Semantic Inference on Clinical Documents: Combining Machine Learning Algorithms With an Inference Engine for Effective Clinical Diagnosis and Treatment
Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS o...
        Saved in:
      
    
          | Published in | IEEE access Vol. 5; pp. 3529 - 3546 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2017
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2017.2672975 | 
Cover
| Abstract | Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS over the past several years, challenges to their wide-scale application are still present, including: 1) decision making of CDSS is complicated by the complexity of the data regarding human physiology and pathology, which could render the whole process more time-consuming by loading big data related to patients; and 2) information incompatibility among different health information systems (HIS) makes CDSS an information island, i.e., additional input work on patient information might be required, which would further increase the burden on clinicians. One popular strategy is the integration of CDSS in HIS to directly read electronic health records (EHRs) for analysis. However, gathering data from EHRs could constitute another problem, because EHR document standards are not unified. In addition, HIS could use different default clinical terminologies to define input data, which could cause additional misinterpretation. Several proposals have been published thus far to allow CDSS access to EHRs via the redefinition of data terminologies according to the standards used by the recipients of the data flow, but they mostly aim at specific versions of CDSS guidelines. This paper views these problems in a different way. Compared with conventional approaches, we suggest more fundamental changes; specifically, uniform and updatable clinical terminology and document syntax should be used by EHRs, HIS, and their integrated CDSS. Facilitated data exchange will increase the overall data loading efficacy, enabling CDSS to read more information for analysis at a given time. Furthermore, a proposed CDSS should be based on self-learning, which dynamically updates a knowledge model according to the data-stream-based upcoming data set. The experiment results show that our system increases the accuracy of the diagnosis and treatment strategy designs. | 
    
|---|---|
| AbstractList | Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized countries. The application of clinical decision support systems (CDSS) casts light on this problem. However, given the great improvement in CDSS over the past several years, challenges to their wide-scale application are still present, including: 1) decision making of CDSS is complicated by the complexity of the data regarding human physiology and pathology, which could render the whole process more time-consuming by loading big data related to patients; and 2) information incompatibility among different health information systems (HIS) makes CDSS an information island, i.e., additional input work on patient information might be required, which would further increase the burden on clinicians. One popular strategy is the integration of CDSS in HIS to directly read electronic health records (EHRs) for analysis. However, gathering data from EHRs could constitute another problem, because EHR document standards are not unified. In addition, HIS could use different default clinical terminologies to define input data, which could cause additional misinterpretation. Several proposals have been published thus far to allow CDSS access to EHRs via the redefinition of data terminologies according to the standards used by the recipients of the data flow, but they mostly aim at specific versions of CDSS guidelines. This paper views these problems in a different way. Compared with conventional approaches, we suggest more fundamental changes; specifically, uniform and updatable clinical terminology and document syntax should be used by EHRs, HIS, and their integrated CDSS. Facilitated data exchange will increase the overall data loading efficacy, enabling CDSS to read more information for analysis at a given time. Furthermore, a proposed CDSS should be based on self-learning, which dynamically updates a knowledge model according to the data-stream-based upcoming data set. The experiment results show that our system increases the accuracy of the diagnosis and treatment strategy designs. | 
    
| Author | Shuo Yang Ran Wei Jingzhi Guo Lida Xu  | 
    
| Author_xml | – sequence: 1 givenname: Shuo orcidid: 0000-0003-4516-9953 surname: Yang fullname: Yang, Shuo – sequence: 2 givenname: Ran surname: Wei fullname: Wei, Ran – sequence: 3 givenname: Jingzhi surname: Guo fullname: Guo, Jingzhi – sequence: 4 givenname: Lida surname: Xu fullname: Xu, Lida  | 
    
| BookMark | eNqFksFuEzEQhleoSJTSJ-jFEueEtb1re7lFS4BIQRxSxNGa9Y5TRxs72JuiPgmvi9Otqqgc8GWsX_N_v8bjt8WFDx6L4oaWc0rL5sOibZebzZyVVM6ZkKyR9aviklHRzHjNxcXZ_U1xndKuzEdlqZaXxZ8N7sGPzpCVtxjRGyTBk3Zw3hkYyKdgjnv0Y_pI2rDvsuq35BuYO-eRrBHio7AYtiG68W6fyM9cCPgz3NJvT802RLK0Fs3o7vEswMHWh-RSNvXkNiKMp7x3xWsLQ8Lrp3pV_Pi8vG2_ztbfv6zaxXpmqlKNM4pCNT10plfQSVB1w_NgQoDqoEbBwbIeeSMVsjoXLsBCUwLtuWWUdz2_KlYTtw-w04fo9hAfdACnH4UQtxpifp4BddVLw6FXCqu6orJrFFOVZD1IS5WtRGZVE-voD_DwG4bhGUhLfdqVBmMwJX3alX7aVba9n2yHGH4dMY16F47R56k1q-o8US0Uy1186jIxpBTR_sOe_sFLdvPCZdwIowt-jOCG_3hvJq9DxOc0qUTd0Ir_BY5gwuA | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_2147_JMDH_S433299 crossref_primary_10_1007_s11517_021_02333_x crossref_primary_10_1142_S2424862220300045 crossref_primary_10_1109_ACCESS_2020_3035026 crossref_primary_10_1109_ACCESS_2019_2891710 crossref_primary_10_1016_j_jsis_2020_101600 crossref_primary_10_1142_S2424862220300057 crossref_primary_10_1142_S2424862219500192 crossref_primary_10_1109_TNSRE_2020_3005616 crossref_primary_10_1002_hsr2_1893 crossref_primary_10_1136_ejhpharm_2021_002763 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_1016_j_eswa_2018_09_034 crossref_primary_10_1109_ACCESS_2017_2752200 crossref_primary_10_1200_CCI_18_00002  | 
    
| Cites_doi | 10.3233/AIC-1994-7104 10.1016/j.eswa.2014.08.045 10.1145/1557019.1557041 10.1145/1656274.1656287 10.1016/j.cmpb.2012.10.003 10.1109/BigData.2015.7364129 10.1002/0471644676 10.1017/S0269888906000646 10.1109/ICMLA.2013.163 10.1016/j.eswa.2013.10.031 10.1007/978-3-319-26138-6_24 10.1145/502512.502529 10.1007/978-1-84628-726-8_2 10.1109/ICDIM.2015.7381876 10.1109/ACCESS.2015.2509013 10.1145/2351316.2351322 10.1109/34.667886 10.6028/NIST.IR.6407 10.1136/bmj.i2139 10.1002/msj.21351 10.1109/JSYST.2015.2470644 10.1109/MNET.2013.6616116 10.1007/978-3-540-76928-6_11 10.1016/j.eswa.2016.02.005 10.1007/s11036-016-0745-1 10.1145/347090.347107 10.1001/jama.1997.03540280045032 10.1001/jamainternmed.2013.2777 10.1109/ICEBE.2015.34 10.1001/jama.280.15.1311 10.1007/978-0-387-38319-4_1 10.1002/aris.1440400112 10.1023/A:1023796918654 10.1109/ICSESS.2015.7339227 10.1109/ES.2014.32 10.1016/S0957-4174(02)00142-2 10.1007/978-3-642-03915-7_22 10.1016/j.future.2015.12.001 10.1145/502512.502568 10.1080/17517570802610362 10.1016/j.eswa.2011.02.055 10.1186/1472-6947-9-6 10.1016/B978-1-55860-237-3.50005-4 10.1016/j.ins.2014.06.023 10.1109/TSMCA.2011.2162946 10.1080/17517570903502856 10.1007/s11036-014-0537-4 10.1016/S0140-6736(95)91804-3 10.1016/0020-7101(79)90001-1 10.1109/MCOM.2015.7355582  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2017.2672975 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 3546 | 
    
| ExternalDocumentID | oai_doaj_org_article_4d7c3ad88e45417b9828472da7f18f46 10.1109/access.2017.2672975 10_1109_ACCESS_2017_2672975 7865914  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: University of Macau Research grantid: MYRG2015-00043-FST  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-1e689dabcd8ab7a859316966a8ba5e63af2de3978e2539736afa90a1d3f213bd3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:40:21 EDT 2025 Sun Sep 07 11:01:15 EDT 2025 Sun Sep 07 03:30:05 EDT 2025 Wed Oct 01 04:49:14 EDT 2025 Thu Apr 24 22:57:38 EDT 2025 Tue Aug 26 16:39:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-1e689dabcd8ab7a859316966a8ba5e63af2de3978e2539736afa90a1d3f213bd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4516-9953 | 
    
| OpenAccessLink | https://doaj.org/article/4d7c3ad88e45417b9828472da7f18f46 | 
    
| PQID | 2455935682 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | ieee_primary_7865914 crossref_primary_10_1109_ACCESS_2017_2672975 unpaywall_primary_10_1109_access_2017_2672975 doaj_primary_oai_doaj_org_article_4d7c3ad88e45417b9828472da7f18f46 proquest_journals_2455935682 crossref_citationtrail_10_1109_ACCESS_2017_2672975  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170000 2017-00-00 20170101 2017-01-01  | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – year: 2017 text: 20170000  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 kopec (ref7) 1992 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 quinlan (ref21) 1993 ref45 ref48 ref42 ref41 ref44 (ref53) 2016 ref43 oza (ref24) 2001 ref49 ref8 ref9 ref4 otavioalvares (ref28) 2006 ref6 ref5 witten (ref47) 2005 ref40 hulten (ref46) 2001 ref35 ref34 ref36 ref31 aamodt (ref29) 2004; 7 ref30 ref33 ref32 ref2 kohn (ref3) 2000 ref1 ref39 ref38 ref23 ref26 ref25 ref20 watson (ref27) 1997 breiman (ref22) 1994 xiao (ref37) 2015 ref60 ref62 ref61  | 
    
| References_xml | – volume: 7 start-page: 39 year: 2004 ident: ref29 article-title: Case-based reasoning: Foundational issues, methodological variations, and system approaches publication-title: AI Commun doi: 10.3233/AIC-1994-7104 – year: 2000 ident: ref3 publication-title: To Err Is Human Building a Safer Health System – ident: ref36 doi: 10.1016/j.eswa.2014.08.045 – ident: ref25 doi: 10.1145/1557019.1557041 – ident: ref48 doi: 10.1145/1656274.1656287 – ident: ref15 doi: 10.1016/j.cmpb.2012.10.003 – ident: ref17 doi: 10.1109/BigData.2015.7364129 – ident: ref32 doi: 10.1002/0471644676 – ident: ref30 doi: 10.1017/S0269888906000646 – ident: ref19 doi: 10.1109/ICMLA.2013.163 – ident: ref42 doi: 10.1016/j.eswa.2013.10.031 – ident: ref35 doi: 10.1007/978-3-319-26138-6_24 – start-page: 97 year: 2001 ident: ref46 article-title: PedroDomingos: Mining time-changing data streams publication-title: Proc ACM SIGKDD Int Conf Knowl Discovery Data Mining doi: 10.1145/502512.502529 – ident: ref39 doi: 10.1007/978-1-84628-726-8_2 – ident: ref18 doi: 10.1109/ICDIM.2015.7381876 – ident: ref62 doi: 10.1109/ACCESS.2015.2509013 – ident: ref51 doi: 10.1145/2351316.2351322 – ident: ref40 doi: 10.1109/34.667886 – ident: ref8 doi: 10.6028/NIST.IR.6407 – year: 2016 ident: ref53 publication-title: Cancer Data Access System of American National Cancer Institute – year: 1997 ident: ref27 publication-title: Applying Case-Based Reasoning Techniques for Enterprise Systems – ident: ref1 doi: 10.1136/bmj.i2139 – ident: ref13 doi: 10.1002/msj.21351 – ident: ref11 doi: 10.1109/JSYST.2015.2470644 – ident: ref61 doi: 10.1109/MNET.2013.6616116 – ident: ref49 doi: 10.1007/978-3-540-76928-6_11 – ident: ref33 doi: 10.1016/j.eswa.2016.02.005 – ident: ref59 doi: 10.1007/s11036-016-0745-1 – year: 2006 ident: ref28 article-title: Raciocínio Baseadoem Casos publication-title: Informática UFRGS – ident: ref23 doi: 10.1145/347090.347107 – ident: ref4 doi: 10.1001/jama.1997.03540280045032 – start-page: 105 year: 2001 ident: ref24 article-title: Online bagging and boosting publication-title: Artificial Intelligence and Statistics – ident: ref5 doi: 10.1001/jamainternmed.2013.2777 – ident: ref38 doi: 10.1109/ICEBE.2015.34 – ident: ref9 doi: 10.1001/jama.280.15.1311 – year: 2005 ident: ref47 publication-title: Data Mining Practical Machine Learning Tools and Techniques – ident: ref12 doi: 10.1007/978-0-387-38319-4_1 – ident: ref45 doi: 10.1002/aris.1440400112 – ident: ref50 doi: 10.1007/978-3-540-76928-6_11 – year: 1993 ident: ref21 publication-title: C4 5 Programs for Machine Learning – ident: ref2 doi: 10.1023/A:1023796918654 – ident: ref55 doi: 10.1109/ICSESS.2015.7339227 – ident: ref56 doi: 10.1109/ES.2014.32 – ident: ref54 doi: 10.1016/S0957-4174(02)00142-2 – ident: ref20 doi: 10.1007/978-3-642-03915-7_22 – ident: ref57 doi: 10.1016/j.future.2015.12.001 – ident: ref52 doi: 10.1145/502512.502568 – ident: ref16 doi: 10.1002/msj.21351 – ident: ref41 doi: 10.1080/17517570802610362 – ident: ref26 doi: 10.1016/j.eswa.2011.02.055 – year: 1994 ident: ref22 publication-title: Classification and Regression Trees – ident: ref14 doi: 10.1186/1472-6947-9-6 – year: 1992 ident: ref7 publication-title: Mismatch Between Machine Representations and Human Concepts Dangers and Remedies – ident: ref31 doi: 10.1016/B978-1-55860-237-3.50005-4 – ident: ref60 doi: 10.1016/j.ins.2014.06.023 – ident: ref44 doi: 10.1109/TSMCA.2011.2162946 – ident: ref43 doi: 10.1080/17517570903502856 – year: 2015 ident: ref37 article-title: Semantic document exchange for electronic business through user-autonomous document sense-making – ident: ref58 doi: 10.1007/s11036-014-0537-4 – ident: ref10 doi: 10.1016/S0140-6736(95)91804-3 – ident: ref6 doi: 10.1016/0020-7101(79)90001-1 – ident: ref34 doi: 10.1109/MCOM.2015.7355582  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.242445 | 
    
| Snippet | Clinical practice calls for reliable diagnosis and optimized treatment. However, human errors in health care remain a severe issue even in industrialized... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3529 | 
    
| SubjectTerms | Algorithms Big data case-based reasoning Clinical diagnosis Cognition Data exchange Data mining data stream mining Data transmission Decision support systems decision tree Decision trees Diagnosis disease detection Diseases electronic health record Electronic health records Health services Human error Incompatibility Inference Information systems Machine learning Medical diagnosis Medical diagnostic imaging medical record semantic integration  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBAgURWpAPHJttEjuOzW27UBWk5UIreovGsV1WpNmqmxWCP8LfrV-JdgEhTrYiP-PP9tie-QahN-61zJRGpmCgSanKIRWZIWkmKUgr3mui3dXA_BM7u6AfL8vLHXQ02sJorb3ymZ64qH_LV8tm7a7KjivOSuG8Vt-zsWCrNd6nOAcSoqwisVCeiePpbGb74LS3qknBKmdCurX5eI7-6FRlS768v-5u4Md3aNuNreZ0D82HRgYNk2-TdS8nzc_f-Bv_txeP0aMoc-JpAMkTtKO7p-jhBhPhPvr1WV_bf7xo8IfBAhAvOxxZQ1v8Lha7eovtCiK9Vwk894qYGkeO1is8ba-Wt4v-6_UKf7EBhm6juFAftkIyDpTJdp3dqCCo_C1WNpPC54P6-zN0cfr-fHaWRp8NaUMz3qe5ZlwokI3iICtwbGp2XBgDLqHUjIAplLYyENdFaQPCLEZEBrkipsiJVOQ52u2WnX6BMFSa8EJaCZPYU58A7szfM0FASqMIaRJUDINZN5HQ3PnVaGt_sMlEHRBQOwTUEQEJOhoz3QQ-j38nP3EoGZM6Mm7_wY5oHed2TVXVEFCca1rSvJKCuz2_UFCZnBvKErTvUDAWEgGQoMMBc3VcOFZ1Qe0Rj5SMFwlKRxz-0VTw3jS3mvry77UcoAcuVbg1OkS7_e1av7JyVC9f-wl0BzKmGyg priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAODBiIsDH5wBGXOHYch1upmAbSJiRWMU7Rc-xsFVk6rakQ_CP8uzwnbpUOaYKTpcg_Evuz_Tl-73uEvPa3ZVVaGQYVlExaDiyPK8FiI8EgvXfC-V8DJ6fqeCY_nafnQWfb-8IM7-95nL-FLmygN8HKxonKvB_ofbKjUiTeI7IzO_08-ebDx3GVM9FdRO7fUXJr7-kk-kNMlS16-WDVXMPPH1DXg53maLd34V52AoXewOT7eNWacfnrlnzjP37EY_IoME466SHyhNxzzVPycKBDuEd-f3FX2MPzkn5c-__RRUODZmhNcSdada5w7yiuH6aLKUFPOjNMR4NC6wWd1BeLm3l7ebWkXzGh0Ayq69ujSJFpL5iMq-yggd7gb77EQpaerY3fn5HZ0Yez6TELERtYKWPdMu6Uzi2Y0mowGXgtNRwZpUAbSJ0SUCXWIQPSLkkxEQoRksfAragSLowVz8moWTTuBaGQOaETg_xS4JkvB-2d3-NcgDGVFaKMSLIey6IMcuY-qkZddMeaOC8m0yliuPC9XoRej8ibTaHrXs3j7uzvPUg2Wb0Ud_cAB7cIM7uQNisFWK2dTCXPTK79jp9YyCquK6kisuchtqkk04heLiNysIZcEZaNZZFIPOCJVOkkImwDw79etcfT1qu-_M_8B2TU3qzcK2RUrTkMM-kPpFgcAw priority: 102 providerName: Unpaywall  | 
    
| Title | Semantic Inference on Clinical Documents: Combining Machine Learning Algorithms With an Inference Engine for Effective Clinical Diagnosis and Treatment | 
    
| URI | https://ieeexplore.ieee.org/document/7865914 https://www.proquest.com/docview/2455935682 https://doi.org/10.1109/access.2017.2672975 https://doaj.org/article/4d7c3ad88e45417b9828472da7f18f46  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBBREoKx84EhoEjt-cFtWVAWpFRJdUU7ROHbKSmm26u4K8Uv4u4wfu8oKCS6cLEWxPZkZ2zPOzDeEvPZ_y7q6Mzl00ObclpDromN5YTgYNO8dc_5q4OxcnM75p8v6clTqy8eERXjgyLhjbmXLwCrleM1LabTyG2plQXal6ngA2y6UHjlTYQ9WpdC1TDBDZaGPp7MZfpGP5ZJvKyF9QuneURQQ-1OJlT1r895muIGfP6DvRwfPySPyMFmMdBopfUzuuOEJeTDCETwkv764a-TQoqUft_l7dDnQhPnZUzxJNiGV7R3F9W9CTQh6FsIoHU0Iq1d02l8tbxfr79cr-hUbCsNouDgfRROXRsBj3CVHE8SAvcUKO1l6sQ1ef0rmJx8uZqd5qriQt7xQ67x0QmkLprUKjASPhYZ8FAKUgdoJBl1lHVowylU1NkyghHUBpWVdVTJj2TNyMCwH95xQkI6pyqB9yNBn06B88nqhGRjTWcbajFRb5jdtgiP3VTH6JrglhW6ixBovsSZJLCNvdp1uIhrH319_76W6e9VDaYcHqGBNUrDmXwqWkUOvE7tBpBK1LnlGjrY60qRlv2oqjg4aq4WqMpLv9OYPUiHUwtwj9cX_IPUlue_HjDdER-Rgfbtxr9BmWptJWB6TkN44IXfn55-n334DIMcT0Q | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcigceBVEoIAPHJttEj9ic1sWqi10e2ErerPGsdOuSLNVNysEf4S_i5040S4gxClR5Gf82R6PZ75B6I2_LStZqWMooYipSSGWSUniRFPQTry3xHrVwOyMT8_pxwt2sYMOB18Ya21rfGZH_rW9yzfLYu1VZUe54Ez6qNV3GKWUdd5ag0bFh5CQLA_UQmkij8aTieuFt9_KRxnPvRPp1vbTsvSHsCpbEubeur6B79-gqjY2m-MHaNY3s7Mx-TpaN3pU_PiNwfF_-_EQ3Q9SJx53MHmEdmz9GN3b4CLcRz8_22v3lxcFPul9APGyxoE3tMLvQ7Grt9itIbqNK4FnrSmmxYGl9RKPq8vl7aK5ul7hL-6Bod4orqsPOzEZd6TJbqXdqKAz-lusXCaD570B_BN0fvxhPpnGIWpDXNBENHFquZAGdGEE6Bw8n5obF85BaGCWEygzY50UJGzG3INwhxKZQGpImaVEG_IU7dbL2j5DGHJLRKadjEncuU-C8A7wiSSgdWkIKSKU9YOpikBp7iNrVKo92iRSdQhQHgEqICBCh0Omm47R49_J33mUDEk9HXf7wY2oCrNbUZMXBIwQljKa5loKv-tnBvIyFSXlEdr3KBgKCQCI0EGPORWWjpXKqDvkEcZFFqF4wOEfTYU2nuZWU5__vZbXaG86n52q05OzTy_QXZ-j0yEdoN3mdm1fOqmq0a_ayfQLHbUedQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAODBiIsDH5wBGXOHYch1upmAbSJiRWMU7Rc-xsFVk6rakQ_CP8uzwnbpUOaYKTpcg_Evuz_Tl-73uEvPa3ZVVaGQYVlExaDiyPK8FiI8EgvXfC-V8DJ6fqeCY_nafnQWfb-8IM7-95nL-FLmygN8HKxonKvB_ofbKjUiTeI7IzO_08-ebDx3GVM9FdRO7fUXJr7-kk-kNMlS16-WDVXMPPH1DXg53maLd34V52AoXewOT7eNWacfnrlnzjP37EY_IoME466SHyhNxzzVPycKBDuEd-f3FX2MPzkn5c-__RRUODZmhNcSdada5w7yiuH6aLKUFPOjNMR4NC6wWd1BeLm3l7ebWkXzGh0Ayq69ujSJFpL5iMq-yggd7gb77EQpaerY3fn5HZ0Yez6TELERtYKWPdMu6Uzi2Y0mowGXgtNRwZpUAbSJ0SUCXWIQPSLkkxEQoRksfAragSLowVz8moWTTuBaGQOaETg_xS4JkvB-2d3-NcgDGVFaKMSLIey6IMcuY-qkZddMeaOC8m0yliuPC9XoRej8ibTaHrXs3j7uzvPUg2Wb0Ud_cAB7cIM7uQNisFWK2dTCXPTK79jp9YyCquK6kisuchtqkk04heLiNysIZcEZaNZZFIPOCJVOkkImwDw79etcfT1qu-_M_8B2TU3qzcK2RUrTkMM-kPpFgcAw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Inference+on+Clinical+Documents%3A+Combining+Machine+Learning+Algorithms+With+an+Inference+Engine+for+Effective+Clinical+Diagnosis+and+Treatment&rft.jtitle=IEEE+access&rft.au=Yang%2C+Shuo&rft.au=Wei%2C+Ran&rft.au=Guo%2C+Jingzhi&rft.au=Xu%2C+Lida&rft.date=2017&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=5&rft.spage=3529&rft.epage=3546&rft_id=info:doi/10.1109%2FACCESS.2017.2672975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2017_2672975 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |