gMB757AvfvsA8ew2bpvyd9CLK69WG3Ju-vgicfb_DsBvEim0AyaTeZxh6Bm-pkGqc9R-LH5eJTsZh8mRPdOfI2CduT-Y_rTYcBSLHspf-agmw7gopr66ewOp9_nl0UWX-hsIyKbVEZXVNrmGgcp9ZWLvpK3Mf1oq5Fy4yog3Bt8Lo2gZdc6MC0FJ43bW000tbUz-Coi4U-B8JNZUSwHFfjrLTONCWPyVrbMC8tFSOo9sAom8nJUSNjrfpFCpUqoakQTZXRHMHpkOk6cXP8O_kUER-SIrF2_yIipXI_VSK6lG3JSk89i9WJxulQ11o60wqrpRnBMaI7_CQDO4KTfftReRC4VRVD7dHoQosXf8_1Eu6hgWlH5wSOtjc7_yr6OFvzum_cvwCM4_hF priority: 102 providerName: IEEE |
Title | Remaining Useful Life Prediction of Rolling Bearings Based on RMS-MAVE and Dynamic Exponential Regression Model |
URI | https://ieeexplore.ieee.org/document/8908795 https://www.proquest.com/docview/2455611928 https://doaj.org/article/81547141e0e44a9e9caf33a9db78ca9b |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmntgD2mDTugHyA49kOInj2I9tKUITRVO3TrxZ_omQSoqgSPz53MWmqoQEL3tNnDi-u9z57PP3EXLEWRTSe1fIWPGCRwZ-0FYRUhXLYlSiKQ2eRp5eivM5_3XVXG1QfWFNWIIHToI7kRDj25KXgQXOjQrKmVjXRnnbSmeURe_LFNtIpnofLEuhmjbDDJVMnQzHYxgR1nKpn_3eFhLhboSiHrE_U6y88st9sDn7RHbyLJEO09d9Jh9Ct0s-bmAH7pHlLNwmdgc6fwjxcUEvbmKgv-9x5wWlTZeRZshtOgJ7xiVxOoKg5SncnE3_FNPhvwk1naeniZaeTp7ulh2WD0Hfs3CdSmQ7inxpiy9kfjb5Oz4vMntC4TiTq6KypmbOctl4wZyrPMx0RIBsz9Sy5VbWUfo2BlPbKEohTQTpyiCatrYGQWfqr2Srg06_ESpsZWV0AnNpXjpvm1JAs9Y1HPTB5IBUL4LULkOLI8PFQvcpBlM6SV-j9HWW_oAcrx-6S8gabzcfoYbWTREWu78AxqKzsej3jGVA9lC_65dIxZBsfUD2X_St8y_8oCuOzKEwAZbf_0fXP8g2Diet3uyTrdX9YziA-czKHvame9gfPXwGCH3wHw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGeIA9cBtohQF-4HHpnMRx7Me2dCrQTKisaG-WrwhR0mlrJcSvxyd2owkQ4i1K7PhYny_H9vH3IfSGEs-4tSbjvqAZ9SSMg7rwYamiifeCVbmC28jNOZst6fvL6nIPnfR3YZxzXfCZG8Jjd5Zv12YLW2WnXBDQxr6D7oZ5n9J4W6vfUQEJCVHViVooJ-J0NJmEWkD8lhh251kgfntr-ulY-pOsyh9jcTfBnD1Ezc60GFfybbjd6KH5-Rtr4__a_gg9SJ4mHsWm8RjtufYJOrjFP3iI1gv3PSpE4OWN89sVnn_1Dn-8htMbQAyvPU603Xgc-gRsq-NxmPgsDh8XzaesGX2eYtVa_DZK2-Ppj6t1CyFIoeyF-xLDbFsMmmurp2h5Nr2YzLKkwJAZSvgmK7QqidGUV5YRYwobvCXmwopRlbymmpee29o7VWrPcsaVp0pwx6q61AqIa8pnaL8NhR4hzHShuTcM1uM0N1ZXOQvJalNRJwzhA1TsgJEm0ZODSsZKdssUImREUwKaMqE5QCd9pqvIzvHv5GNAvE8K1Nrdi4CUTD1V8uBU1jnNHXE0VCcYp3xZKmF1zY0SeoAOAd3-JwnYATretR-ZhoEbWVBQHw1ONH_-91yv0b3ZRTOX83fnH16g-2Bs3N85Rvub6617GTyejX7VNfRfq5D7kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Prediction+of+Rolling+Bearings+Based+on+RMS-MAVE+and+Dynamic+Exponential+Regression+Model&rft.jtitle=IEEE+access&rft.au=Kong%2C+Xuefeng&rft.au=Yang%2C+Jun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=169705&rft.epage=169714&rft_id=info:doi/10.1109%2FACCESS.2019.2954915&rft.externalDocID=8908795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |