Remaining Useful Life Prediction of Rolling Bearings Based on RMS-MAVE and Dynamic Exponential Regression Model

The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the fi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 169705 - 169714
Main Authors Kong, Xuefeng, Yang, Jun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2954915

Cover

Abstract The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the first predicting time (FPT) selection is insensitive to incipient faults; (2) the parameter estimation must be based on the historical data, which are not available for some applications due to expensive experiment cost. To overcome the first shortcoming, this paper firstly adopts the mean absolute value of extremums (MAVE) of signals to feature signal energy. Then, the root mean square of the MAVE values (RMS-MAVE) is developed as a new HI to embody signal changes. After that, based on RMS-MAVE values, an adaptive FPT selection approach is proposed by the 3\sigma approach. For the second shortcoming, through coupling acquired measurement data with the exponential model, a dynamic exponential regression (DER) model based on RMS-MAVE values is proposed to predict the RUL of bearings. The comparison study indicates that RMS-MAVE is superior to the existed ones in FPT selection for distinguishing different health state of bearings, and the DER model performs better than the existed ones in RUL prediction.
AbstractList The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the degradation performance of bearings. However, there are two shortcomings existing in those models: (1) the health indicator (HI) that used for the first predicting time (FPT) selection is insensitive to incipient faults; (2) the parameter estimation must be based on the historical data, which are not available for some applications due to expensive experiment cost. To overcome the first shortcoming, this paper firstly adopts the mean absolute value of extremums (MAVE) of signals to feature signal energy. Then, the root mean square of the MAVE values (RMS-MAVE) is developed as a new HI to embody signal changes. After that, based on RMS-MAVE values, an adaptive FPT selection approach is proposed by the 3\sigma approach. For the second shortcoming, through coupling acquired measurement data with the exponential model, a dynamic exponential regression (DER) model based on RMS-MAVE values is proposed to predict the RUL of bearings. The comparison study indicates that RMS-MAVE is superior to the existed ones in FPT selection for distinguishing different health state of bearings, and the DER model performs better than the existed ones in RUL prediction.
Author Kong, Xuefeng
Yang, Jun
Author_xml – sequence: 1
  givenname: Xuefeng
  orcidid: 0000-0002-0490-7190
  surname: Kong
  fullname: Kong, Xuefeng
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1428-0280
  surname: Yang
  fullname: Yang, Jun
  email: tomyj2001@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
BookMark eNqFkUGP0zAQhSO0SCzL_oK9WOKcYsd2Yh-7pcBKrUAty9WaOOPKVRoXO5XYf49DVivEBV_GGr_3zcjvbXE1hAGL4o7RBWNUf1iuVuv9flFRpheVlkIz-aq4rlitSy55ffXX_U1xm9KR5qNySzbXRdjhCfzghwN5TOguPdl4h-RbxM7b0YeBBEd2oe8nxT1CzDWRe0jYkfy42-7L7fLHmsDQkY9PA5y8Jetf57zhMHroyQ4PEVOaQNvQYf-ueO2gT3j7XG-Kx0_r76sv5ebr54fVclNaQdVYVi1waluhZFdTa6tO1lWNjDbAVSNaxZ3qGofAW1ezWoEToBXWsuEtUCEZvykeZm4X4GjO0Z8gPpkA3vxphHgwEEdvezSKSdEwwZCiyBjUFhznoLu2URZ0m1nvZ9Y5hp8XTKM5hksc8vqmElLWjOlKZRWfVTaGlCK6l6mMmikoMwdlpqDMc1DZpf9xWT_C9PFjBN__x3s3ez0ivkxTmqpGS_4bftiiOw
CODEN IAECCG
CitedBy_id crossref_primary_10_1088_1361_6501_ad25dc
crossref_primary_10_1109_ACCESS_2020_3015783
crossref_primary_10_1109_TR_2022_3164976
crossref_primary_10_1177_16878132221100631
crossref_primary_10_3390_en16145312
crossref_primary_10_1016_j_ress_2024_110377
crossref_primary_10_1109_TIM_2020_3033471
crossref_primary_10_1007_s11668_024_01921_x
crossref_primary_10_3390_app112311516
crossref_primary_10_1007_s12206_024_0402_8
crossref_primary_10_1016_j_ymssp_2021_108720
crossref_primary_10_3390_e23070791
crossref_primary_10_1016_j_ress_2022_108601
crossref_primary_10_1016_j_ymssp_2020_107451
crossref_primary_10_1109_JSEN_2023_3323417
crossref_primary_10_3390_s24072138
crossref_primary_10_1016_j_ress_2023_109854
crossref_primary_10_3390_s22176480
crossref_primary_10_1007_s10489_021_02503_2
crossref_primary_10_1016_j_engappai_2022_105582
crossref_primary_10_1088_1361_6501_ad2c51
crossref_primary_10_1016_j_ress_2021_108182
crossref_primary_10_1088_1742_6596_1983_1_012112
Cites_doi 10.1016/j.procs.2015.07.321
10.1109/TIE.2017.2733487
10.1109/TR.2017.2739126
10.1121/1.4983341
10.1109/ACCESS.2019.2920297
10.1115/1.3656900
10.1016/j.ymssp.2011.10.009
10.1002/sam.11154
10.1016/j.ress.2010.12.023
10.7763/IJMLC.2012.V2.93
10.1109/28.777188
10.1109/TR.2008.2011659
10.1109/TIM.2014.2348613
10.1109/TIE.2013.2274415
10.1006/mssp.1997.0149
10.1016/j.eswa.2011.01.038
10.1109/TIE.2015.2455055
10.1016/j.ymssp.2013.08.022
10.1016/j.jsv.2014.04.058
10.1109/ICPHM.2013.6621413
10.1109/ACCESS.2019.2933854
10.1109/TR.2016.2570568
10.1016/j.ejor.2012.10.030
10.1109/TASE.2007.910302
10.1016/j.ymssp.2017.11.016
10.1109/AUTEST.2006.283625
10.1016/j.ress.2018.02.003
10.1007/s10845-016-1268-0
10.1080/07408170590929018
10.1109/TII.2016.2535368
10.1109/TIE.2013.2270212
10.1016/j.eswa.2011.08.159
10.1016/j.triboint.2014.11.021
10.1016/j.eswa.2009.01.007
10.1002/qre.1771
10.1109/TIE.2004.824875
10.1109/TR.2012.2194177
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2954915
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 169714
ExternalDocumentID oai_doaj_org_article_81547141e0e44a9e9caf33a9db78ca9b
10_1109_ACCESS_2019_2954915
8908795
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71672006; 71971009
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: JSZL2017601B006
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: YWF-19-BJ-J-160
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-2ba30cb485d60cc2d5626e107a3874b83f8d7fea3bf6168af4a98e6573ba04513
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:24 EDT 2025
Mon Jun 30 05:58:03 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Tue Jul 01 01:21:52 EDT 2025
Wed Aug 27 02:40:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2ba30cb485d60cc2d5626e107a3874b83f8d7fea3bf6168af4a98e6573ba04513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1428-0280
0000-0002-0490-7190
OpenAccessLink https://doaj.org/article/81547141e0e44a9e9caf33a9db78ca9b
PQID 2455611928
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_81547141e0e44a9e9caf33a9db78ca9b
crossref_primary_10_1109_ACCESS_2019_2954915
crossref_citationtrail_10_1109_ACCESS_2019_2954915
proquest_journals_2455611928
ieee_primary_8908795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref14
ref31
ref30
ref33
ref11
ref32
ref10
saxena (ref35) 2010; 1
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
nectoux (ref36) 2012
ref26
ref25
ref20
ref22
ref21
liu (ref15) 2015; 64
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
liao (ref8) 2006
References_xml – volume: 1
  start-page: 2153
  year: 2010
  ident: ref35
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int Conf Prognostics Health Manage
– ident: ref18
  doi: 10.1016/j.procs.2015.07.321
– ident: ref21
  doi: 10.1109/TIE.2017.2733487
– ident: ref11
  doi: 10.1109/TR.2017.2739126
– start-page: 127
  year: 2006
  ident: ref8
  article-title: Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
  publication-title: Proceedings of the Reliability and Maintainability Symposium (RAMS)
– ident: ref29
  doi: 10.1121/1.4983341
– ident: ref12
  doi: 10.1109/ACCESS.2019.2920297
– ident: ref2
  doi: 10.1115/1.3656900
– ident: ref20
  doi: 10.1016/j.ymssp.2011.10.009
– ident: ref40
  doi: 10.1002/sam.11154
– ident: ref7
  doi: 10.1016/j.ress.2010.12.023
– ident: ref31
  doi: 10.7763/IJMLC.2012.V2.93
– ident: ref1
  doi: 10.1109/28.777188
– ident: ref39
  doi: 10.1109/TR.2008.2011659
– volume: 64
  start-page: 660
  year: 2015
  ident: ref15
  article-title: An integrated probabilistic approach to lithium-ion battery remaining useful life estimation
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2014.2348613
– ident: ref28
  doi: 10.1109/TIE.2013.2274415
– ident: ref34
  doi: 10.1006/mssp.1997.0149
– ident: ref17
  doi: 10.1016/j.eswa.2011.01.038
– ident: ref10
  doi: 10.1109/TIE.2015.2455055
– ident: ref3
  doi: 10.1016/j.ymssp.2013.08.022
– ident: ref24
  doi: 10.1016/j.jsv.2014.04.058
– ident: ref25
  doi: 10.1109/ICPHM.2013.6621413
– ident: ref13
  doi: 10.1109/ACCESS.2019.2933854
– ident: ref5
  doi: 10.1109/TR.2016.2570568
– start-page: 1
  year: 2012
  ident: ref36
  article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests
  publication-title: Proc Int Conf Prognost Health Manage
– ident: ref33
  doi: 10.1016/j.ejor.2012.10.030
– ident: ref38
  doi: 10.1109/TASE.2007.910302
– ident: ref27
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref22
  doi: 10.1109/AUTEST.2006.283625
– ident: ref37
  doi: 10.1016/j.ress.2018.02.003
– ident: ref6
  doi: 10.1007/s10845-016-1268-0
– ident: ref9
  doi: 10.1080/07408170590929018
– ident: ref23
  doi: 10.1109/TII.2016.2535368
– ident: ref4
  doi: 10.1109/TIE.2013.2270212
– ident: ref16
  doi: 10.1016/j.eswa.2011.08.159
– ident: ref26
  doi: 10.1016/j.triboint.2014.11.021
– ident: ref19
  doi: 10.1016/j.eswa.2009.01.007
– ident: ref32
  doi: 10.1002/qre.1771
– ident: ref14
  doi: 10.1109/TIE.2004.824875
– ident: ref30
  doi: 10.1109/TR.2012.2194177
SSID ssj0000816957
Score 2.2696347
Snippet The remaining useful life (RUL) prediction of rolling bearings has recently gained increasing interest. Many models have been established to catch the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169705
SubjectTerms Data acquisition
Data models
Degradation
dynamic exponential regression model
first predicting time
Life prediction
Machinery
Parameter estimation
Performance degradation
Predictive models
Regression models
Remaining useful life
Roller bearings
Rolling bearings
root mean square
the mean absolute value of extremums
Useful life
Vibrations
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a9gQP3AaiMJAfeFw6J3Ec-7EtnSZEESoU7c3yFU2UdNpaCfHr8YndaAKEeIsSOz7W58uxffx9AG8YDVw4ZwsRKlawQOM4aKoQlyqGhiB5U2q8jbz4wC9W7N1lc3kAp8NdGO99H3zmx_jYn-W7jd3hVtmZkBS1sQ_hMDazdFdr2E9BAQnZtJlYqKTybDKbxTpg9JYc96dZKH17Z_LpOfqzqMofI3E_vZw_hMXesBRV8m2825qx_fkbZ-P_Wv4IHmQ_k0xSw3gMB757AvfvsA8ew2bpvyd9CLK69WG3Ju-vgicfb_DsBvEim0AyaTeZxh6Bm-pkGqc9R-LH5eJTsZh8mRPdOfI2CduT-Y_rTYcBSLHspf-agmw7gopr66ewOp9_nl0UWX-hsIyKbVEZXVNrmGgcp9ZWLvpK3Mf1oq5Fy4yog3Bt8Lo2gZdc6MC0FJ43bW000tbUz-Coi4U-B8JNZUSwHFfjrLTONCWPyVrbMC8tFSOo9sAom8nJUSNjrfpFCpUqoakQTZXRHMHpkOk6cXP8O_kUER-SIrF2_yIipXI_VSK6lG3JSk89i9WJxulQ11o60wqrpRnBMaI7_CQDO4KTfftReRC4VRVD7dHoQosXf8_1Eu6hgWlH5wSOtjc7_yr6OFvzum_cvwCM4_hF
  priority: 102
  providerName: IEEE
Title Remaining Useful Life Prediction of Rolling Bearings Based on RMS-MAVE and Dynamic Exponential Regression Model
URI https://ieeexplore.ieee.org/document/8908795
https://www.proquest.com/docview/2455611928
https://doaj.org/article/81547141e0e44a9e9caf33a9db78ca9b
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmntgD2mDTugHyA49kOInj2I9tKUITRVO3TrxZ_omQSoqgSPz53MWmqoQEL3tNnDi-u9z57PP3EXLEWRTSe1fIWPGCRwZ-0FYRUhXLYlSiKQ2eRp5eivM5_3XVXG1QfWFNWIIHToI7kRDj25KXgQXOjQrKmVjXRnnbSmeURe_LFNtIpnofLEuhmjbDDJVMnQzHYxgR1nKpn_3eFhLhboSiHrE_U6y88st9sDn7RHbyLJEO09d9Jh9Ct0s-bmAH7pHlLNwmdgc6fwjxcUEvbmKgv-9x5wWlTZeRZshtOgJ7xiVxOoKg5SncnE3_FNPhvwk1naeniZaeTp7ulh2WD0Hfs3CdSmQ7inxpiy9kfjb5Oz4vMntC4TiTq6KypmbOctl4wZyrPMx0RIBsz9Sy5VbWUfo2BlPbKEohTQTpyiCatrYGQWfqr2Srg06_ESpsZWV0AnNpXjpvm1JAs9Y1HPTB5IBUL4LULkOLI8PFQvcpBlM6SV-j9HWW_oAcrx-6S8gabzcfoYbWTREWu78AxqKzsej3jGVA9lC_65dIxZBsfUD2X_St8y_8oCuOzKEwAZbf_0fXP8g2Diet3uyTrdX9YziA-czKHvame9gfPXwGCH3wHw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGeIA9cBtohQF-4HHpnMRx7Me2dCrQTKisaG-WrwhR0mlrJcSvxyd2owkQ4i1K7PhYny_H9vH3IfSGEs-4tSbjvqAZ9SSMg7rwYamiifeCVbmC28jNOZst6fvL6nIPnfR3YZxzXfCZG8Jjd5Zv12YLW2WnXBDQxr6D7oZ5n9J4W6vfUQEJCVHViVooJ-J0NJmEWkD8lhh251kgfntr-ulY-pOsyh9jcTfBnD1Ezc60GFfybbjd6KH5-Rtr4__a_gg9SJ4mHsWm8RjtufYJOrjFP3iI1gv3PSpE4OWN89sVnn_1Dn-8htMbQAyvPU603Xgc-gRsq-NxmPgsDh8XzaesGX2eYtVa_DZK2-Ppj6t1CyFIoeyF-xLDbFsMmmurp2h5Nr2YzLKkwJAZSvgmK7QqidGUV5YRYwobvCXmwopRlbymmpee29o7VWrPcsaVp0pwx6q61AqIa8pnaL8NhR4hzHShuTcM1uM0N1ZXOQvJalNRJwzhA1TsgJEm0ZODSsZKdssUImREUwKaMqE5QCd9pqvIzvHv5GNAvE8K1Nrdi4CUTD1V8uBU1jnNHXE0VCcYp3xZKmF1zY0SeoAOAd3-JwnYATretR-ZhoEbWVBQHw1ONH_-91yv0b3ZRTOX83fnH16g-2Bs3N85Rvub6617GTyejX7VNfRfq5D7kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Prediction+of+Rolling+Bearings+Based+on+RMS-MAVE+and+Dynamic+Exponential+Regression+Model&rft.jtitle=IEEE+access&rft.au=Kong%2C+Xuefeng&rft.au=Yang%2C+Jun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=169705&rft.epage=169714&rft_id=info:doi/10.1109%2FACCESS.2019.2954915&rft.externalDocID=8908795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon