An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components

In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 16101 - 16109
Main Authors Ellefsen, Andre Listou, Bjorlykhaug, Emil, Aesoy, Vilmar, Zhang, Houxiang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2895394

Cover

Abstract In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental conditions with varying operational loads, and a lack of fault labels in the maritime industry generally, any PHM solution for maritime components should include independent and intelligent fault detection algorithms that can report faults automatically. In this paper, we propose an unsupervised reconstruction-based fault detection algorithm for maritime components. The advantages of the proposed algorithm are verified on five different data sets of real operational run-to-failure data provided by a highly regarded industrial company. Each data set is subject to a fault at an unknown time step. In addition, different magnitudes of random white Gaussian noise are applied to each data set in order to create several real-life situations. The results suggest that the algorithm is highly suitable to be included as part of a pure data-driven diagnostics approach in future end-to-end PHM system solutions.
AbstractList In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development of prognostics and health management (PHM) approaches for these systems' critical maritime components. In light of harsh environmental conditions with varying operational loads, and a lack of fault labels in the maritime industry generally, any PHM solution for maritime components should include independent and intelligent fault detection algorithms that can report faults automatically. In this paper, we propose an unsupervised reconstruction-based fault detection algorithm for maritime components. The advantages of the proposed algorithm are verified on five different data sets of real operational run-to-failure data provided by a highly regarded industrial company. Each data set is subject to a fault at an unknown time step. In addition, different magnitudes of random white Gaussian noise are applied to each data set in order to create several real-life situations. The results suggest that the algorithm is highly suitable to be included as part of a pure data-driven diagnostics approach in future end-to-end PHM system solutions.
Author Bjorlykhaug, Emil
Ellefsen, Andre Listou
Aesoy, Vilmar
Zhang, Houxiang
Author_xml – sequence: 1
  givenname: Andre Listou
  orcidid: 0000-0002-1702-7045
  surname: Ellefsen
  fullname: Ellefsen, Andre Listou
  email: andre.ellefsen@ntnu.no
  organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway
– sequence: 2
  givenname: Emil
  orcidid: 0000-0003-4291-2342
  surname: Bjorlykhaug
  fullname: Bjorlykhaug, Emil
  organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway
– sequence: 3
  givenname: Vilmar
  surname: Aesoy
  fullname: Aesoy, Vilmar
  organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway
– sequence: 4
  givenname: Houxiang
  surname: Zhang
  fullname: Zhang, Houxiang
  organization: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Åalesund, Norway
BookMark eNqFUU1P3DAQjSqQoJRfwCVSz9n6O85xm0JBoqpUPq7WrDOhXmXj1HZa8e_xEoQqeuhcZvRm3rPnzfviYPQjFsUZJStKSfNp3bbnNzcrRmizYrqRvBHvimNGVVNxydXBX_VRcRrjluTQGZL1cXG_Hsu7Mc4Tht8uYlf-QOvHmMJsk_Nj9Rn24AXMQyq_YMJntFwPDz649HNX9j6U3yDXbodl63dT_tuY4ofisIch4ulLPinuLs5v28vq-vvXq3Z9XVlBdKoYQRSoa4LUqqarpURFOtIDBdrJngqlLe9yaKitzcvVErgmwBXtaU02_KS4WnQ7D1szBbeD8Gg8OPMM-PBgICRnBzSWM9kxhr2WXPRcANto3SDZ1Mi4FjpriUVrHid4_APD8CpIidlbbcBajNHsrTYvVmfax4U2Bf9rxpjM1s9hzFsbJqRUXGW78xRfpmzwMQbs_9FezvhWu3nDsi7B_gQpgBv-wz1buA4RX1_TiimSu0_PE6uH
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2920297
crossref_primary_10_1016_j_jmsy_2021_05_003
crossref_primary_10_1016_j_dcan_2023_02_011
crossref_primary_10_3390_app10020514
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_TIM_2020_2994012
crossref_primary_10_1109_TIM_2020_3016413
crossref_primary_10_1016_j_eswa_2022_118962
crossref_primary_10_3390_e23010083
crossref_primary_10_1371_journal_pone_0248515
crossref_primary_10_3390_jmse11030634
crossref_primary_10_1016_j_oceaneng_2024_117619
crossref_primary_10_1080_17445302_2023_2237302
crossref_primary_10_3390_s24165310
crossref_primary_10_1109_JSEN_2020_3040696
crossref_primary_10_1016_j_oceaneng_2023_115277
crossref_primary_10_1016_j_compind_2023_103878
crossref_primary_10_1177_14750902221149291
crossref_primary_10_1109_ACCESS_2021_3084602
crossref_primary_10_1016_j_eswa_2022_118814
crossref_primary_10_1016_j_jestch_2023_101409
crossref_primary_10_1109_JSEN_2021_3105226
crossref_primary_10_1016_j_apor_2022_103052
crossref_primary_10_3390_a17090411
crossref_primary_10_1109_JIOT_2020_2993411
crossref_primary_10_1080_15732479_2023_2165118
Cites_doi 10.1016/j.neunet.2005.06.042
10.1007/s00170-004-2131-6
10.1049/cp:19991218
10.1162/neco.1997.9.8.1735
10.1109/LRA.2018.2801475
10.1109/TNNLS.2016.2582924
10.1109/ICPHM.2016.7811910
10.1109/IJCNN.2000.861302
10.1109/LSP.2005.856878
10.1016/j.ress.2017.11.021
10.1109/CIVEMSA.2017.7995339
10.1109/TSP.2013.2265222
10.1016/j.isatra.2018.04.005
10.1016/j.ymssp.2016.02.007
10.1109/TPAMI.2013.50
10.1016/j.renene.2018.10.062
10.1016/j.sigpro.2016.07.028
10.1016/j.ress.2018.11.027
10.1007/978-3-642-35289-8_3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2019.2895394
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore digital library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 16109
ExternalDocumentID oai_doaj_org_article_c325d22ef8534f34a2b889e0b7e23848
10.1109/access.2019.2895394
10_1109_ACCESS_2019_2895394
8626094
Genre orig-research
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 280703
  funderid: 10.13039/501100005416
– fundername: Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology
  grantid: 90329106
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-20ee4e870e1c69d755e60d0fa1a1d5f1468c3dddd8a7cc28975a380a361f170b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:09 EDT 2025
Tue Aug 19 09:41:55 EDT 2025
Mon Jun 30 03:50:26 EDT 2025
Wed Oct 01 02:58:13 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Wed Aug 27 03:03:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-20ee4e870e1c69d755e60d0fa1a1d5f1468c3dddd8a7cc28975a380a361f170b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1702-7045
0000-0003-4291-2342
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8626094
PQID 2455636000
PQPubID 4845423
PageCount 9
ParticipantIDs unpaywall_primary_10_1109_access_2019_2895394
crossref_primary_10_1109_ACCESS_2019_2895394
crossref_citationtrail_10_1109_ACCESS_2019_2895394
ieee_primary_8626094
doaj_primary_oai_doaj_org_article_c325d22ef8534f34a2b889e0b7e23848
proquest_journals_2455636000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
wu (ref11) 2018
(ref14) 2018
ref16
ref19
kingma (ref24) 2013
ref18
vincent (ref17) 2010; 11
malhotra (ref20) 2016
zymaris (ref10) 2016
allen (ref4) 2001
lecun (ref21) 2012
ref23
ref26
ref25
ellefsen (ref1) 0
(ref30) 2018
kothamasu (ref3) 2006; 28
ref28
ref27
ref29
ref8
ref7
ref9
ref6
ref5
goodfellow (ref22) 2016
knutsen (ref2) 2014
References_xml – year: 2018
  ident: ref14
  publication-title: Case Western Reserve University Bearing Data Center
– year: 2001
  ident: ref4
  article-title: Us navy analysis of submarine maintenance data and the development of age and reliability profiles
– ident: ref26
  doi: 10.1016/j.neunet.2005.06.042
– year: 2018
  ident: ref30
  publication-title: Deeplearning4j Development Team Deeplearning4j Open-source distributed deep learning for the JVM Apache Software Foundation License 2 0
– start-page: 556
  year: 2018
  ident: ref11
  article-title: Fault detection method for ship equipment based on BP neural network
  publication-title: Proc Int Conf Robots Intell Syst (ICRIS)
– volume: 28
  start-page: 1012
  year: 2006
  ident: ref3
  article-title: System health monitoring and prognostics-A review of current paradigms and practices
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2131-6
– ident: ref25
  doi: 10.1049/cp:19991218
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref17
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref19
  doi: 10.1109/LRA.2018.2801475
– ident: ref29
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref12
  doi: 10.1109/ICPHM.2016.7811910
– year: 2016
  ident: ref22
  publication-title: Deep Learning
– ident: ref27
  doi: 10.1109/IJCNN.2000.861302
– ident: ref8
  doi: 10.1109/LSP.2005.856878
– year: 2013
  ident: ref24
  publication-title: Auto-encoding variational bayes
– ident: ref7
  doi: 10.1016/j.ress.2017.11.021
– ident: ref6
  doi: 10.1109/CIVEMSA.2017.7995339
– ident: ref9
  doi: 10.1109/TSP.2013.2265222
– ident: ref16
  doi: 10.1016/j.isatra.2018.04.005
– ident: ref18
  doi: 10.1016/j.ymssp.2016.02.007
– ident: ref23
  doi: 10.1109/TPAMI.2013.50
– start-page: 1
  year: 2016
  ident: ref10
  article-title: Towards a model-based condition assessment of complex marine machinery systems using systems engineering
  publication-title: Proc 3rd Eur Conf Prognostics Health Manage Soc
– start-page: 1
  year: 2016
  ident: ref20
  article-title: Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder
  publication-title: Proc Workshop Mach Learn Prognostics Health Manage
– ident: ref13
  doi: 10.1016/j.renene.2018.10.062
– ident: ref15
  doi: 10.1016/j.sigpro.2016.07.028
– year: 0
  ident: ref1
  article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
  publication-title: IEEE Trans Rel
– year: 2014
  ident: ref2
  article-title: Beyond condition monitoring in the maritime industry
  publication-title: DNV GL Strategic Research & Inovation Position Paper
– ident: ref5
  doi: 10.1016/j.ress.2018.11.027
– start-page: 9
  year: 2012
  ident: ref21
  article-title: Efficient BackProp
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_3
SSID ssj0000816957
Score 2.319916
Snippet In recent years, the reliability and safety requirements of ship systems have increased drastically. This has prompted a paradigm shift toward the development...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16101
SubjectTerms Algorithms
Automatic fault detection
Component reliability
Datasets
deep learning
Degradation
Fault detection
Machine learning algorithms
Maintenance engineering
Maritime industry
Prediction algorithms
Prognostics and health management
Random noise
Reconstruction
Signal processing algorithms
unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9QwDI7QXhgPaDAQx8aUBx7XLU3SJnm8HZwmpO1pN-0tct0UkLruxPWE-PfEaXfcCYm90McodV3bSezI_szYRy0FuMpBFnQZMo1GZBXIOgvYGMAqSBWoOPnqurxc6C93xd1Wqy_KCRvggQfBnaOSRS1laOK5ohulQVbWuiAqE-lYncp8hXVbwVTag21eusKMMEO5cOfT2Sz-EeVyubMYZBTK6Z2jKCH2jy1WdrzN5-tuCb9-QttuHTzzA_Zy9Bj5dOD0FXsWutfsxRaO4CG7nXZ80a3WS1r4q1BzCir_QMNmF0CDc1i3Pf8U-pR91fFp-_Xhx_f-2z2Pjiu_AoI3ug-cdoiHjvIr3rDF_PPN7DIbGyZkqIXto8WHoENcgSHH0tWmKEIpatFADnldNFRlhaqOjwWDGKVgClBWgCrzJjeiUm_ZXhe_8I5xlGhUbdGgFRqchrIEhwpieJGjdDhh8lF2Hkc0cWpq0foUVQjnB4F7ErgfBT5hp5uXlgOYxr-nX5BSNlMJCTsNRPvwo334p-xjwg5JpRsiKYIj2sePKvbjql15qQkuLbqAYsKyjdr_YhVSK8sdVt__D1aP2D7RHC54jtletJLwIbo8fXWSrPs3Snr6mQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EhSx3b8OHYL1QppVxwoWk7WxJnAimy2oql4_HrsxC1bkJAgp8hykkm-GXsmHn9DyAvBKJjKQIZCYiacolkFrM7QNQpchYxj2Jx8eiZPluLNeXkef7gNe2EQcUg-wzycDmv5F9h-U1PJAnmamerAqE6L6eiLG5Gv6uYmOZCl98Un5GB59nb2IVSUK6TJ-LA2-TQSa05hqEEY8rlM7gONkhuxNx0NrP2xzMqex3lr063g-1do22uTz-IusVuxx5yTz_mmr3L34zdGx_9_r3vkTvRL09moSPfJDewekNvX2AoPyftZly679WYVhpc11mkIXX8R0GbHEBoXsGn79BX2Q45Xl87aj1dfLvpPl6l3j9NTCCRKl5iGceiqC1kcD8ly8frd_CSLZRkyJ6juvV0hCvR2joWTplZliZLWtIECirpswl4ux2t_aFDO-e-sSuCaApdFUyha8Udk0vknPCapY07xWjvlNBVgBEgJxnHwQUzhmHEJYVt0rIuc5aF0RmuH2IUaO5vPvaLaAKmNkCbk5e6i1UjZ8ffuxwH2XdfAtz00eIhsNF_rOCtrxrDx3o1ouABWaW2QVsprsxY6IYcB1t1NIoYJOdoqkY1jw9oyEUjZPNo0IdlOsf4QdVTWPVGf_GP_IzLxOoDPvNvUV8-jbfwE6FQS2Q
  priority: 102
  providerName: Unpaywall
Title An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components
URI https://ieeexplore.ieee.org/document/8626094
https://www.proquest.com/docview/2455636000
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08626094.pdf
https://doaj.org/article/c325d22ef8534f34a2b889e0b7e23848
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QAc-CqIhbLKgWOzdWwnto_pwqpC2ooDi8opmjgTQKTZFZsIwa_HTrKhCwiRU2Q5sZ03Y48n4zcALyVnaHKDIcmEQmkVC3PkRUi2VGhz4oL84eTlZXKxkm-u4qsDOB3PwhBRF3xGM3_b_csv1rb1rrKzzvo28hAOlU76s1qjP8UnkDCxGoiFImbO0vncjcFHb5mZ21bEwsi9xafj6B-SquzZl7fbeoPfv2FV3VhqFvdhuetkH2HyZdY2-cz--I2_8X9H8QDuDTZnkPZC8hAOqH4Ed28wER7D-7QOVvW23fipY0tF4Lelv8hlw3P0hQtsqyZ4RU0Xv1UHafVx_fVz8-k6cKZvsERPkHRNgZ9j1rWP0HgMq8Xrd_OLcEi5EFrJdON0hkiS02GKbGIKFceUsIKVGGFUxKU_p2VF4S6Nylr3VVWMQjMUSVRGiuXiCRzVroWnEFhulSi0VVYziUZikqCxAt0GJbLc2AnwHRaZHfjIfVqMKuv2JcxkPYCZBzAbAJzA6fjQpqfj-Hf1cw_yWNVzaXcFDpBsUM3MCh4XnFPpLBdZCok819oQy5WTVC31BI49iONLBvwmcLITmWzQ-23GpSdcc0Ykm0A4itEfXcUuGeZeV5_9vZXncMfX6p0-J3DkcKcXzgxq8mnnPph2WjCFW6vLt-mHn2JqB2I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBXEQoEcODZbx48kPm4XVgt0e-qi3qyJMymINLtiEyH49dhJNnQBIXKKLDux883YM874G4DXkjPUmcaQZEyhtAkLM-R5SLZI0GbEBfnDyYvzeL6U7y_V5R4cD2dhiKgNPqOxv23_5ecr2_itspPW-tbyFtxWUkrVndYadlR8Cgmtkp5aKGL6ZDKdulH4-C09do6FElruLD8tS3-fVmXHwjxoqjV-_4ZleWOxmd2HxbabXYzJl3FTZ2P74zcGx_8dxwO411udwaQTk4ewR9UjuHuDi_AQPk6qYFltmrWfPDaUB94x_UUvG56iL5xhU9bBG6rbCK4qmJRXq6-f60_XgTN-gwV6iqRrCvwss6p8jMZjWM7eXkznYZ90IbSSpbXTGiJJTospsrHOE6UoZjkrMMIoV4U_qWVF7q4UE2vdV00UipShiKMiSlgmnsB-5d7wFALLbSLy1CY2ZRK1xDhGbQU6FyWyXNsR8C0WxvaM5D4xRmlaz4Rp0wFoPICmB3AEx0OjdUfI8e_qpx7koapn024LHCCmV05jBVc551Q420UWQiLP0lQTyxInq6lMR3DoQRwe0uM3gqOtyJhe8zeGS0-55sxINoJwEKM_uoptOsydrj77-1tewcH8YnFmzt6df3gOd3yLbgvoCPadDNALZxTV2ctWF34C1kkICg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EhSx3b8OHYL1QppVxwoWk7WxJnAimy2oql4_HrsxC1bkJAgp8hykkm-GXsmHn9DyAvBKJjKQIZCYiacolkFrM7QNQpchYxj2Jx8eiZPluLNeXkef7gNe2EQcUg-wzycDmv5F9h-U1PJAnmamerAqE6L6eiLG5Gv6uYmOZCl98Un5GB59nb2IVSUK6TJ-LA2-TQSa05hqEEY8rlM7gONkhuxNx0NrP2xzMqex3lr063g-1do22uTz-IusVuxx5yTz_mmr3L34zdGx_9_r3vkTvRL09moSPfJDewekNvX2AoPyftZly679WYVhpc11mkIXX8R0GbHEBoXsGn79BX2Q45Xl87aj1dfLvpPl6l3j9NTCCRKl5iGceiqC1kcD8ly8frd_CSLZRkyJ6juvV0hCvR2joWTplZliZLWtIECirpswl4ux2t_aFDO-e-sSuCaApdFUyha8Udk0vknPCapY07xWjvlNBVgBEgJxnHwQUzhmHEJYVt0rIuc5aF0RmuH2IUaO5vPvaLaAKmNkCbk5e6i1UjZ8ffuxwH2XdfAtz00eIhsNF_rOCtrxrDx3o1ouABWaW2QVsprsxY6IYcB1t1NIoYJOdoqkY1jw9oyEUjZPNo0IdlOsf4QdVTWPVGf_GP_IzLxOoDPvNvUV8-jbfwE6FQS2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Reconstruction-Based+Fault+Detection+Algorithm+for+Maritime+Components&rft.jtitle=IEEE+access&rft.au=Ellefsen%2C+Andre+Listou&rft.au=Bjorlykhaug%2C+Emil&rft.au=Aesoy%2C+Vilmar&rft.au=Zhang%2C+Houxiang&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=16101&rft.epage=16109&rft_id=info:doi/10.1109%2FACCESS.2019.2895394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2895394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon