Enhanced Air Quality Inference via Multi-View Learning With Mobile Sensing Memory
Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost m...
Saved in:
Published in | IEEE access Vol. 10; pp. 36616 - 36628 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2022.3164506 |
Cover
Abstract | Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M 3 , a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%<inline-formula> <tex-math notation="LaTeX">\sim 29 </tex-math></inline-formula>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage. |
---|---|
AbstractList | Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M 3 , a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%<inline-formula> <tex-math notation="LaTeX">\sim 29 </tex-math></inline-formula>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage. Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M3, a novel framework for fine-grained air quality inference via multi-view learning with mobile sensing memory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17% <tex-math notation="LaTeX">$\sim 29$ </tex-math>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage. Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M3, a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%[Formula Omitted]% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage. |
Author | Liu, Ning Liu, Xinyu Wang, Yue Zhang, Lin Lin, Po-Ting |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0003-0418-4516 surname: Liu fullname: Liu, Ning organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Xinyu surname: Liu fullname: Liu, Xinyu organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China – sequence: 3 givenname: Po-Ting surname: Lin fullname: Lin, Po-Ting organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Yue surname: Wang fullname: Wang, Yue organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Lin orcidid: 0000-0002-4394-2685 surname: Zhang fullname: Zhang, Lin email: linzhang@tsinghua.edu.cn organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China |
BookMark | eNqFkUtrGzEUhUVJoWmaX5CNoOtx9dZoaYzbGmxKcB9LodFcJTITKdXIKf73HXdCKN30bnQ56DvnwnmLLlJOgNANJQtKifmwXK3W-_2CEcYWnCohiXqFLhlVpuGSq4u_9jfoehwPZJp2kqS-RLfrdO-Shx4vY8G3RzfEesKbFKDAJOOn6PDuONTYfI_wC2_BlRTTHf4R6z3e5S4OgPeQxrO2g4dcTu_Q6-CGEa6f3yv07eP66-pzs_3yabNabhsvSFsb6oOgpDUd8caEEFqvtTdEB6p0UDwYJXuniFRKhc70jkkfNJNCSMF62rb8Cm1m3z67g30s8cGVk80u2j9CLnfWlRr9AJYL2SuiDSdGCdfyzrsAVFBuHAscusnr_ez1WPLPI4zVHvKxpOl8y5Qw2hBGzol8_uVLHscC4SWVEnuuws5V2HMV9rmKiTL_UD5WV2NOtbg4_Ie9mdkIAC9pRouWasJ_A_23lsM |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2025_112634 crossref_primary_10_1051_e3sconf_202343001080 |
Cites_doi | 10.1109/JIOT.2019.2903821 10.1109/ACCESS.2020.3043386 10.1145/3397322 10.1109/TITS.2021.3097240 10.1126/sciadv.abd4049 10.1609/aaai.v31i1.10735 10.1109/CVPRW.2017.151 10.1016/S0140-6736(16)31597-5 10.1109/CVPR.2018.00807 10.1145/3308558.3313577 10.1145/3478083 10.1109/JIOT.2018.2853660 10.1109/JIOT.2020.2999446 10.1609/aaai.v32i1.11871 10.1109/JSEN.2021.3063815 10.1109/JIOT.2019.2929594 10.1109/ICCV.2015.123 10.1109/ICDE.2018.00062 10.1109/TBDATA.2020.2979443 10.1109/TIM.2020.3034109 10.1016/j.pmcj.2014.11.008 10.3115/v1/W14-4012 10.1109/SLT.2018.8639038 10.1038/s41598-020-71338-7 10.1109/JSEN.2019.2917435 10.1109/CVPR.2017.19 10.1145/3356250.3361938 10.1145/3292500.3330646 10.1016/j.scitotenv.2020.139282 10.1109/CVPRW.2019.00270 10.1145/2994551.2996714 10.1109/TNN.2008.2005605 10.24963/ijcai.2017/234 10.2337/db12-0190 10.1038/sj.jea.7500338 10.1145/2487575.2488188 10.1145/3341162.3345606 10.1145/2668332.2668346 10.1109/CVPR.2016.207 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3164506 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 36628 |
ExternalDocumentID | oai_doaj_org_article_345d607930964a83bcafe14139a2f3eb 10_1109_ACCESS_2022_3164506 9748170 |
Genre | orig-research |
GrantInformation_xml | – fundername: Tsinghua-Toyota Joint Research Institute Cross-discipline Program – fundername: Shenzhen Science and Technology Program grantid: KQTD20170810150821146 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-1cf41089b0c99fff8c77c907f167f63f965da605666fb9da25cf72544542d1883 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:55 EDT 2025 Mon Jun 30 06:34:41 EDT 2025 Tue Jul 01 04:21:04 EDT 2025 Thu Apr 24 22:58:07 EDT 2025 Wed Aug 27 02:40:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-1cf41089b0c99fff8c77c907f167f63f965da605666fb9da25cf72544542d1883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4394-2685 0000-0003-0418-4516 |
OpenAccessLink | https://doaj.org/article/345d607930964a83bcafe14139a2f3eb |
PQID | 2649790208 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9748170 doaj_primary_oai_doaj_org_article_345d607930964a83bcafe14139a2f3eb proquest_journals_2649790208 crossref_primary_10_1109_ACCESS_2022_3164506 crossref_citationtrail_10_1109_ACCESS_2022_3164506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 Veličković (ref44) ref18 Mao (ref31) 2016; 29 Ioffe (ref45) (ref37) 2021 ref24 ref46 ref23 ref26 Kingma (ref36) 2014 ref25 ref20 ref42 ref41 ref21 ref43 Xingjian (ref39) ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Sukhbaatar (ref22); 2 ref5 ref40 |
References_xml | – ident: ref4 doi: 10.1109/JIOT.2019.2903821 – ident: ref23 doi: 10.1109/ACCESS.2020.3043386 – ident: ref6 doi: 10.1145/3397322 – ident: ref26 doi: 10.1109/TITS.2021.3097240 – volume-title: WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide year: 2021 ident: ref37 – ident: ref3 doi: 10.1126/sciadv.abd4049 – ident: ref28 doi: 10.1609/aaai.v31i1.10735 – ident: ref16 doi: 10.1109/CVPRW.2017.151 – ident: ref1 doi: 10.1016/S0140-6736(16)31597-5 – ident: ref24 doi: 10.1109/CVPR.2018.00807 – ident: ref25 doi: 10.1145/3308558.3313577 – ident: ref27 doi: 10.1145/3478083 – ident: ref11 doi: 10.1109/JIOT.2018.2853660 – ident: ref20 doi: 10.1109/JIOT.2020.2999446 – ident: ref21 doi: 10.1609/aaai.v32i1.11871 – start-page: 802 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref39 article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting – ident: ref8 doi: 10.1109/JSEN.2021.3063815 – ident: ref12 doi: 10.1109/JIOT.2019.2929594 – ident: ref46 doi: 10.1109/ICCV.2015.123 – ident: ref41 doi: 10.1109/ICDE.2018.00062 – ident: ref10 doi: 10.1109/TBDATA.2020.2979443 – ident: ref7 doi: 10.1109/TIM.2020.3034109 – ident: ref18 doi: 10.1016/j.pmcj.2014.11.008 – year: 2014 ident: ref36 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref29 doi: 10.3115/v1/W14-4012 – ident: ref30 doi: 10.1109/SLT.2018.8639038 – volume: 29 start-page: 2802 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: ref31 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections – ident: ref34 doi: 10.1038/s41598-020-71338-7 – ident: ref5 doi: 10.1109/JSEN.2019.2917435 – ident: ref15 doi: 10.1109/CVPR.2017.19 – ident: ref17 doi: 10.1145/3356250.3361938 – ident: ref40 doi: 10.1145/3292500.3330646 – ident: ref35 doi: 10.1016/j.scitotenv.2020.139282 – ident: ref32 doi: 10.1109/CVPRW.2019.00270 – ident: ref19 doi: 10.1145/2994551.2996714 – ident: ref43 doi: 10.1109/TNN.2008.2005605 – volume: 2 start-page: 2440 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref22 article-title: End-to-end memory networks – ident: ref42 doi: 10.24963/ijcai.2017/234 – ident: ref2 doi: 10.2337/db12-0190 – ident: ref38 doi: 10.1038/sj.jea.7500338 – ident: ref14 doi: 10.1145/2487575.2488188 – ident: ref9 doi: 10.1145/3341162.3345606 – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref45 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref44 article-title: Graph attention networks – ident: ref13 doi: 10.1145/2668332.2668346 – ident: ref33 doi: 10.1109/CVPR.2016.207 |
SSID | ssj0000816957 |
Score | 2.2468386 |
Snippet | Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36616 |
SubjectTerms | Air monitoring Air pollution Air quality Atmospheric modeling Coders Encoders-Decoders Hybrid systems Learning Low cost mobile computing Monitoring multi-view learning Pollution Sensors Spatial dependencies Spatial distribution spatiotemporal memory Trajectory Urban areas |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooz6rLSz5wJEseTmwflxUIkBYJUQo3y3bssmq1iyALgl_P2PFGiFYVt8iKLSff-PHZM98A7Lu0oFo5JDmIaeJDOxNt6iwpqWFpqlRRhdyAo4vq9Jqe35a3C3DQxcJYa4Pzme37x3CXX0_NzB-VHeLe1-vJLcIimlkbq9Wdp_gEEqJkUVgoS8XhYDjEb0AKmOfITCta-qxG7xafoNEfk6r8NROH5eVkBUbzjrVeJb_7s0b3zesHzcbP9nwVvsZ9Jhm0hrEGC3ayDl_eqQ9uwOXx5C7c_5PB-IG0Yhov5GweAUiexoqE-Nzk59g-k6jE-ovcjJs7MppqnE_Ilfd_x7KRd9h92YTrk-Mfw9MkZlhIDE15k2TG0SzlQqdGCOccN4wZpMsuq5irCieqslZIeJDjOC1qlZfGsSBqRvM647z4BkuT6cR-B5IZJJI1s9waTTXjWuRWcGyJO6oYrXqQz3-9NFF-3GfB-CMDDUmFbPGSHi8Z8erBQVfpvlXf-P_rRx7T7lUvnR0KEAsZR6IsaFlXXhYQyRtVvNBGOZvhWi5U7gqre7Dh8esaidD1YGduITIO80eJu0nBhM9zuvXvWtuw7DvYntnswFLzMLO7uItp9F4w3ze7-exh priority: 102 providerName: IEEE |
Title | Enhanced Air Quality Inference via Multi-View Learning With Mobile Sensing Memory |
URI | https://ieeexplore.ieee.org/document/9748170 https://www.proquest.com/docview/2649790208 https://doaj.org/article/345d607930964a83bcafe14139a2f3eb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mLRpHsd12UWFFcTnLSRpoguyiq6K_95Jml0WBL14DWnazEwn87Uz3yB0GEjFrAkAckCnRSztLKxraFEzJwgxpuKpN-Dwgp_esPP7-n6u1VfMCWvpgVvBHVesbnhkcYNYmxlZWWeCp-B6lSlD5W30vkSROTCVfLCkXNUi0wxRoo67vR7sCABhWQJO5ayOPY7mjqLE2J9brPzwy-mwGayilRwl4m77dGtowY_X0fIcd-AGuuyPH9Pfe9wdveKWCuMLn03r9_DHyOBUXVvcjvwnzjyqD_huNHnEw2cL3gBfxex1GBvGdNuvTXQz6F_3TovcH6FwjMhJQV1glEhliVMqhCCdEA7AbqBcBF4FxevGAFwBhBKsakxZuyASJRkrGypltYUWx89jv40wdQADG-Gld5ZZIa0qvZKwkgzMCMY7qJyKSrtMHh57WDzpBCKI0q18dZSvzvLtoKPZRS8td8bv00-iDmZTI_F1GgBz0Nkc9F_m0EEbUYOzRQAuRQrCDtqbalTnl_RNQyyohIpdSnf-49a7aClup_0-s4cWJ6_vfh8ilok9SMZ5kIoLvwHxXuOH |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOhVIQWwr1gWOzzcOJ7eOyarWFphKir5tlOzZdtdpFJduq_fUdO96oAoS4RZZtOfn8mM-Z-Qbgk0sLqpVDkoOYJj60M9GmyZKSGpamShVVyA1YH1WTE_rlvDxfgZ0-FsZaG5zP7NA_hn_5zdws_FXZLtq-Xk_uCTwtkVXwLlqrv1HxKSREyaK0UJaK3dF4jG-BJDDPkZtWtPR5jR4dP0GlP6ZV-WMvDgfM_kuol0Pr_Eouh4tWD839b6qN_zv2V7AWLU0y6qbGOqzY2Wt48Uh_cAO-7c0uggcAGU2vSSencUcOljGA5GaqSIjQTU6n9pZELdYf5GzaXpB6rnFHId-9BzyW1d5l9-4NnOzvHY8nScyxkBia8jbJjKNZyoVOjRDOOW4YM0iYXVYxVxVOVGWjkPIgy3FaNCovjWNB1ozmTcZ58RZWZ_OZfQckM0glG2a5NZpqxrXIreDYE3dUMVoNIF9-emmiALnPg3ElAxFJhezwkh4vGfEawE7f6Genv_Hv6p89pn1VL54dChALGdeiLGjZVF4YEOkbVbzQRjmb4WkuVO4Kqwew4fHrO4nQDWBrOUNkXOi_JNqTggmf6XTz76224dnkuD6UhwdHX9_Dcz_Y7gZnC1bb64X9gDZNqz-GqfwAU17vtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Air+Quality+Inference+via+Multi-View+Learning+With+Mobile+Sensing+Memory&rft.jtitle=IEEE+access&rft.au=Liu%2C+Ning&rft.au=Liu%2C+Xinyu&rft.au=Lin%2C+Po-Ting&rft.au=Wang%2C+Yue&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=36616&rft.epage=36628&rft_id=info:doi/10.1109%2FACCESS.2022.3164506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3164506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |