Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy

Abstract Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondri...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 27; no. 23; pp. 4135 - 4144
Main Authors Pacheu-Grau, David, Callegari, Sylvie, Emperador, Sonia, Thompson, Kyle, Aich, Abhishek, Topol, Sarah E, Spencer, Emily G, McFarland, Robert, Ruiz-Pesini, Eduardo, Torkamani, Ali, Taylor, Robert W, Montoya, Julio, Rehling, Peter
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2018
Subjects
Online AccessGet full text
ISSN0964-6906
1460-2083
1460-2083
DOI10.1093/hmg/ddy305

Cover

Abstract Abstract Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
AbstractList Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Abstract Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Author Aich, Abhishek
Torkamani, Ali
Taylor, Robert W
Rehling, Peter
Montoya, Julio
Topol, Sarah E
Emperador, Sonia
Ruiz-Pesini, Eduardo
Pacheu-Grau, David
Callegari, Sylvie
McFarland, Robert
Thompson, Kyle
Spencer, Emily G
AuthorAffiliation 1 Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
5 The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
2 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
4 Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
3 Max-Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany
6 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
AuthorAffiliation_xml – name: 1 Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
– name: 3 Max-Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany
– name: 2 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
– name: 4 Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
– name: 5 The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
– name: 6 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
Author_xml – sequence: 1
  givenname: David
  surname: Pacheu-Grau
  fullname: Pacheu-Grau, David
  organization: Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
– sequence: 2
  givenname: Sylvie
  surname: Callegari
  fullname: Callegari, Sylvie
  organization: Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
– sequence: 3
  givenname: Sonia
  surname: Emperador
  fullname: Emperador, Sonia
  organization: Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
– sequence: 4
  givenname: Kyle
  surname: Thompson
  fullname: Thompson, Kyle
  organization: Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
– sequence: 5
  givenname: Abhishek
  surname: Aich
  fullname: Aich, Abhishek
  organization: Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
– sequence: 6
  givenname: Sarah E
  surname: Topol
  fullname: Topol, Sarah E
  organization: The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
– sequence: 7
  givenname: Emily G
  surname: Spencer
  fullname: Spencer, Emily G
  organization: The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
– sequence: 8
  givenname: Robert
  surname: McFarland
  fullname: McFarland, Robert
  organization: Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
– sequence: 9
  givenname: Eduardo
  surname: Ruiz-Pesini
  fullname: Ruiz-Pesini, Eduardo
  organization: Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
– sequence: 10
  givenname: Ali
  surname: Torkamani
  fullname: Torkamani, Ali
  organization: The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
– sequence: 11
  givenname: Robert W
  surname: Taylor
  fullname: Taylor, Robert W
  organization: Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
– sequence: 12
  givenname: Julio
  surname: Montoya
  fullname: Montoya, Julio
  organization: Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
– sequence: 13
  givenname: Peter
  surname: Rehling
  fullname: Rehling, Peter
  email: Peter.Rehling@medizin.uni-goettingen.de
  organization: Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30452684$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVBbaS39AlUslhBTWiR1nc6lUIWiRWHGhZ2viTIgrx15sByn_voYAahHiNIf55j29N4dkzzqLhHwp6GlBG7Yextt1182MVh_IquCC5iXdsD2yoo3guWioOCCHIfyhtBCc1R_JAaO8KsWGr8jddooQtbMhc30WB8xGHZ0anO28BpMp8F6jz6IHG4xTEDBTA1iLJgtTO1kds5vLbVkmcko7BG_mPMlhfKU0zm4HcZg_kf0eTMDPT_OI_L44vzn7lV9d_7w8-3GVK043MUVgrOdM1KwSvVAIUEMFvGw3La8wheqR8jolbHvRqK5WoFpsFDBeAhMVsiPyfdHdTe2InUKbMhi583oEP0sHWv6_sXqQt-5eipLT5JoEjp8EvLubMEQ56qDQGLDopiDLggmaSnxEv_7r9WLy3HMC6AIo70Lw2Eull96TtTayoPLhlTK9Ui6vTCcnr06eVd-Evy2wm3bvcX8Bh7yxDA
CitedBy_id crossref_primary_10_1002_mgg3_1199
crossref_primary_10_1242_jcs_244632
crossref_primary_10_3389_fnmol_2022_974480
crossref_primary_10_1186_s40246_025_00723_y
crossref_primary_10_1007_s10930_019_09819_6
crossref_primary_10_7554_eLife_84330
crossref_primary_10_1242_jcs_260060
Cites_doi 10.7554/eLife.17463
10.1016/j.molcel.2017.06.014
10.1146/annurev.biochem.76.052705.163409
10.1016/j.bbamcr.2012.05.028
10.1038/nrm1426
10.1016/S0021-9258(18)47598-9
10.1093/hmg/11.5.477
10.1016/j.ajhg.2016.08.014
10.1016/j.cmet.2015.04.012
10.1038/nprot.2006.62
10.1126/science.1080945
10.1006/mthe.2000.0141
10.1016/j.ajhg.2017.09.016
10.1073/pnas.0914387107
10.1007/s10048-012-0322-0
10.1093/hmg/ddr350
10.1016/S0076-6879(96)64020-8
10.1016/j.bbadis.2012.04.014
10.1038/embor.2008.49
10.1093/hmg/ddq246
10.1016/S0014-5793(99)01665-8
10.1016/j.cell.2009.08.005
10.1038/nature19057
10.1016/j.ajhg.2011.12.005
10.1038/384582a0
10.1093/emboj/19.23.6392
10.1016/j.bbamem.2010.07.018
10.1091/mbc.e08-09-0903
10.1002/1873-3468.12450
10.1093/emboj/20.17.4794
10.1016/j.jmb.2008.07.069
10.1093/nar/gkr1282
10.1093/hmg/ddv265
10.1146/annurev-biochem-060815-014352
10.1038/srep27484
10.1016/j.semcdb.2017.07.028
10.1093/hmg/ddt256
10.1016/S1097-2765(02)00446-X
10.1016/j.molcel.2017.06.013
10.1038/gim.2015.21
10.1371/journal.pone.0116815
10.1083/jcb.200205124
10.1002/j.1460-2075.1985.tb04009.x
10.1016/j.celrep.2017.06.014
10.1016/j.cell.2009.07.045
10.1073/pnas.96.5.2141
10.1074/jbc.M312485200
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/hmg/ddy305
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 4144
ExternalDocumentID PMC6240735
30452684
10_1093_hmg_ddy305
10.1093/hmg/ddy305
Genre Research Support, Non-U.S. Gov't
Journal Article
Case Reports
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Newcastle upon Tyne Hospitals NHS Foundation Trust
  funderid: 10.13039/501100003776
– fundername: Lavin Family Foundation
  grantid: NIHU01 HG006476; U54GM114833
– fundername: Instituto de Salud Carlos III
  grantid: PI17/00021; PI/00166
  funderid: 10.13039/501100004587
– fundername: Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón
  grantid: B33 17R
– fundername: Max Planck Society
  funderid: 10.13039/501100004189
– fundername: Shaffer Family Foundation
– fundername: Scripps Research Institute
  funderid: 10.13039/100011769
– fundername: Biomedical Research Foundation
  funderid: 10.13039/100011085
– fundername: Engineering and Physical Sciences Research Council
  funderid: 10.13039/501100000266
– fundername: Association for Molecular Pathology
  funderid: 10.13039/100011307
– fundername: NIGMS NIH HHS
  grantid: U54 GM114833
– fundername: NCATS NIH HHS
  grantid: UL1 TR001114
– fundername: NHGRI NIH HHS
  grantid: U01 HG006476
– fundername: Medical Research Council
  grantid: G0800674
– fundername: ; ;
  grantid: PI17/00021; PI/00166
– fundername: ;
– fundername: ;
  grantid: NIHU01 HG006476; U54GM114833
– fundername: ; ;
  grantid: G0800674
– fundername: ; ;
  grantid: SFB1190
– fundername: ;
  grantid: 203105/Z/16/Z
– fundername: ;
  grantid: B33 17R
– fundername: ; ;
  grantid: 5 UL1 TR001114
– fundername: ; ;
  grantid: ERC335080
– fundername: ; ;
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TOX
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AFYAG
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c408t-2033f4367356f6ceaa7a5a42b8b45e690fe047096bf69cd7cacbe9ca342a365e3
IEDL.DBID TOX
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 14:36:46 EDT 2025
Sun Sep 28 00:52:57 EDT 2025
Mon Jul 21 06:08:15 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 03:32:24 EDT 2025
Wed Sep 11 04:52:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2033f4367356f6ceaa7a5a42b8b45e690fe047096bf69cd7cacbe9ca342a365e3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
These authors contributed equally to this work.
OpenAccessLink https://dx.doi.org/10.1093/hmg/ddy305
PMID 30452684
PQID 2136068435
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240735
proquest_miscellaneous_2136068435
pubmed_primary_30452684
crossref_citationtrail_10_1093_hmg_ddy305
crossref_primary_10_1093_hmg_ddy305
oup_primary_10_1093_hmg_ddy305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Morgenstern ( key 20180904084112_ref36) 2017; 19
Chomyn ( key 20180904084112_ref47) 1996; 264
Bloss ( key 20180904084112_ref33) 2015; 17
Ehmke ( key 20180904084112_ref41) 2017; 101
Mühlenbein ( key 20180904084112_ref16) 2004; 279
Kang ( key 20180904084112_ref10) 2017; 67
Salmon ( key 20180904084112_ref42) 2000; 2
Gómez-Durán ( key 20180904084112_ref45) 2012; 1822
Gebert ( key 20180904084112_ref18) 2008; 9
Pacheu-Grau ( key 20180904084112_ref29) 2015; 21
Koehler ( key 20180904084112_ref24) 1999; 96
Stroud ( key 20180904084112_ref30) 2015; 24
Chacinska ( key 20180904084112_ref5) 2009; 138
Bauer ( key 20180904084112_ref15) 1999; 464
Jia ( key 20180904084112_ref31) 2013; 22
Callegari ( key 20180904084112_ref8) 2016; 590
Thompson ( key 20180904084112_ref40) 2016; 99
Pfanner ( key 20180904084112_ref12) 1987; 262
Hasson ( key 20180904084112_ref11) 2010; 107
Roesch ( key 20180904084112_ref25) 2002; 11
Emperador ( key 20180904084112_ref48) 2014; 5
Kang ( key 20180904084112_ref7) 2016; 5
Pacheu-Grau ( key 20180904084112_ref27) 2011; 20
Kovermann ( key 20180904084112_ref14) 2002; 9
Yasukawa ( key 20180904084112_ref32) 2001; 20
Rorbach ( key 20180904084112_ref28) 2012; 40
Wittig ( key 20180904084112_ref49) 2006; 1
Wiedemann ( key 20180904084112_ref2) 2017; 86
Paschen ( key 20180904084112_ref38) 2000; 19
Vögtle ( key 20180904084112_ref22) 2009; 139
Beverly ( key 20180904084112_ref19) 2008; 382
Mayr ( key 20180904084112_ref37) 2012; 90
Dudek ( key 20180904084112_ref1) 2013; 1833
Endo ( key 20180904084112_ref3) 2011; 1808
Wrobel ( key 20180904084112_ref35) 2016; 6
Chomyn ( key 20180904084112_ref43) 1994; 54
Rehling ( key 20180904084112_ref6) 2004; 5
Vukotic ( key 20180904084112_ref9) 2017; 67
Kang ( key 20180904084112_ref23) 2018; 76
Rehling ( key 20180904084112_ref13) 2003; 299
Pfanner ( key 20180904084112_ref20) 1985; 4
Gómez-Durán ( key 20180904084112_ref44) 2010; 19
Pham ( key 20180904084112_ref46) 2015; 10
Curran ( key 20180904084112_ref39) 2002; 158
Mar O'Callaghan ( key 20180904084112_ref26) 2012; 13
Baker ( key 20180904084112_ref17) 2009; 20
Neupert ( key 20180904084112_ref4) 2007; 76
Sirrenberg ( key 20180904084112_ref21) 1996; 384
Lek ( key 20180904084112_ref34) 2016; 536
References_xml – volume: 5
  year: 2016
  ident: key 20180904084112_ref7
  article-title: Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability
  publication-title: Elife
  doi: 10.7554/eLife.17463
– volume: 67
  start-page: 457
  year: 2017
  ident: key 20180904084112_ref10
  article-title: Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.014
– volume: 76
  start-page: 723
  year: 2007
  ident: key 20180904084112_ref4
  article-title: Translocation of proteins into mitochondria
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052705.163409
– volume: 1833
  start-page: 274
  year: 2013
  ident: key 20180904084112_ref1
  article-title: Mitochondrial protein import; common principles and physiological networks
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.05.028
– volume: 5
  start-page: 519
  year: 2004
  ident: key 20180904084112_ref6
  article-title: Mitochondrial import and the twin-pore translocase
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1426
– volume: 262
  start-page: 7528
  year: 1987
  ident: key 20180904084112_ref12
  article-title: Distinct steps in the import of ADP/ATP carrier into mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47598-9
– volume: 11
  start-page: 477
  year: 2002
  ident: key 20180904084112_ref25
  article-title: Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/11.5.477
– volume: 99
  start-page: 860
  year: 2016
  ident: key 20180904084112_ref40
  article-title: Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.08.014
– volume: 21
  start-page: 823
  year: 2015
  ident: key 20180904084112_ref29
  article-title: Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.012
– volume: 1
  start-page: 418
  year: 2006
  ident: key 20180904084112_ref49
  article-title: Blue native PAGE
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.62
– volume: 299
  start-page: 1747
  year: 2003
  ident: key 20180904084112_ref13
  article-title: Protein insertion into the mitochondrial inner membrane by a twin-pore translocase
  publication-title: Science
  doi: 10.1126/science.1080945
– volume: 2
  start-page: 404
  year: 2000
  ident: key 20180904084112_ref42
  article-title: Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes
  publication-title: Mol. Ther.
  doi: 10.1006/mthe.2000.0141
– volume: 101
  start-page: 833
  year: 2017
  ident: key 20180904084112_ref41
  article-title: De novo mutations in SLC25A24 cause a craniosynostosis syndrome with hypertrichosis, progeroid appearance, and mitochondrial dysfunction
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.09.016
– volume: 107
  start-page: 9578
  year: 2010
  ident: key 20180904084112_ref11
  article-title: Substrate specificity of the TIM22 mitochondrial import pathway revealed with small molecule inhibitor of protein translocation
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.0914387107
– volume: 54
  start-page: 966
  year: 1994
  ident: key 20180904084112_ref43
  article-title: Platelet-mediated transformation of mtDNA-less human cells; analysis of phenotypic variability among clones from normal individuals—and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers
  publication-title: Am. J. Hum. Genet.
– volume: 13
  start-page: 245
  year: 2012
  ident: key 20180904084112_ref26
  article-title: New mitochondrial DNA mutations in tRNA associated with three severe encephalopamyopathic phenotypes; neonatal, infantile, and childhood onset
  publication-title: Neurogenetics
  doi: 10.1007/s10048-012-0322-0
– volume: 20
  start-page: 4224
  year: 2011
  ident: key 20180904084112_ref27
  article-title: ‘Progress’ renders detrimental an ancient mitochondrial DNA genetic variant
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr350
– volume: 264
  start-page: 197
  year: 1996
  ident: key 20180904084112_ref47
  article-title: In vivo labeling and analysis of human mitochondrial translation products
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(96)64020-8
– volume: 1822
  start-page: 1216
  year: 2012
  ident: key 20180904084112_ref45
  article-title: Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber's hereditary optic neuropathy
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2012.04.014
– volume: 9
  start-page: 548
  year: 2008
  ident: key 20180904084112_ref18
  article-title: Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2008.49
– volume: 19
  start-page: 3343
  year: 2010
  ident: key 20180904084112_ref44
  article-title: Unmasking the causes of multifactorial disorders; OXPHOS differences between mitochondrial haplogroups
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq246
– volume: 464
  start-page: 41
  year: 1999
  ident: key 20180904084112_ref15
  article-title: The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)01665-8
– volume: 138
  start-page: 628
  year: 2009
  ident: key 20180904084112_ref5
  article-title: Importing mitochondrial proteins; machineries and mechanisms
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.005
– volume: 536
  start-page: 285
  year: 2016
  ident: key 20180904084112_ref34
  article-title: Analysis of protein-coding genetic variation in 60,706 humans
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 90
  start-page: 314
  year: 2012
  ident: key 20180904084112_ref37
  article-title: Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.12.005
– volume: 384
  start-page: 582
  year: 1996
  ident: key 20180904084112_ref21
  article-title: Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22
  publication-title: Nature
  doi: 10.1038/384582a0
– volume: 19
  start-page: 6392
  year: 2000
  ident: key 20180904084112_ref38
  article-title: The role of the TIM8-13 complex in the import of Tim23 into mitochondria
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.23.6392
– volume: 1808
  start-page: 955
  year: 2011
  ident: key 20180904084112_ref3
  article-title: Structural insight into the mitochondrial protein import system
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.07.018
– volume: 20
  start-page: 769
  year: 2009
  ident: key 20180904084112_ref17
  article-title: Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-09-0903
– volume: 590
  start-page: 4147
  year: 2016
  ident: key 20180904084112_ref8
  article-title: TIM29 is a subunit of the human carrier translocase required for protein transport
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12450
– volume: 20
  start-page: 4794
  year: 2001
  ident: key 20180904084112_ref32
  article-title: Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.17.4794
– volume: 382
  start-page: 1144
  year: 2008
  ident: key 20180904084112_ref19
  article-title: The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.07.069
– volume: 40
  start-page: 4097
  year: 2012
  ident: key 20180904084112_ref28
  article-title: C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1282
– volume: 24
  start-page: 5404
  year: 2015
  ident: key 20180904084112_ref30
  article-title: COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv265
– volume: 86
  start-page: 685
  year: 2017
  ident: key 20180904084112_ref2
  article-title: Mitochondrial machineries for protein import and assembly
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014352
– volume: 6
  year: 2016
  ident: key 20180904084112_ref35
  article-title: The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly
  publication-title: Sci. Rep.
  doi: 10.1038/srep27484
– volume: 5
  start-page: 469
  year: 2014
  ident: key 20180904084112_ref48
  article-title: An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations
  publication-title: Front. Genet.
– volume: 76
  start-page: 142
  year: 2018
  ident: key 20180904084112_ref23
  article-title: Mitochondrial protein transport in health and disease
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.07.028
– volume: 22
  start-page: 4064
  year: 2013
  ident: key 20180904084112_ref31
  article-title: Coronary heart disease is associated with a mutation in mitochondrial tRNA
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt256
– volume: 9
  start-page: 363
  year: 2002
  ident: key 20180904084112_ref14
  article-title: Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00446-X
– volume: 67
  start-page: 471
  year: 2017
  ident: key 20180904084112_ref9
  article-title: Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.013
– volume: 17
  start-page: 995
  year: 2015
  ident: key 20180904084112_ref33
  article-title: A genome sequencing program for novel undiagnosed diseases
  publication-title: Genet. Med.
  doi: 10.1038/gim.2015.21
– volume: 10
  year: 2015
  ident: key 20180904084112_ref46
  article-title: Scripps Genome ADVISER: annotation and distributed variant interpretation SERver
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116815
– volume: 158
  start-page: 1017
  year: 2002
  ident: key 20180904084112_ref39
  article-title: The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200205124
– volume: 4
  start-page: 2819
  year: 1985
  ident: key 20180904084112_ref20
  article-title: Transport of proteins into mitochondria; a potassium diffusion potential is able to drive the import of ADP/ATP carrier
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1985.tb04009.x
– volume: 19
  start-page: 2836
  year: 2017
  ident: key 20180904084112_ref36
  article-title: Definition of a high-confidence mitochondrial proteome at quantitative scale
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.06.014
– volume: 139
  start-page: 428
  year: 2009
  ident: key 20180904084112_ref22
  article-title: Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.045
– volume: 96
  start-page: 2141
  year: 1999
  ident: key 20180904084112_ref24
  article-title: Human deafness dystonia syndrome is a mitochondrial disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.5.2141
– volume: 279
  start-page: 13540
  year: 2004
  ident: key 20180904084112_ref16
  article-title: Organization and function of the small Tim complexes acting along the import pathway of metabolite carriers into mammalian mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312485200
SSID ssj0016437
Score 2.4253433
Snippet Abstract Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly...
Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4135
SubjectTerms Carrier Proteins - genetics
Child
DNA, Mitochondrial - genetics
Exome Sequencing
Female
Fibroblasts - metabolism
Genetic Predisposition to Disease
Humans
Lactic Acid - cerebrospinal fluid
Membrane Transport Proteins - genetics
Mitochondria - genetics
Mitochondria - pathology
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membranes - metabolism
Mitochondrial Membranes - pathology
Mitochondrial Myopathies - cerebrospinal fluid
Mitochondrial Myopathies - genetics
Mitochondrial Myopathies - pathology
Mitochondrial Precursor Protein Import Complex Proteins
Mutation
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Title Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/30452684
https://www.proquest.com/docview/2136068435
https://pubmed.ncbi.nlm.nih.gov/PMC6240735
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA4yULyIzl_1x4joxUNxNmnaHEWUTZleNtitJGmiguvUtof99763dsMO0XNeQ8nLy_vC9_I9Qi5EJFOntfN1rI3PU5H6selqP9BSSQ75QAp8KDx4Er0RfxiH47qIJv-Fwpfs6nXycpWmMzZXKoXsi7t5-DxecgVIPc0V9QT3UXZ3IULa-LSRdhpP2X4gytXCyB-Z5n6bbNUQkd5UPt0hazZrk_WqaeSsTTYGNR2-Sz4HZcWk53TqKEA5OoEAhQMtS3FfUaO-sCEdLTAhYdbKLcWXvpl9p3mpSwhnOuwPggAsSxizqHbsY311sTLTZDbF3sWzPTK6vxve9vy6h4JveDcuIAgYc5yJiIXCCWOVilSoeACu4aGF5XK2yyNYO-2ENGlklNFWGsV4oJgILdsnrWya2UNClbjWVsP1yKFAjHUxICs4orpSGSejMPLI5WKJE1MLjGOfi_ekIrpZAu5IKnd45Hxp-1HJavxq1QFP_WlwtnBiAmGBXIfK7LTMk-CawdUsBjDokYPKqct5kBxGkRuPRA13Lw1Qcrs5kr29zqW3BV6AWXj0348dk01AVnFV93JCWsVXaU8BvRS6A7i9_9iZb-Fv0XjypQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+of+the+mitochondrial+carrier+translocase+channel+subunit+TIM22+cause+early-onset+mitochondrial+myopathy&rft.jtitle=Human+molecular+genetics&rft.au=Pacheu-Grau%2C+David&rft.au=Callegari%2C+Sylvie&rft.au=Emperador%2C+Sonia&rft.au=Thompson%2C+Kyle&rft.date=2018-12-01&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093%2Fhmg%2Fddy305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_hmg_ddy305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon