Enhanced Air Quality Inference via Multi-View Learning With Mobile Sensing Memory

Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost m...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 36616 - 36628
Main Authors Liu, Ning, Liu, Xinyu, Lin, Po-Ting, Wang, Yue, Zhang, Lin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3164506

Cover

Abstract Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M 3 , a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%<inline-formula> <tex-math notation="LaTeX">\sim 29 </tex-math></inline-formula>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage.
AbstractList Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M 3 , a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%<inline-formula> <tex-math notation="LaTeX">\sim 29 </tex-math></inline-formula>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage.
Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M3, a novel framework for fine-grained air quality inference via multi-view learning with mobile sensing memory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17% <tex-math notation="LaTeX">$\sim 29$ </tex-math>% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage.
Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing technologies, low-cost portable sensors installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the issue of data uncertainty. Moreover, due to uncontrolled vehicles and human activities, the coverage of mobile nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges, we propose AQI-M3, a novel framework for fine-grained a ir q uality i nference via m ulti-view learning with m obile sensing m emory. Specifically, an encoder-decoder structure is applied in the region view for modeling the spatial dependencies in pollution maps. More importantly, sensing gradients are extracted in the trajectory view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that our proposed approach outperforms competitive baselines with 17%[Formula Omitted]% reduction in mean absolute error. Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework under dynamic coverage.
Author Liu, Ning
Liu, Xinyu
Wang, Yue
Zhang, Lin
Lin, Po-Ting
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0003-0418-4516
  surname: Liu
  fullname: Liu, Ning
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Xinyu
  surname: Liu
  fullname: Liu, Xinyu
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
– sequence: 3
  givenname: Po-Ting
  surname: Lin
  fullname: Lin, Po-Ting
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Lin
  orcidid: 0000-0002-4394-2685
  surname: Zhang
  fullname: Zhang, Lin
  email: linzhang@tsinghua.edu.cn
  organization: Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
BookMark eNqFkUtrGzEUhUVJoWmaX5CNoOtx9dZoaYzbGmxKcB9LodFcJTITKdXIKf73HXdCKN30bnQ56DvnwnmLLlJOgNANJQtKifmwXK3W-_2CEcYWnCohiXqFLhlVpuGSq4u_9jfoehwPZJp2kqS-RLfrdO-Shx4vY8G3RzfEesKbFKDAJOOn6PDuONTYfI_wC2_BlRTTHf4R6z3e5S4OgPeQxrO2g4dcTu_Q6-CGEa6f3yv07eP66-pzs_3yabNabhsvSFsb6oOgpDUd8caEEFqvtTdEB6p0UDwYJXuniFRKhc70jkkfNJNCSMF62rb8Cm1m3z67g30s8cGVk80u2j9CLnfWlRr9AJYL2SuiDSdGCdfyzrsAVFBuHAscusnr_ez1WPLPI4zVHvKxpOl8y5Qw2hBGzol8_uVLHscC4SWVEnuuws5V2HMV9rmKiTL_UD5WV2NOtbg4_Ie9mdkIAC9pRouWasJ_A_23lsM
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_buildenv_2025_112634
crossref_primary_10_1051_e3sconf_202343001080
Cites_doi 10.1109/JIOT.2019.2903821
10.1109/ACCESS.2020.3043386
10.1145/3397322
10.1109/TITS.2021.3097240
10.1126/sciadv.abd4049
10.1609/aaai.v31i1.10735
10.1109/CVPRW.2017.151
10.1016/S0140-6736(16)31597-5
10.1109/CVPR.2018.00807
10.1145/3308558.3313577
10.1145/3478083
10.1109/JIOT.2018.2853660
10.1109/JIOT.2020.2999446
10.1609/aaai.v32i1.11871
10.1109/JSEN.2021.3063815
10.1109/JIOT.2019.2929594
10.1109/ICCV.2015.123
10.1109/ICDE.2018.00062
10.1109/TBDATA.2020.2979443
10.1109/TIM.2020.3034109
10.1016/j.pmcj.2014.11.008
10.3115/v1/W14-4012
10.1109/SLT.2018.8639038
10.1038/s41598-020-71338-7
10.1109/JSEN.2019.2917435
10.1109/CVPR.2017.19
10.1145/3356250.3361938
10.1145/3292500.3330646
10.1016/j.scitotenv.2020.139282
10.1109/CVPRW.2019.00270
10.1145/2994551.2996714
10.1109/TNN.2008.2005605
10.24963/ijcai.2017/234
10.2337/db12-0190
10.1038/sj.jea.7500338
10.1145/2487575.2488188
10.1145/3341162.3345606
10.1145/2668332.2668346
10.1109/CVPR.2016.207
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3164506
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 36628
ExternalDocumentID oai_doaj_org_article_345d607930964a83bcafe14139a2f3eb
10_1109_ACCESS_2022_3164506
9748170
Genre orig-research
GrantInformation_xml – fundername: Tsinghua-Toyota Joint Research Institute Cross-discipline Program
– fundername: Shenzhen Science and Technology Program
  grantid: KQTD20170810150821146
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-1cf41089b0c99fff8c77c907f167f63f965da605666fb9da25cf72544542d1883
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:55 EDT 2025
Mon Jun 30 06:34:41 EDT 2025
Tue Jul 01 04:21:04 EDT 2025
Thu Apr 24 22:58:07 EDT 2025
Wed Aug 27 02:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-1cf41089b0c99fff8c77c907f167f63f965da605666fb9da25cf72544542d1883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4394-2685
0000-0003-0418-4516
OpenAccessLink https://doaj.org/article/345d607930964a83bcafe14139a2f3eb
PQID 2649790208
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_9748170
doaj_primary_oai_doaj_org_article_345d607930964a83bcafe14139a2f3eb
proquest_journals_2649790208
crossref_primary_10_1109_ACCESS_2022_3164506
crossref_citationtrail_10_1109_ACCESS_2022_3164506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
Veličković (ref44)
ref18
Mao (ref31) 2016; 29
Ioffe (ref45)
(ref37) 2021
ref24
ref46
ref23
ref26
Kingma (ref36) 2014
ref25
ref20
ref42
ref41
ref21
ref43
Xingjian (ref39)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Sukhbaatar (ref22); 2
ref5
ref40
References_xml – ident: ref4
  doi: 10.1109/JIOT.2019.2903821
– ident: ref23
  doi: 10.1109/ACCESS.2020.3043386
– ident: ref6
  doi: 10.1145/3397322
– ident: ref26
  doi: 10.1109/TITS.2021.3097240
– volume-title: WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide
  year: 2021
  ident: ref37
– ident: ref3
  doi: 10.1126/sciadv.abd4049
– ident: ref28
  doi: 10.1609/aaai.v31i1.10735
– ident: ref16
  doi: 10.1109/CVPRW.2017.151
– ident: ref1
  doi: 10.1016/S0140-6736(16)31597-5
– ident: ref24
  doi: 10.1109/CVPR.2018.00807
– ident: ref25
  doi: 10.1145/3308558.3313577
– ident: ref27
  doi: 10.1145/3478083
– ident: ref11
  doi: 10.1109/JIOT.2018.2853660
– ident: ref20
  doi: 10.1109/JIOT.2020.2999446
– ident: ref21
  doi: 10.1609/aaai.v32i1.11871
– start-page: 802
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Convolutional lstm network: A machine learning approach for precipitation nowcasting
– ident: ref8
  doi: 10.1109/JSEN.2021.3063815
– ident: ref12
  doi: 10.1109/JIOT.2019.2929594
– ident: ref46
  doi: 10.1109/ICCV.2015.123
– ident: ref41
  doi: 10.1109/ICDE.2018.00062
– ident: ref10
  doi: 10.1109/TBDATA.2020.2979443
– ident: ref7
  doi: 10.1109/TIM.2020.3034109
– ident: ref18
  doi: 10.1016/j.pmcj.2014.11.008
– year: 2014
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref29
  doi: 10.3115/v1/W14-4012
– ident: ref30
  doi: 10.1109/SLT.2018.8639038
– volume: 29
  start-page: 2802
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: ref31
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
– ident: ref34
  doi: 10.1038/s41598-020-71338-7
– ident: ref5
  doi: 10.1109/JSEN.2019.2917435
– ident: ref15
  doi: 10.1109/CVPR.2017.19
– ident: ref17
  doi: 10.1145/3356250.3361938
– ident: ref40
  doi: 10.1145/3292500.3330646
– ident: ref35
  doi: 10.1016/j.scitotenv.2020.139282
– ident: ref32
  doi: 10.1109/CVPRW.2019.00270
– ident: ref19
  doi: 10.1145/2994551.2996714
– ident: ref43
  doi: 10.1109/TNN.2008.2005605
– volume: 2
  start-page: 2440
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref22
  article-title: End-to-end memory networks
– ident: ref42
  doi: 10.24963/ijcai.2017/234
– ident: ref2
  doi: 10.2337/db12-0190
– ident: ref38
  doi: 10.1038/sj.jea.7500338
– ident: ref14
  doi: 10.1145/2487575.2488188
– ident: ref9
  doi: 10.1145/3341162.3345606
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref45
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref44
  article-title: Graph attention networks
– ident: ref13
  doi: 10.1145/2668332.2668346
– ident: ref33
  doi: 10.1109/CVPR.2016.207
SSID ssj0000816957
Score 2.2468386
Snippet Fine-grained air quality can provide essential urban environmental information for administrators and residents. With advances in communication and sensing...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36616
SubjectTerms Air monitoring
Air pollution
Air quality
Atmospheric modeling
Coders
Encoders-Decoders
Hybrid systems
Learning
Low cost
mobile computing
Monitoring
multi-view learning
Pollution
Sensors
Spatial dependencies
Spatial distribution
spatiotemporal memory
Trajectory
Urban areas
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooz6rLSz5wJEseTmwflxUIkBYJUQo3y3bssmq1iyALgl_P2PFGiFYVt8iKLSff-PHZM98A7Lu0oFo5JDmIaeJDOxNt6iwpqWFpqlRRhdyAo4vq9Jqe35a3C3DQxcJYa4Pzme37x3CXX0_NzB-VHeLe1-vJLcIimlkbq9Wdp_gEEqJkUVgoS8XhYDjEb0AKmOfITCta-qxG7xafoNEfk6r8NROH5eVkBUbzjrVeJb_7s0b3zesHzcbP9nwVvsZ9Jhm0hrEGC3ayDl_eqQ9uwOXx5C7c_5PB-IG0Yhov5GweAUiexoqE-Nzk59g-k6jE-ovcjJs7MppqnE_Ilfd_x7KRd9h92YTrk-Mfw9MkZlhIDE15k2TG0SzlQqdGCOccN4wZpMsuq5irCieqslZIeJDjOC1qlZfGsSBqRvM647z4BkuT6cR-B5IZJJI1s9waTTXjWuRWcGyJO6oYrXqQz3-9NFF-3GfB-CMDDUmFbPGSHi8Z8erBQVfpvlXf-P_rRx7T7lUvnR0KEAsZR6IsaFlXXhYQyRtVvNBGOZvhWi5U7gqre7Dh8esaidD1YGduITIO80eJu0nBhM9zuvXvWtuw7DvYntnswFLzMLO7uItp9F4w3ze7-exh
  priority: 102
  providerName: IEEE
Title Enhanced Air Quality Inference via Multi-View Learning With Mobile Sensing Memory
URI https://ieeexplore.ieee.org/document/9748170
https://www.proquest.com/docview/2649790208
https://doaj.org/article/345d607930964a83bcafe14139a2f3eb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mLRpHsd12UWFFcTnLSRpoguyiq6K_95Jml0WBL14DWnazEwn87Uz3yB0GEjFrAkAckCnRSztLKxraFEzJwgxpuKpN-Dwgp_esPP7-n6u1VfMCWvpgVvBHVesbnhkcYNYmxlZWWeCp-B6lSlD5W30vkSROTCVfLCkXNUi0wxRoo67vR7sCABhWQJO5ayOPY7mjqLE2J9brPzwy-mwGayilRwl4m77dGtowY_X0fIcd-AGuuyPH9Pfe9wdveKWCuMLn03r9_DHyOBUXVvcjvwnzjyqD_huNHnEw2cL3gBfxex1GBvGdNuvTXQz6F_3TovcH6FwjMhJQV1glEhliVMqhCCdEA7AbqBcBF4FxevGAFwBhBKsakxZuyASJRkrGypltYUWx89jv40wdQADG-Gld5ZZIa0qvZKwkgzMCMY7qJyKSrtMHh57WDzpBCKI0q18dZSvzvLtoKPZRS8td8bv00-iDmZTI_F1GgBz0Nkc9F_m0EEbUYOzRQAuRQrCDtqbalTnl_RNQyyohIpdSnf-49a7aClup_0-s4cWJ6_vfh8ilok9SMZ5kIoLvwHxXuOH
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOhVIQWwr1gWOzzcOJ7eOyarWFphKir5tlOzZdtdpFJduq_fUdO96oAoS4RZZtOfn8mM-Z-Qbgk0sLqpVDkoOYJj60M9GmyZKSGpamShVVyA1YH1WTE_rlvDxfgZ0-FsZaG5zP7NA_hn_5zdws_FXZLtq-Xk_uCTwtkVXwLlqrv1HxKSREyaK0UJaK3dF4jG-BJDDPkZtWtPR5jR4dP0GlP6ZV-WMvDgfM_kuol0Pr_Eouh4tWD839b6qN_zv2V7AWLU0y6qbGOqzY2Wt48Uh_cAO-7c0uggcAGU2vSSencUcOljGA5GaqSIjQTU6n9pZELdYf5GzaXpB6rnFHId-9BzyW1d5l9-4NnOzvHY8nScyxkBia8jbJjKNZyoVOjRDOOW4YM0iYXVYxVxVOVGWjkPIgy3FaNCovjWNB1ozmTcZ58RZWZ_OZfQckM0glG2a5NZpqxrXIreDYE3dUMVoNIF9-emmiALnPg3ElAxFJhezwkh4vGfEawE7f6Genv_Hv6p89pn1VL54dChALGdeiLGjZVF4YEOkbVbzQRjmb4WkuVO4Kqwew4fHrO4nQDWBrOUNkXOi_JNqTggmf6XTz76224dnkuD6UhwdHX9_Dcz_Y7gZnC1bb64X9gDZNqz-GqfwAU17vtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Air+Quality+Inference+via+Multi-View+Learning+With+Mobile+Sensing+Memory&rft.jtitle=IEEE+access&rft.au=Liu%2C+Ning&rft.au=Liu%2C+Xinyu&rft.au=Lin%2C+Po-Ting&rft.au=Wang%2C+Yue&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=36616&rft.epage=36628&rft_id=info:doi/10.1109%2FACCESS.2022.3164506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3164506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon