An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components
In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental c...
Saved in:
| Published in | IEEE access Vol. 7; pp. 16101 - 16109 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2019.2895394 |
Cover
| Abstract | In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental conditions with varying operational loads, and a lack of fault labels in the maritime industry generally, any PHM solution for maritime components should include independent and intelligent fault detection algorithms that can report faults automatically. In this paper, we propose an unsupervised reconstruction-based fault detection algorithm for maritime components. The advantages of the proposed algorithm are verified on five different data sets of real operational run-to-failure data provided by a highly regarded industrial company. Each data set is subject to a fault at an unknown time step. In addition, different magnitudes of random white Gaussian noise are applied to each data set in order to create several real-life situations. The results suggest that the algorithm is highly suitable to be included as part of a pure data-driven diagnostics approach in future end-to-end PHM system solutions. |
|---|---|
| AbstractList | In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental conditions with varying operational loads, and a lack of fault labels in the maritime industry generally, any PHM solution for maritime components should include independent and intelligent fault detection algorithms that can report faults automatically. In this paper, we propose an unsupervised reconstruction-based fault detection algorithm for maritime components. The advantages of the proposed algorithm are verified on five different data sets of real operational run-to-failure data provided by a highly regarded industrial company. Each data set is subject to a fault at an unknown time step. In addition, different magnitudes of random white Gaussian noise are applied to each data set in order to create several real-life situations. The results suggest that the algorithm is highly suitable to be included as part of a pure data-driven diagnostics approach in future end-to-end PHM system solutions. |
| Author | Bjorlykhaug, Emil Ellefsen, Andre Listou Aesoy, Vilmar Zhang, Houxiang |
| Author_xml | – sequence: 1 givenname: Andre Listou orcidid: 0000-0002-1702-7045 surname: Ellefsen fullname: Ellefsen, Andre Listou email: andre.ellefsen@ntnu.no organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway – sequence: 2 givenname: Emil orcidid: 0000-0003-4291-2342 surname: Bjorlykhaug fullname: Bjorlykhaug, Emil organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway – sequence: 3 givenname: Vilmar surname: Aesoy fullname: Aesoy, Vilmar organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway – sequence: 4 givenname: Houxiang surname: Zhang fullname: Zhang, Houxiang organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway |
| BookMark | eNqFUU1P3DAQjSqQoJRfwCVSz9n6O85xm0JBoqpUPq7WrDOhXmXj1HZa8e_xEoQqeuhcZvRm3rPnzfviYPQjFsUZJStKSfNp3bbnNzcrRmizYrqRvBHvimNGVVNxydXBX_VRcRrjluTQGZL1cXG_Hsu7Mc4Tht8uYlf-QOvHmMJsk_Nj9Rn24AXMQyq_YMJntFwPDz649HNX9j6U3yDXbodl63dT_tuY4ofisIch4ulLPinuLs5v28vq-vvXq3Z9XVlBdKoYQRSoa4LUqqarpURFOtIDBdrJngqlLe9yaKitzcvVErgmwBXtaU02_KS4WnQ7D1szBbeD8Gg8OPMM-PBgICRnBzSWM9kxhr2WXPRcANto3SDZ1Mi4FjpriUVrHid4_APD8CpIidlbbcBajNHsrTYvVmfax4U2Bf9rxpjM1s9hzFsbJqRUXGW78xRfpmzwMQbs_9FezvhWu3nDsi7B_gQpgBv-wz1buA4RX1_TiimSu0_PE6uH |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2920297 crossref_primary_10_1016_j_jmsy_2021_05_003 crossref_primary_10_1016_j_dcan_2023_02_011 crossref_primary_10_3390_app10020514 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_TIM_2020_2994012 crossref_primary_10_1109_TIM_2020_3016413 crossref_primary_10_1016_j_eswa_2022_118962 crossref_primary_10_3390_e23010083 crossref_primary_10_1371_journal_pone_0248515 crossref_primary_10_3390_jmse11030634 crossref_primary_10_1016_j_oceaneng_2024_117619 crossref_primary_10_1080_17445302_2023_2237302 crossref_primary_10_3390_s24165310 crossref_primary_10_1109_JSEN_2020_3040696 crossref_primary_10_1016_j_oceaneng_2023_115277 crossref_primary_10_1016_j_compind_2023_103878 crossref_primary_10_1177_14750902221149291 crossref_primary_10_1109_ACCESS_2021_3084602 crossref_primary_10_1016_j_eswa_2022_118814 crossref_primary_10_1016_j_jestch_2023_101409 crossref_primary_10_1109_JSEN_2021_3105226 crossref_primary_10_1016_j_apor_2022_103052 crossref_primary_10_3390_a17090411 crossref_primary_10_1109_JIOT_2020_2993411 crossref_primary_10_1080_15732479_2023_2165118 |
| Cites_doi | 10.1016/j.neunet.2005.06.042 10.1007/s00170-004-2131-6 10.1049/cp:19991218 10.1162/neco.1997.9.8.1735 10.1109/LRA.2018.2801475 10.1109/TNNLS.2016.2582924 10.1109/ICPHM.2016.7811910 10.1109/IJCNN.2000.861302 10.1109/LSP.2005.856878 10.1016/j.ress.2017.11.021 10.1109/CIVEMSA.2017.7995339 10.1109/TSP.2013.2265222 10.1016/j.isatra.2018.04.005 10.1016/j.ymssp.2016.02.007 10.1109/TPAMI.2013.50 10.1016/j.renene.2018.10.062 10.1016/j.sigpro.2016.07.028 10.1016/j.ress.2018.11.027 10.1007/978-3-642-35289-8_3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2019.2895394 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore digital library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 16109 |
| ExternalDocumentID | oai_doaj_org_article_c325d22ef8534f34a2b889e0b7e23848 10.1109/access.2019.2895394 10_1109_ACCESS_2019_2895394 8626094 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Norges Forskningsråd grantid: 280703 funderid: 10.13039/501100005416 – fundername: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology grantid: 90329106 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-20ee4e870e1c69d755e60d0fa1a1d5f1468c3dddd8a7cc28975a380a361f170b3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:09 EDT 2025 Tue Aug 19 09:41:55 EDT 2025 Mon Jun 30 03:50:26 EDT 2025 Wed Oct 01 02:58:13 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 03:03:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-20ee4e870e1c69d755e60d0fa1a1d5f1468c3dddd8a7cc28975a380a361f170b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1702-7045 0000-0003-4291-2342 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8626094 |
| PQID | 2455636000 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2019_2895394 crossref_primary_10_1109_ACCESS_2019_2895394 crossref_citationtrail_10_1109_ACCESS_2019_2895394 ieee_primary_8626094 doaj_primary_oai_doaj_org_article_c325d22ef8534f34a2b889e0b7e23848 proquest_journals_2455636000 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 wu (ref11) 2018 (ref14) 2018 ref16 ref19 kingma (ref24) 2013 ref18 vincent (ref17) 2010; 11 malhotra (ref20) 2016 zymaris (ref10) 2016 allen (ref4) 2001 lecun (ref21) 2012 ref23 ref26 ref25 ellefsen (ref1) 0 (ref30) 2018 kothamasu (ref3) 2006; 28 ref28 ref27 ref29 ref8 ref7 ref9 ref6 ref5 goodfellow (ref22) 2016 knutsen (ref2) 2014 |
| References_xml | – year: 2018 ident: ref14 publication-title: Case Western Reserve University Bearing Data Center – year: 2001 ident: ref4 article-title: Us navy analysis of submarine maintenance data and the development of age and reliability profiles – ident: ref26 doi: 10.1016/j.neunet.2005.06.042 – year: 2018 ident: ref30 publication-title: Deeplearning4j Development Team Deeplearning4j Open-source distributed deep learning for the JVM Apache Software Foundation License 2 0 – start-page: 556 year: 2018 ident: ref11 article-title: Fault detection method for ship equipment based on BP neural network publication-title: Proc Int Conf Robots Intell Syst (ICRIS) – volume: 28 start-page: 1012 year: 2006 ident: ref3 article-title: System health monitoring and prognostics-A review of current paradigms and practices publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2131-6 – ident: ref25 doi: 10.1049/cp:19991218 – volume: 11 start-page: 3371 year: 2010 ident: ref17 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref28 doi: 10.1162/neco.1997.9.8.1735 – ident: ref19 doi: 10.1109/LRA.2018.2801475 – ident: ref29 doi: 10.1109/TNNLS.2016.2582924 – ident: ref12 doi: 10.1109/ICPHM.2016.7811910 – year: 2016 ident: ref22 publication-title: Deep Learning – ident: ref27 doi: 10.1109/IJCNN.2000.861302 – ident: ref8 doi: 10.1109/LSP.2005.856878 – year: 2013 ident: ref24 publication-title: Auto-encoding variational bayes – ident: ref7 doi: 10.1016/j.ress.2017.11.021 – ident: ref6 doi: 10.1109/CIVEMSA.2017.7995339 – ident: ref9 doi: 10.1109/TSP.2013.2265222 – ident: ref16 doi: 10.1016/j.isatra.2018.04.005 – ident: ref18 doi: 10.1016/j.ymssp.2016.02.007 – ident: ref23 doi: 10.1109/TPAMI.2013.50 – start-page: 1 year: 2016 ident: ref10 article-title: Towards a model-based condition assessment of complex marine machinery systems using systems engineering publication-title: Proc 3rd Eur Conf Prognostics Health Manage Soc – start-page: 1 year: 2016 ident: ref20 article-title: Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder publication-title: Proc Workshop Mach Learn Prognostics Health Manage – ident: ref13 doi: 10.1016/j.renene.2018.10.062 – ident: ref15 doi: 10.1016/j.sigpro.2016.07.028 – year: 0 ident: ref1 article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships publication-title: IEEE Trans Rel – year: 2014 ident: ref2 article-title: Beyond condition monitoring in the maritime industry publication-title: DNV GL Strategic Research & Inovation Position Paper – ident: ref5 doi: 10.1016/j.ress.2018.11.027 – start-page: 9 year: 2012 ident: ref21 article-title: Efficient BackProp publication-title: Neural Networks Tricks of the Trade doi: 10.1007/978-3-642-35289-8_3 |
| SSID | ssj0000816957 |
| Score | 2.319916 |
| Snippet | In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16101 |
| SubjectTerms | Algorithms Automatic fault detection Component reliability Datasets deep learning Degradation Fault detection Machine learning algorithms Maintenance engineering Maritime industry Prediction algorithms Prognostics and health management Random noise Reconstruction Signal processing algorithms unsupervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9QwDI7QXhgPaDAQx8aUBx7XLU3SJnm8HZwmpO1pN-0tct0UkLruxPWE-PfEaXfcCYm90McodV3bSezI_szYRy0FuMpBFnQZMo1GZBXIOgvYGMAqSBWoOPnqurxc6C93xd1Wqy_KCRvggQfBnaOSRS1laOK5ohulQVbWuiAqE-lYncp8hXVbwVTag21eusKMMEO5cOfT2Sz-EeVyubMYZBTK6Z2jKCH2jy1WdrzN5-tuCb9-QttuHTzzA_Zy9Bj5dOD0FXsWutfsxRaO4CG7nXZ80a3WS1r4q1BzCir_QMNmF0CDc1i3Pf8U-pR91fFp-_Xhx_f-2z2Pjiu_AoI3ug-cdoiHjvIr3rDF_PPN7DIbGyZkqIXto8WHoENcgSHH0tWmKEIpatFADnldNFRlhaqOjwWDGKVgClBWgCrzJjeiUm_ZXhe_8I5xlGhUbdGgFRqchrIEhwpieJGjdDhh8lF2Hkc0cWpq0foUVQjnB4F7ErgfBT5hp5uXlgOYxr-nX5BSNlMJCTsNRPvwo334p-xjwg5JpRsiKYIj2sePKvbjql15qQkuLbqAYsKyjdr_YhVSK8sdVt__D1aP2D7RHC54jtletJLwIbo8fXWSrPs3Snr6mQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EhSx3b8OHYL1QppVxwoWk7WxJnAimy2oql4_HrsxC1bkJAgp8hykkm-GXsmHn9DyAvBKJjKQIZCYiacolkFrM7QNQpchYxj2Jx8eiZPluLNeXkef7gNe2EQcUg-wzycDmv5F9h-U1PJAnmamerAqE6L6eiLG5Gv6uYmOZCl98Un5GB59nb2IVSUK6TJ-LA2-TQSa05hqEEY8rlM7gONkhuxNx0NrP2xzMqex3lr063g-1do22uTz-IusVuxx5yTz_mmr3L34zdGx_9_r3vkTvRL09moSPfJDewekNvX2AoPyftZly679WYVhpc11mkIXX8R0GbHEBoXsGn79BX2Q45Xl87aj1dfLvpPl6l3j9NTCCRKl5iGceiqC1kcD8ly8frd_CSLZRkyJ6juvV0hCvR2joWTplZliZLWtIECirpswl4ux2t_aFDO-e-sSuCaApdFUyha8Udk0vknPCapY07xWjvlNBVgBEgJxnHwQUzhmHEJYVt0rIuc5aF0RmuH2IUaO5vPvaLaAKmNkCbk5e6i1UjZ8ffuxwH2XdfAtz00eIhsNF_rOCtrxrDx3o1ouABWaW2QVsprsxY6IYcB1t1NIoYJOdoqkY1jw9oyEUjZPNo0IdlOsf4QdVTWPVGf_GP_IzLxOoDPvNvUV8-jbfwE6FQS2Q priority: 102 providerName: Unpaywall |
| Title | An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components |
| URI | https://ieeexplore.ieee.org/document/8626094 https://www.proquest.com/docview/2455636000 https://ieeexplore.ieee.org/ielx7/6287639/8600701/08626094.pdf https://doaj.org/article/c325d22ef8534f34a2b889e0b7e23848 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QAc-CqIhbLKgWOzdWwnto_pwqpC2ooDi8opmjgTQKTZFZsIwa_HTrKhCwiRU2Q5sZ03Y48n4zcALyVnaHKDIcmEQmkVC3PkRUi2VGhz4oL84eTlZXKxkm-u4qsDOB3PwhBRF3xGM3_b_csv1rb1rrKzzvo28hAOlU76s1qjP8UnkDCxGoiFImbO0vncjcFHb5mZ21bEwsi9xafj6B-SquzZl7fbeoPfv2FV3VhqFvdhuetkH2HyZdY2-cz--I2_8X9H8QDuDTZnkPZC8hAOqH4Ed28wER7D-7QOVvW23fipY0tF4Lelv8hlw3P0hQtsqyZ4RU0Xv1UHafVx_fVz8-k6cKZvsERPkHRNgZ9j1rWP0HgMq8Xrd_OLcEi5EFrJdON0hkiS02GKbGIKFceUsIKVGGFUxKU_p2VF4S6Nylr3VVWMQjMUSVRGiuXiCRzVroWnEFhulSi0VVYziUZikqCxAt0GJbLc2AnwHRaZHfjIfVqMKuv2JcxkPYCZBzAbAJzA6fjQpqfj-Hf1cw_yWNVzaXcFDpBsUM3MCh4XnFPpLBdZCok819oQy5WTVC31BI49iONLBvwmcLITmWzQ-23GpSdcc0Ykm0A4itEfXcUuGeZeV5_9vZXncMfX6p0-J3DkcKcXzgxq8mnnPph2WjCFW6vLt-mHn2JqB2I |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXEQoEcODZbx48kPm4XVgt0e-qi3qyJMymINLtiEyH49dhJNnQBIXKKLDux883YM874G4DXkjPUmcaQZEyhtAkLM-R5SLZI0GbEBfnDyYvzeL6U7y_V5R4cD2dhiKgNPqOxv23_5ecr2_itspPW-tbyFtxWUkrVndYadlR8Cgmtkp5aKGL6ZDKdulH4-C09do6FElruLD8tS3-fVmXHwjxoqjV-_4ZleWOxmd2HxbabXYzJl3FTZ2P74zcGx_8dxwO411udwaQTk4ewR9UjuHuDi_AQPk6qYFltmrWfPDaUB94x_UUvG56iL5xhU9bBG6rbCK4qmJRXq6-f60_XgTN-gwV6iqRrCvwss6p8jMZjWM7eXkznYZ90IbSSpbXTGiJJTospsrHOE6UoZjkrMMIoV4U_qWVF7q4UE2vdV00UipShiKMiSlgmnsB-5d7wFALLbSLy1CY2ZRK1xDhGbQU6FyWyXNsR8C0WxvaM5D4xRmlaz4Rp0wFoPICmB3AEx0OjdUfI8e_qpx7koapn024LHCCmV05jBVc551Q420UWQiLP0lQTyxInq6lMR3DoQRwe0uM3gqOtyJhe8zeGS0-55sxINoJwEKM_uoptOsydrj77-1tewcH8YnFmzt6df3gOd3yLbgvoCPadDNALZxTV2ctWF34C1kkICg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EhSx3b8OHYL1QppVxwoWk7WxJnAimy2oql4_HrsxC1bkJAgp8hykkm-GXsmHn9DyAvBKJjKQIZCYiacolkFrM7QNQpchYxj2Jx8eiZPluLNeXkef7gNe2EQcUg-wzycDmv5F9h-U1PJAnmamerAqE6L6eiLG5Gv6uYmOZCl98Un5GB59nb2IVSUK6TJ-LA2-TQSa05hqEEY8rlM7gONkhuxNx0NrP2xzMqex3lr063g-1do22uTz-IusVuxx5yTz_mmr3L34zdGx_9_r3vkTvRL09moSPfJDewekNvX2AoPyftZly679WYVhpc11mkIXX8R0GbHEBoXsGn79BX2Q45Xl87aj1dfLvpPl6l3j9NTCCRKl5iGceiqC1kcD8ly8frd_CSLZRkyJ6juvV0hCvR2joWTplZliZLWtIECirpswl4ux2t_aFDO-e-sSuCaApdFUyha8Udk0vknPCapY07xWjvlNBVgBEgJxnHwQUzhmHEJYVt0rIuc5aF0RmuH2IUaO5vPvaLaAKmNkCbk5e6i1UjZ8ffuxwH2XdfAtz00eIhsNF_rOCtrxrDx3o1ouABWaW2QVsprsxY6IYcB1t1NIoYJOdoqkY1jw9oyEUjZPNo0IdlOsf4QdVTWPVGf_GP_IzLxOoDPvNvUV8-jbfwE6FQS2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Reconstruction-Based+Fault+Detection+Algorithm+for+Maritime+Components&rft.jtitle=IEEE+access&rft.au=Ellefsen%2C+Andre+Listou&rft.au=Bjorlykhaug%2C+Emil&rft.au=Aesoy%2C+Vilmar&rft.au=Zhang%2C+Houxiang&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=16101&rft.epage=16109&rft_id=info:doi/10.1109%2FACCESS.2019.2895394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2895394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |