Semantic Inference on Clinical Documents: Combining Machine Learning Algorithms With an Inference Engine for Effective Clinical Diagnosis and Treatment

Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS o...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 3529 - 3546
Main Authors Yang, Shuo, Wei, Ran, Guo, Jingzhi, Xu, Lida
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2017.2672975

Cover

Abstract Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS over the past several years, challenges to their wide-scale application are still present, including: 1) decision making of CDSS is complicated by the complexity of the data regarding human physiology and pathology, which could render the whole process more time-consuming by loading big data related to patients; and 2) information incompatibility among different health information systems (HIS) makes CDSS an information island, i.e., additional input work on patient information might be required, which would further increase the burden on clinicians. One popular strategy is the integration of CDSS in HIS to directly read electronic health records (EHRs) for analysis. However, gathering data from EHRs could constitute another problem, because EHR document standards are not unified. In addition, HIS could use different default clinical terminologies to define input data, which could cause additional misinterpretation. Several proposals have been published thus far to allow CDSS access to EHRs via the redefinition of data terminologies according to the standards used by the recipients of the data flow, but they mostly aim at specific versions of CDSS guidelines. This paper views these problems in a different way. Compared with conventional approaches, we suggest more fundamental changes; specifically, uniform and updatable clinical terminology and document syntax should be used by EHRs, HIS, and their integrated CDSS. Facilitated data exchange will increase the overall data loading efficacy, enabling CDSS to read more information for analysis at a given time. Furthermore, a proposed CDSS should be based on self-learning, which dynamically updates a knowledge model according to the data-stream-based upcoming data set. The experiment results show that our system increases the accuracy of the diagnosis and treatment strategy designs.
AbstractList Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS over the past several years, challenges to their wide-scale application are still present, including: 1) decision making of CDSS is complicated by the complexity of the data regarding human physiology and pathology, which could render the whole process more time-consuming by loading big data related to patients; and 2) information incompatibility among different health information systems (HIS) makes CDSS an information island, i.e., additional input work on patient information might be required, which would further increase the burden on clinicians. One popular strategy is the integration of CDSS in HIS to directly read electronic health records (EHRs) for analysis. However, gathering data from EHRs could constitute another problem, because EHR document standards are not unified. In addition, HIS could use different default clinical terminologies to define input data, which could cause additional misinterpretation. Several proposals have been published thus far to allow CDSS access to EHRs via the redefinition of data terminologies according to the standards used by the recipients of the data flow, but they mostly aim at specific versions of CDSS guidelines. This paper views these problems in a different way. Compared with conventional approaches, we suggest more fundamental changes; specifically, uniform and updatable clinical terminology and document syntax should be used by EHRs, HIS, and their integrated CDSS. Facilitated data exchange will increase the overall data loading efficacy, enabling CDSS to read more information for analysis at a given time. Furthermore, a proposed CDSS should be based on self-learning, which dynamically updates a knowledge model according to the data-stream-based upcoming data set. The experiment results show that our system increases the accuracy of the diagnosis and treatment strategy designs.
Author Shuo Yang
Ran Wei
Jingzhi Guo
Lida Xu
Author_xml – sequence: 1
  givenname: Shuo
  orcidid: 0000-0003-4516-9953
  surname: Yang
  fullname: Yang, Shuo
– sequence: 2
  givenname: Ran
  surname: Wei
  fullname: Wei, Ran
– sequence: 3
  givenname: Jingzhi
  surname: Guo
  fullname: Guo, Jingzhi
– sequence: 4
  givenname: Lida
  surname: Xu
  fullname: Xu, Lida
BookMark eNqFksFuEzEQhleoSJTSJ-jFEueEtb1re7lFS4BIQRxSxNGa9Y5TRxs72JuiPgmvi9Otqqgc8GWsX_N_v8bjt8WFDx6L4oaWc0rL5sOibZebzZyVVM6ZkKyR9aviklHRzHjNxcXZ_U1xndKuzEdlqZaXxZ8N7sGPzpCVtxjRGyTBk3Zw3hkYyKdgjnv0Y_pI2rDvsuq35BuYO-eRrBHio7AYtiG68W6fyM9cCPgz3NJvT802RLK0Fs3o7vEswMHWh-RSNvXkNiKMp7x3xWsLQ8Lrp3pV_Pi8vG2_ztbfv6zaxXpmqlKNM4pCNT10plfQSVB1w_NgQoDqoEbBwbIeeSMVsjoXLsBCUwLtuWWUdz2_KlYTtw-w04fo9hAfdACnH4UQtxpifp4BddVLw6FXCqu6orJrFFOVZD1IS5WtRGZVE-voD_DwG4bhGUhLfdqVBmMwJX3alX7aVba9n2yHGH4dMY16F47R56k1q-o8US0Uy1186jIxpBTR_sOe_sFLdvPCZdwIowt-jOCG_3hvJq9DxOc0qUTd0Ir_BY5gwuA
CODEN IAECCG
CitedBy_id crossref_primary_10_2147_JMDH_S433299
crossref_primary_10_1007_s11517_021_02333_x
crossref_primary_10_1142_S2424862220300045
crossref_primary_10_1109_ACCESS_2020_3035026
crossref_primary_10_1109_ACCESS_2019_2891710
crossref_primary_10_1016_j_jsis_2020_101600
crossref_primary_10_1142_S2424862220300057
crossref_primary_10_1142_S2424862219500192
crossref_primary_10_1109_TNSRE_2020_3005616
crossref_primary_10_1002_hsr2_1893
crossref_primary_10_1136_ejhpharm_2021_002763
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_1016_j_eswa_2018_09_034
crossref_primary_10_1109_ACCESS_2017_2752200
crossref_primary_10_1200_CCI_18_00002
Cites_doi 10.3233/AIC-1994-7104
10.1016/j.eswa.2014.08.045
10.1145/1557019.1557041
10.1145/1656274.1656287
10.1016/j.cmpb.2012.10.003
10.1109/BigData.2015.7364129
10.1002/0471644676
10.1017/S0269888906000646
10.1109/ICMLA.2013.163
10.1016/j.eswa.2013.10.031
10.1007/978-3-319-26138-6_24
10.1145/502512.502529
10.1007/978-1-84628-726-8_2
10.1109/ICDIM.2015.7381876
10.1109/ACCESS.2015.2509013
10.1145/2351316.2351322
10.1109/34.667886
10.6028/NIST.IR.6407
10.1136/bmj.i2139
10.1002/msj.21351
10.1109/JSYST.2015.2470644
10.1109/MNET.2013.6616116
10.1007/978-3-540-76928-6_11
10.1016/j.eswa.2016.02.005
10.1007/s11036-016-0745-1
10.1145/347090.347107
10.1001/jama.1997.03540280045032
10.1001/jamainternmed.2013.2777
10.1109/ICEBE.2015.34
10.1001/jama.280.15.1311
10.1007/978-0-387-38319-4_1
10.1002/aris.1440400112
10.1023/A:1023796918654
10.1109/ICSESS.2015.7339227
10.1109/ES.2014.32
10.1016/S0957-4174(02)00142-2
10.1007/978-3-642-03915-7_22
10.1016/j.future.2015.12.001
10.1145/502512.502568
10.1080/17517570802610362
10.1016/j.eswa.2011.02.055
10.1186/1472-6947-9-6
10.1016/B978-1-55860-237-3.50005-4
10.1016/j.ins.2014.06.023
10.1109/TSMCA.2011.2162946
10.1080/17517570903502856
10.1007/s11036-014-0537-4
10.1016/S0140-6736(95)91804-3
10.1016/0020-7101(79)90001-1
10.1109/MCOM.2015.7355582
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2017.2672975
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 3546
ExternalDocumentID oai_doaj_org_article_4d7c3ad88e45417b9828472da7f18f46
10.1109/access.2017.2672975
10_1109_ACCESS_2017_2672975
7865914
Genre orig-research
GrantInformation_xml – fundername: University of Macau Research
  grantid: MYRG2015-00043-FST
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-1e689dabcd8ab7a859316966a8ba5e63af2de3978e2539736afa90a1d3f213bd3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:21 EDT 2025
Sun Sep 07 11:01:15 EDT 2025
Sun Sep 07 03:30:05 EDT 2025
Wed Oct 01 04:49:14 EDT 2025
Thu Apr 24 22:57:38 EDT 2025
Tue Aug 26 16:39:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1e689dabcd8ab7a859316966a8ba5e63af2de3978e2539736afa90a1d3f213bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4516-9953
OpenAccessLink https://doaj.org/article/4d7c3ad88e45417b9828472da7f18f46
PQID 2455935682
PQPubID 4845423
PageCount 18
ParticipantIDs ieee_primary_7865914
crossref_primary_10_1109_ACCESS_2017_2672975
unpaywall_primary_10_1109_access_2017_2672975
doaj_primary_oai_doaj_org_article_4d7c3ad88e45417b9828472da7f18f46
proquest_journals_2455935682
crossref_citationtrail_10_1109_ACCESS_2017_2672975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170000
2017-00-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
kopec (ref7) 1992
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
quinlan (ref21) 1993
ref45
ref48
ref42
ref41
ref44
(ref53) 2016
ref43
oza (ref24) 2001
ref49
ref8
ref9
ref4
otavioalvares (ref28) 2006
ref6
ref5
witten (ref47) 2005
ref40
hulten (ref46) 2001
ref35
ref34
ref36
ref31
aamodt (ref29) 2004; 7
ref30
ref33
ref32
ref2
kohn (ref3) 2000
ref1
ref39
ref38
ref23
ref26
ref25
ref20
watson (ref27) 1997
breiman (ref22) 1994
xiao (ref37) 2015
ref60
ref62
ref61
References_xml – volume: 7
  start-page: 39
  year: 2004
  ident: ref29
  article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches
  publication-title: AI Commun
  doi: 10.3233/AIC-1994-7104
– year: 2000
  ident: ref3
  publication-title: To Err Is Human Building a Safer Health System
– ident: ref36
  doi: 10.1016/j.eswa.2014.08.045
– ident: ref25
  doi: 10.1145/1557019.1557041
– ident: ref48
  doi: 10.1145/1656274.1656287
– ident: ref15
  doi: 10.1016/j.cmpb.2012.10.003
– ident: ref17
  doi: 10.1109/BigData.2015.7364129
– ident: ref32
  doi: 10.1002/0471644676
– ident: ref30
  doi: 10.1017/S0269888906000646
– ident: ref19
  doi: 10.1109/ICMLA.2013.163
– ident: ref42
  doi: 10.1016/j.eswa.2013.10.031
– ident: ref35
  doi: 10.1007/978-3-319-26138-6_24
– start-page: 97
  year: 2001
  ident: ref46
  article-title: PedroDomingos: Mining time-changing data streams
  publication-title: Proc ACM SIGKDD Int Conf Knowl Discovery Data Mining
  doi: 10.1145/502512.502529
– ident: ref39
  doi: 10.1007/978-1-84628-726-8_2
– ident: ref18
  doi: 10.1109/ICDIM.2015.7381876
– ident: ref62
  doi: 10.1109/ACCESS.2015.2509013
– ident: ref51
  doi: 10.1145/2351316.2351322
– ident: ref40
  doi: 10.1109/34.667886
– ident: ref8
  doi: 10.6028/NIST.IR.6407
– year: 2016
  ident: ref53
  publication-title: Cancer Data Access System of American National Cancer Institute
– year: 1997
  ident: ref27
  publication-title: Applying Case-Based Reasoning Techniques for Enterprise Systems
– ident: ref1
  doi: 10.1136/bmj.i2139
– ident: ref13
  doi: 10.1002/msj.21351
– ident: ref11
  doi: 10.1109/JSYST.2015.2470644
– ident: ref61
  doi: 10.1109/MNET.2013.6616116
– ident: ref49
  doi: 10.1007/978-3-540-76928-6_11
– ident: ref33
  doi: 10.1016/j.eswa.2016.02.005
– ident: ref59
  doi: 10.1007/s11036-016-0745-1
– year: 2006
  ident: ref28
  article-title: Raciocínio Baseadoem Casos
  publication-title: Informática UFRGS
– ident: ref23
  doi: 10.1145/347090.347107
– ident: ref4
  doi: 10.1001/jama.1997.03540280045032
– start-page: 105
  year: 2001
  ident: ref24
  article-title: Online bagging and boosting
  publication-title: Artificial Intelligence and Statistics
– ident: ref5
  doi: 10.1001/jamainternmed.2013.2777
– ident: ref38
  doi: 10.1109/ICEBE.2015.34
– ident: ref9
  doi: 10.1001/jama.280.15.1311
– year: 2005
  ident: ref47
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref12
  doi: 10.1007/978-0-387-38319-4_1
– ident: ref45
  doi: 10.1002/aris.1440400112
– ident: ref50
  doi: 10.1007/978-3-540-76928-6_11
– year: 1993
  ident: ref21
  publication-title: C4 5 Programs for Machine Learning
– ident: ref2
  doi: 10.1023/A:1023796918654
– ident: ref55
  doi: 10.1109/ICSESS.2015.7339227
– ident: ref56
  doi: 10.1109/ES.2014.32
– ident: ref54
  doi: 10.1016/S0957-4174(02)00142-2
– ident: ref20
  doi: 10.1007/978-3-642-03915-7_22
– ident: ref57
  doi: 10.1016/j.future.2015.12.001
– ident: ref52
  doi: 10.1145/502512.502568
– ident: ref16
  doi: 10.1002/msj.21351
– ident: ref41
  doi: 10.1080/17517570802610362
– ident: ref26
  doi: 10.1016/j.eswa.2011.02.055
– year: 1994
  ident: ref22
  publication-title: Classification and Regression Trees
– ident: ref14
  doi: 10.1186/1472-6947-9-6
– year: 1992
  ident: ref7
  publication-title: Mismatch Between Machine Representations and Human Concepts Dangers and Remedies
– ident: ref31
  doi: 10.1016/B978-1-55860-237-3.50005-4
– ident: ref60
  doi: 10.1016/j.ins.2014.06.023
– ident: ref44
  doi: 10.1109/TSMCA.2011.2162946
– ident: ref43
  doi: 10.1080/17517570903502856
– year: 2015
  ident: ref37
  article-title: Semantic document exchange for electronic business through user-autonomous document sense-making
– ident: ref58
  doi: 10.1007/s11036-014-0537-4
– ident: ref10
  doi: 10.1016/S0140-6736(95)91804-3
– ident: ref6
  doi: 10.1016/0020-7101(79)90001-1
– ident: ref34
  doi: 10.1109/MCOM.2015.7355582
SSID ssj0000816957
Score 2.242445
Snippet Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3529
SubjectTerms Algorithms
Big data
case-based reasoning
Clinical diagnosis
Cognition
Data exchange
Data mining
data stream mining
Data transmission
Decision support systems
decision tree
Decision trees
Diagnosis
disease detection
Diseases
electronic health record
Electronic health records
Health services
Human error
Incompatibility
Inference
Information systems
Machine learning
Medical diagnosis
Medical diagnostic imaging
medical record
semantic integration
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBAgURWpAPHJttEjuOzW27UBWk5UIreovGsV1WpNmqmxWCP8LfrV-JdgEhTrYiP-PP9tie-QahN-61zJRGpmCgSanKIRWZIWkmKUgr3mui3dXA_BM7u6AfL8vLHXQ02sJorb3ymZ64qH_LV8tm7a7KjivOSuG8Vt-zsWCrNd6nOAcSoqwisVCeiePpbGb74LS3qknBKmdCurX5eI7-6FRlS768v-5u4Md3aNuNreZ0D82HRgYNk2-TdS8nzc_f-Bv_txeP0aMoc-JpAMkTtKO7p-jhBhPhPvr1WV_bf7xo8IfBAhAvOxxZQ1v8Lha7eovtCiK9Vwk894qYGkeO1is8ba-Wt4v-6_UKf7EBhm6juFAftkIyDpTJdp3dqCCo_C1WNpPC54P6-zN0cfr-fHaWRp8NaUMz3qe5ZlwokI3iICtwbGp2XBgDLqHUjIAplLYyENdFaQPCLEZEBrkipsiJVOQ52u2WnX6BMFSa8EJaCZPYU58A7szfM0FASqMIaRJUDINZN5HQ3PnVaGt_sMlEHRBQOwTUEQEJOhoz3QQ-j38nP3EoGZM6Mm7_wY5oHed2TVXVEFCca1rSvJKCuz2_UFCZnBvKErTvUDAWEgGQoMMBc3VcOFZ1Qe0Rj5SMFwlKRxz-0VTw3jS3mvry77UcoAcuVbg1OkS7_e1av7JyVC9f-wl0BzKmGyg
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAODBiIsDH5wBGXOHYch1upmAbSJiRWMU7Rc-xsFVk6rakQ_CP8uzwnbpUOaYKTpcg_Evuz_Tl-73uEvPa3ZVVaGQYVlExaDiyPK8FiI8EgvXfC-V8DJ6fqeCY_nafnQWfb-8IM7-95nL-FLmygN8HKxonKvB_ofbKjUiTeI7IzO_08-ebDx3GVM9FdRO7fUXJr7-kk-kNMlS16-WDVXMPPH1DXg53maLd34V52AoXewOT7eNWacfnrlnzjP37EY_IoME466SHyhNxzzVPycKBDuEd-f3FX2MPzkn5c-__RRUODZmhNcSdada5w7yiuH6aLKUFPOjNMR4NC6wWd1BeLm3l7ebWkXzGh0Ayq69ujSJFpL5iMq-yggd7gb77EQpaerY3fn5HZ0Yez6TELERtYKWPdMu6Uzi2Y0mowGXgtNRwZpUAbSJ0SUCXWIQPSLkkxEQoRksfAragSLowVz8moWTTuBaGQOaETg_xS4JkvB-2d3-NcgDGVFaKMSLIey6IMcuY-qkZddMeaOC8m0yliuPC9XoRej8ibTaHrXs3j7uzvPUg2Wb0Ud_cAB7cIM7uQNisFWK2dTCXPTK79jp9YyCquK6kisuchtqkk04heLiNysIZcEZaNZZFIPOCJVOkkImwDw79etcfT1qu-_M_8B2TU3qzcK2RUrTkMM-kPpFgcAw
  priority: 102
  providerName: Unpaywall
Title Semantic Inference on Clinical Documents: Combining Machine Learning Algorithms With an Inference Engine for Effective Clinical Diagnosis and Treatment
URI https://ieeexplore.ieee.org/document/7865914
https://www.proquest.com/docview/2455935682
https://doi.org/10.1109/access.2017.2672975
https://doaj.org/article/4d7c3ad88e45417b9828472da7f18f46
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBBREoKx84EhoEjt-cFtWVAWpFRJdUU7ROHbKSmm26u4K8Uv4u4wfu8oKCS6cLEWxPZkZ2zPOzDeEvPZ_y7q6Mzl00ObclpDromN5YTgYNO8dc_5q4OxcnM75p8v6clTqy8eERXjgyLhjbmXLwCrleM1LabTyG2plQXal6ngA2y6UHjlTYQ9WpdC1TDBDZaGPp7MZfpGP5ZJvKyF9QuneURQQ-1OJlT1r895muIGfP6DvRwfPySPyMFmMdBopfUzuuOEJeTDCETwkv764a-TQoqUft_l7dDnQhPnZUzxJNiGV7R3F9W9CTQh6FsIoHU0Iq1d02l8tbxfr79cr-hUbCsNouDgfRROXRsBj3CVHE8SAvcUKO1l6sQ1ef0rmJx8uZqd5qriQt7xQ67x0QmkLprUKjASPhYZ8FAKUgdoJBl1lHVowylU1NkyghHUBpWVdVTJj2TNyMCwH95xQkI6pyqB9yNBn06B88nqhGRjTWcbajFRb5jdtgiP3VTH6JrglhW6ixBovsSZJLCNvdp1uIhrH319_76W6e9VDaYcHqGBNUrDmXwqWkUOvE7tBpBK1LnlGjrY60qRlv2oqjg4aq4WqMpLv9OYPUiHUwtwj9cX_IPUlue_HjDdER-Rgfbtxr9BmWptJWB6TkN44IXfn55-n334DIMcT0Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoIAPHJttEj9ic1sWqi10e2ErerPGsdOuSLNVNysEf4S_i5040S4gxClR5Gf82R6PZ75B6I2_LStZqWMooYipSSGWSUniRFPQTry3xHrVwOyMT8_pxwt2sYMOB18Ya21rfGZH_rW9yzfLYu1VZUe54Ez6qNV3GKWUdd5ag0bFh5CQLA_UQmkij8aTieuFt9_KRxnPvRPp1vbTsvSHsCpbEubeur6B79-gqjY2m-MHaNY3s7Mx-TpaN3pU_PiNwfF_-_EQ3Q9SJx53MHmEdmz9GN3b4CLcRz8_22v3lxcFPul9APGyxoE3tMLvQ7Grt9itIbqNK4FnrSmmxYGl9RKPq8vl7aK5ul7hL-6Bod4orqsPOzEZd6TJbqXdqKAz-lusXCaD570B_BN0fvxhPpnGIWpDXNBENHFquZAGdGEE6Bw8n5obF85BaGCWEygzY50UJGzG3INwhxKZQGpImaVEG_IU7dbL2j5DGHJLRKadjEncuU-C8A7wiSSgdWkIKSKU9YOpikBp7iNrVKo92iRSdQhQHgEqICBCh0Omm47R49_J33mUDEk9HXf7wY2oCrNbUZMXBIwQljKa5loKv-tnBvIyFSXlEdr3KBgKCQCI0EGPORWWjpXKqDvkEcZFFqF4wOEfTYU2nuZWU5__vZbXaG86n52q05OzTy_QXZ-j0yEdoN3mdm1fOqmq0a_ayfQLHbUedQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAODBiIsDH5wBGXOHYch1upmAbSJiRWMU7Rc-xsFVk6rakQ_CP8uzwnbpUOaYKTpcg_Evuz_Tl-73uEvPa3ZVVaGQYVlExaDiyPK8FiI8EgvXfC-V8DJ6fqeCY_nafnQWfb-8IM7-95nL-FLmygN8HKxonKvB_ofbKjUiTeI7IzO_08-ebDx3GVM9FdRO7fUXJr7-kk-kNMlS16-WDVXMPPH1DXg53maLd34V52AoXewOT7eNWacfnrlnzjP37EY_IoME466SHyhNxzzVPycKBDuEd-f3FX2MPzkn5c-__RRUODZmhNcSdada5w7yiuH6aLKUFPOjNMR4NC6wWd1BeLm3l7ebWkXzGh0Ayq69ujSJFpL5iMq-yggd7gb77EQpaerY3fn5HZ0Yez6TELERtYKWPdMu6Uzi2Y0mowGXgtNRwZpUAbSJ0SUCXWIQPSLkkxEQoRksfAragSLowVz8moWTTuBaGQOaETg_xS4JkvB-2d3-NcgDGVFaKMSLIey6IMcuY-qkZddMeaOC8m0yliuPC9XoRej8ibTaHrXs3j7uzvPUg2Wb0Ud_cAB7cIM7uQNisFWK2dTCXPTK79jp9YyCquK6kisuchtqkk04heLiNysIZcEZaNZZFIPOCJVOkkImwDw79etcfT1qu-_M_8B2TU3qzcK2RUrTkMM-kPpFgcAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Inference+on+Clinical+Documents%3A+Combining+Machine+Learning+Algorithms+With+an+Inference+Engine+for+Effective+Clinical+Diagnosis+and+Treatment&rft.jtitle=IEEE+access&rft.au=Yang%2C+Shuo&rft.au=Wei%2C+Ran&rft.au=Guo%2C+Jingzhi&rft.au=Xu%2C+Lida&rft.date=2017&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=3529&rft.epage=3546&rft_id=info:doi/10.1109%2FACCESS.2017.2672975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2672975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon