MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation
Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scal...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 62; no. 4; pp. 1121 - 1137 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-023-02995-9 |
Cover
| Abstract | Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at
https://github.com/Oran9er/MCAFNet
.
Graphical abstract |
|---|---|
| AbstractList | Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet. Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet . Graphical abstract Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet .Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet . |
| Author | Li, Zhichao Sun, Mengxia Zhang, Ling Li, Gang Xie, Jinjie Sun, Yuanjin |
| Author_xml | – sequence: 1 givenname: Gang surname: Li fullname: Li, Gang organization: Taiyuan University of Technology Software College – sequence: 2 givenname: Jinjie surname: Xie fullname: Xie, Jinjie organization: Taiyuan University of Technology Software College – sequence: 3 givenname: Ling surname: Zhang fullname: Zhang, Ling email: zl2090@126.com organization: Taiyuan University of Technology Software College – sequence: 4 givenname: Mengxia surname: Sun fullname: Sun, Mengxia organization: Taiyuan University of Technology Software College – sequence: 5 givenname: Zhichao surname: Li fullname: Li, Zhichao organization: Taiyuan University of Technology Software College – sequence: 6 givenname: Yuanjin surname: Sun fullname: Sun, Yuanjin organization: Taiyuan University of Technology Software College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38150110$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URLeFP8ABReLCJWXGH3HMrVpRqNSPC5wtb2IvKU5cbEdo_z3eTSukHtqDNZL1PKOZeU_I0RQmS8h7hDMEkJ8TokBZA2XlKSVq9YqsUHKsgXN-RFaAHGpAbI_JSUp3ABQF5W_IMWtRlH9YEX29Pr-4sflLNc4-D6kz3lZdDCnV3uxsrEzOdspDmCo3p32ZbP4b4u_KhVj9KgPtujBuKj9P28rbA5HsdiyO2VtvyWtnfLLvHuop-Xnx9cf6e311--1yfX5VdxzaXCPrRUMdbQCp2GCvGrR00ymmlOwdN0YZdNwJi0ZY5XqjnDJOGpCt66WT7JR8Wvrex_BntinrsSxjvTeTDXPSDAVrgFFoXkSpgkZKgcAL-vEJehfmOJVFCtUwjk2ZvlAfHqh5M9pe38dhNHGnH69cgHYBDoeN1uluWM6Toxm8RtD7QPUSqC6B6kOgWhWVPlEfuz8rsUVKBZ62Nv4f-xnrH1lwslU |
| CitedBy_id | crossref_primary_10_3390_electronics13112115 crossref_primary_10_23919_ICN_2024_0023 crossref_primary_10_3390_electronics14010209 crossref_primary_10_1038_s41598_024_74701_0 crossref_primary_10_1109_JBHI_2024_3404273 |
| Cites_doi | 10.2214/AJR.10.4873 10.1007/978-3-030-00889-5_1 10.1164/rccm.201607-1385OC 10.1109/TPAMI.2017.2699184 10.1016/j.inffus.2022.09.031 10.1016/j.compmedimag.2015.02.007 10.1016/j.compbiomed.2023.106838 10.1016/j.compmedimag.2021.101885 10.1016/j.patcog.2017.12.016 10.1080/02564602.2014.906861 10.1109/TIP.2022.3203223 10.1016/j.compbiomed.2023.106891 10.1016/j.cmpb.2022.107147 10.1155/2017/4037190 10.1016/j.compbiomed.2022.106516 10.1371/journal.pone.0215303 10.1016/j.bspc.2022.104407 10.1016/j.compbiomed.2023.106960 10.1371/journal.pone.0163569 10.1007/978-3-030-37734-2_37 10.1109/IGARSS46834.2022.9883628 10.1016/j.knosys.2022.109512 10.1016/j.bspc.2023.105330 10.1016/j.bspc.2022.104173 10.1109/CVPR.2018.00745 10.1016/j.patcog.2023.109524 10.1016/j.engappai.2023.107139 10.1007/978-3-030-59725-2_26 10.1007/978-3-031-16443-9_3 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2017.667 10.1109/CVPR52688.2022.01167 10.1016/j.acra.2023.04.028 10.1109/ICCV48922.2021.00986 10.1007/978-3-319-24574-4_28 10.1016/j.compbiomed.2023.107218 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. International Federation for Medical and Biological Engineering. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. International Federation for Medical and Biological Engineering. |
| DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11517-023-02995-9 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Health & Medical Collection (Alumni) Medical Database Science Database (ProQuest) Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 1137 |
| ExternalDocumentID | 38150110 10_1007_s11517_023_02995_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shanxi Province grantid: 20210302124554 funderid: http://dx.doi.org/10.13039/501100004480 – fundername: Central Leading Local Science and Technology Development Fund grantid: YDZJSX2021C004; YDZJSX20231C004 – fundername: Central Leading Local Science and Technology Development Fund grantid: YDZJSX2021C004 – fundername: Central Leading Local Science and Technology Development Fund grantid: YDZJSX20231C004 – fundername: Natural Science Foundation of Shanxi Province grantid: 20210302124554 |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-13d562f260125b1d961e2bc93997df4aa9a1f4f5e1a5e9fda9f9af7a078fd7f73 |
| IEDL.DBID | AGYKE |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Sep 04 18:22:44 EDT 2025 Thu Oct 02 11:18:37 EDT 2025 Sun Oct 19 00:07:54 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Wed Oct 01 03:38:03 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Fri Feb 21 02:39:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bi-directional attention gate Cross-layer feature fusion Multi-scale input Honeycomb lung segmentation |
| Language | English |
| License | 2023. International Federation for Medical and Biological Engineering. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-13d562f260125b1d961e2bc93997df4aa9a1f4f5e1a5e9fda9f9af7a078fd7f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 38150110 |
| PQID | 2963416408 |
| PQPubID | 54161 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3153603206 proquest_miscellaneous_2906775104 proquest_journals_2963416408 pubmed_primary_38150110 crossref_citationtrail_10_1007_s11517_023_02995_9 crossref_primary_10_1007_s11517_023_02995_9 springer_journals_10_1007_s11517_023_02995_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Vázquez, Bernal, Sánchez, Fernández-Esparrach, López, Romero, Drozdzal, Courville (CR40) 2017; 2017 Alom, Yakopcic, Hasan, Taha, Asari (CR7) 2019; 6 CR17 CR16 CR38 CR37 CR14 CR36 CR13 CR35 CR34 CR10 CR31 Xuan, Jiang, Cui, Jin, Cheng, Nakaguchi, Zhang, Li, Ning, Guo, Wang (CR23) 2022; 226 CR30 Qin, Guerrero, Bowles, Chen, Dickie, Valdes-Hernandez, Wardlaw, Rueckert (CR33) 2018; 77 Bernal, Sánchez, Fernández-Esparrach, Gil, Rodríguez, Vilariño (CR39) 2015; 43 Norouzi, Rahim, Altameem, Saba, Rad, Rehman, Uddin (CR4) 2014; 31 Arakawa, Honma (CR1) 2011; 196 Zhang, Qin, Ye, Ruan (CR25) 2023; 153 Qureshi, Yan, Abbas, Shaheed, Riaz, Wahid, Khan, Szczuko (CR11) 2023; 90 Bak, Park, Nam, Lee, Lee, Sohn, Chung (CR3) 2019; 14 CR5 CR8 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR19) 2017; 40 CR29 CR28 CR9 CR27 CR26 CR24 Zhang, Liu, Guo, Song (CR15) 2023; 158 CR22 Salisbury, Lynch, van Beek, Kazerooni, Guo, Xia, Murray, Anstrom, Yow, Martinez, Hoffman, Flaherty, Investigators (CR2) 2017; 195 Zhou, Siddiquee, Tajbakhsh, Liang (CR6) 2018; 11045 Zhang, Zhong, Li, Liu, Liu, Ji, Li, Wu (CR12) 2023; 159 Wu, Xin, Qian, Dong (CR21) 2023; 80 Jiang, Ou, Liu, Zou, Xie, Xiao, Bai (CR18) 2023; 158 Kushnure, Talbar (CR20) 2021; 89 Yu, Qi, Gao, Wang, Shi (CR32) 2022; 31 2995_CR26 2995_CR24 SH Bak (2995_CR3) 2019; 14 I Qureshi (2995_CR11) 2023; 90 2995_CR22 C Qin (2995_CR33) 2018; 77 Z Zhou (2995_CR6) 2018; 11045 J Bernal (2995_CR39) 2015; 43 X Zhang (2995_CR15) 2023; 158 2995_CR5 2995_CR8 L Jiang (2995_CR18) 2023; 158 2995_CR9 H Arakawa (2995_CR1) 2011; 196 MZ Alom (2995_CR7) 2019; 6 DT Kushnure (2995_CR20) 2021; 89 H Zhang (2995_CR12) 2023; 159 2995_CR29 2995_CR28 2995_CR27 2995_CR37 2995_CR14 2995_CR36 2995_CR13 2995_CR35 2995_CR34 Q Yu (2995_CR32) 2022; 31 2995_CR10 R Wu (2995_CR21) 2023; 80 2995_CR31 2995_CR30 ML Salisbury (2995_CR2) 2017; 195 J Zhang (2995_CR25) 2023; 153 D Vázquez (2995_CR40) 2017; 2017 A Norouzi (2995_CR4) 2014; 31 L-C Chen (2995_CR19) 2017; 40 P Xuan (2995_CR23) 2022; 226 2995_CR17 2995_CR16 2995_CR38 |
| References_xml | – ident: CR22 – volume: 196 start-page: 773 year: 2011 end-page: 782 ident: CR1 article-title: Honeycomb lung: history and current concepts publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.4873 – volume: 11045 start-page: 3 issue: 2018 year: 2018 end-page: 11 ident: CR6 article-title: UNet++: a nested U-Net architecture for medical image segmentation publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support doi: 10.1007/978-3-030-00889-5_1 – volume: 195 start-page: 921 year: 2017 end-page: 929 ident: CR2 article-title: idiopathic pulmonary fibrosis: the association between the adaptive multiple features method and fibrosis outcomes publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201607-1385OC – ident: CR14 – ident: CR16 – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: CR19 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – ident: CR37 – ident: CR30 – volume: 90 start-page: 316 year: 2023 end-page: 352 ident: CR11 article-title: Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends publication-title: Inf Fusion doi: 10.1016/j.inffus.2022.09.031 – ident: CR10 – ident: CR35 – ident: CR29 – volume: 43 start-page: 99 year: 2015 end-page: 111 ident: CR39 article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2015.02.007 – volume: 158 year: 2023 ident: CR18 article-title: RMAU-Net: residual multi-scale attention U-Net for liver and tumor segmentation in CT images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106838 – volume: 89 year: 2021 ident: CR20 article-title: MS-UNet: a multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101885 – volume: 6 year: 2019 ident: CR7 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J Med Imaging (Bellingham) – ident: CR8 – ident: CR27 – volume: 77 start-page: 150 year: 2018 end-page: 159 ident: CR33 article-title: A large margin algorithm for automated segmentation of white matter hyperintensity publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.016 – volume: 31 start-page: 199 year: 2014 end-page: 213 ident: CR4 article-title: Medical image segmentation methods, algorithms, and applications publication-title: IETE Tech Rev doi: 10.1080/02564602.2014.906861 – volume: 31 start-page: 5893 year: 2022 end-page: 5908 ident: CR32 article-title: Crosslink-Net: double-branch encoder network via fusing vertical and horizontal convolutions for medical image segmentation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3203223 – volume: 158 year: 2023 ident: CR15 article-title: EG-Unet: edge-Guided cascaded networks for automated frontal brain segmentation in MR images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106891 – volume: 226 year: 2022 ident: CR23 article-title: Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.107147 – ident: CR38 – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: CR40 article-title: A benchmark for endoluminal scene segmentation of colonoscopy images publication-title: J Healthc Eng doi: 10.1155/2017/4037190 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR9 – volume: 153 year: 2023 ident: CR25 article-title: ST-Unet: Swin Transformer boosted U-Net with cross-layer feature enhancement for medical image segmentation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106516 – ident: CR34 – volume: 14 year: 2019 ident: CR3 article-title: Predicting clinical outcome with phenotypic clusters using quantitative CT fibrosis and emphysema features in patients with idiopathic pulmonary fibrosis publication-title: PLoS One doi: 10.1371/journal.pone.0215303 – ident: CR36 – volume: 80 start-page: 104407 year: 2023 ident: CR21 article-title: A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104407 – ident: CR5 – ident: CR28 – volume: 159 year: 2023 ident: CR12 article-title: BCU-Net: bridging ConvNeXt and U-Net for medical image segmentation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106960 – ident: CR26 – ident: CR24 – ident: 2995_CR34 doi: 10.1371/journal.pone.0163569 – ident: 2995_CR38 doi: 10.1007/978-3-030-37734-2_37 – volume: 31 start-page: 5893 year: 2022 ident: 2995_CR32 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3203223 – ident: 2995_CR30 – ident: 2995_CR8 doi: 10.1109/IGARSS46834.2022.9883628 – ident: 2995_CR35 doi: 10.1016/j.knosys.2022.109512 – volume: 226 year: 2022 ident: 2995_CR23 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.107147 – volume: 195 start-page: 921 year: 2017 ident: 2995_CR2 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201607-1385OC – volume: 159 year: 2023 ident: 2995_CR12 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106960 – ident: 2995_CR36 doi: 10.1016/j.bspc.2023.105330 – ident: 2995_CR14 doi: 10.1016/j.bspc.2022.104173 – volume: 153 year: 2023 ident: 2995_CR25 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106516 – ident: 2995_CR9 – volume: 158 year: 2023 ident: 2995_CR18 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106838 – ident: 2995_CR29 doi: 10.1109/CVPR.2018.00745 – ident: 2995_CR22 doi: 10.1016/j.patcog.2023.109524 – volume: 14 year: 2019 ident: 2995_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0215303 – ident: 2995_CR27 doi: 10.1016/j.engappai.2023.107139 – ident: 2995_CR24 doi: 10.1007/978-3-030-59725-2_26 – volume: 43 start-page: 99 year: 2015 ident: 2995_CR39 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2015.02.007 – volume: 196 start-page: 773 year: 2011 ident: 2995_CR1 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.10.4873 – ident: 2995_CR10 doi: 10.1007/978-3-031-16443-9_3 – volume: 77 start-page: 150 year: 2018 ident: 2995_CR33 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.12.016 – volume: 90 start-page: 316 year: 2023 ident: 2995_CR11 publication-title: Inf Fusion doi: 10.1016/j.inffus.2022.09.031 – volume: 89 year: 2021 ident: 2995_CR20 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101885 – volume: 11045 start-page: 3 issue: 2018 year: 2018 ident: 2995_CR6 publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support doi: 10.1007/978-3-030-00889-5_1 – volume: 6 year: 2019 ident: 2995_CR7 publication-title: J Med Imaging (Bellingham) – ident: 2995_CR37 – ident: 2995_CR16 doi: 10.1007/978-3-030-01234-2_49 – ident: 2995_CR28 doi: 10.1109/CVPR.2017.667 – volume: 80 start-page: 104407 year: 2023 ident: 2995_CR21 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104407 – ident: 2995_CR13 doi: 10.1109/CVPR52688.2022.01167 – ident: 2995_CR17 doi: 10.1016/j.acra.2023.04.028 – ident: 2995_CR26 doi: 10.1109/ICCV48922.2021.00986 – ident: 2995_CR5 doi: 10.1007/978-3-319-24574-4_28 – volume: 40 start-page: 834 year: 2017 ident: 2995_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – volume: 2017 start-page: 1 year: 2017 ident: 2995_CR40 publication-title: J Healthc Eng doi: 10.1155/2017/4037190 – volume: 31 start-page: 199 year: 2014 ident: 2995_CR4 publication-title: IETE Tech Rev doi: 10.1080/02564602.2014.906861 – volume: 158 year: 2023 ident: 2995_CR15 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106891 – ident: 2995_CR31 doi: 10.1016/j.compbiomed.2023.107218 |
| SSID | ssj0021524 |
| Score | 2.434715 |
| Snippet | Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1121 |
| SubjectTerms | Algorithms automation Availability Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computed tomography Computer Applications data collection Datasets Diagnosis Feature maps Health services Human Physiology image analysis Image processing Image segmentation Imaging Lesions Lung diseases lungs Medical diagnosis Medical imaging Medical treatment Modules Original Article Radiology Spatial data Target recognition |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfEivq0vInjTYlvbdCOIqLiI4CKi4K1M20QPa1fd3YP_3pk07SKih546JcNMkvnSzHwDcICyCIoiyH1pVEAHlCLwu10sfYN5N49ShQnaLN--vHmKb5-T5xnoN7UwnFbZ7Il2oy6HBf8jP45ophB4iIPu-fuHz12j-Ha1aaGBrrVCeWYpxmZhLmJmrA7MXV737x_aIxhFq7hNaiRs7cpo6mI6Cn6pTzGMHq5bVj9D1S_8-evu1Iak3hIsOiwpLmrnL8OMrlZg_s7dlq9Cdnd10evr8amwaYMjcocWdix_gAS1BXNr2mxHYSb810xUdVK4ICQrXoeV_iLb5GJAG4IYaCsx0i9vrlypWoOn3vXj1Y3vGir4BdmN286XBHcMs4hFSR6WSoY6ygtFICUtTYyoMDSxSXSIiVamRGUUmhQJRpgyNenJOnQqGnwThNKSgILECJnCL0nQUJQLZY6RMaFWoQdhY7uscGzj3PRikE15ktneGdk7s_bOlAeH7TfvNdfGv9I7jUsyt-5G2XSWeLDfvqYVw9cgWOnhhGWYNY_2ovhvmRMKBJJ7y0sPNmp3tyoRxkkYNXlw1Ph_qsDf-m79r-82LESEl-qkoB3ojD8nepfwzjjfc5P4G_f6-v4 priority: 102 providerName: ProQuest |
| Title | MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation |
| URI | https://link.springer.com/article/10.1007/s11517-023-02995-9 https://www.ncbi.nlm.nih.gov/pubmed/38150110 https://www.proquest.com/docview/2963416408 https://www.proquest.com/docview/2906775104 https://www.proquest.com/docview/3153603206 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VIFW9UFr6cAvRVuJGjWzHXnt7S1AMAhEhRKT0ZM3auyA1NahJDu2v7-x67QgolTjYPnhszz7nW8_MtwD7yMugLAPpcy0CWqCUgZ9lWPkaZSajVGCCNsp3wk-m8eksmbmksEUb7d66JO1MvU52I-OU-mRj6DB5xWIDNi3fVg82h8ffz8bdQotsUtyFLhKCdsky_37LfYP0CGU-8pBaw5O_hmmrchNv8uNwtZSH5Z8HbI7PLdM2bDkkyoZN13kDL1T9Fl6eO1_7DhTnR8N8opbfmA06XFBjKmbL4M-RgDozzJw2VpLplfnnxuompJwRDmY3t7X6TUpINqfphM2VlVio658u2al-B9N8fHV04rvtGPwyDjKzaX1FYEkbDrIokWEleKgiWQqCOGmlY0SBoY51okJMlNAVCi1Qp0ggRFepTgfvoVfTxz8CE4oTzOAYoSEATBLUZCNDLjHSOlQi9CBs26QoHVe52TJjXqxZlk3NFVRzha25Qnhw0D1z1zB1_Fd6t23qwo3aRRHRbEQAlUrrwZfuNo0340TBWt2ujIzh3KOZLH5aZkBmhJud6bkHH5pu1KlECCkxmMuDr22XWCvwtL6fnif-GV5FhL6aEKNd6C1_rdQeoael7MNGOkvpnOXHfRo4-Wg06bsBRNfReHJxSXen0fAvNhoUWA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFouqPRFgFJXak9t1MSbOOtKqKKU1VLYVVWBxM1MEhsOSxbYXSH-HL-tY8fJqkJw45BTHMeasf199rwAPqEooqKI8lAYGdEBpYjCbhfL0GDezXkmMUXn5TsU_ePk90l6sgB3TSyMdats9kS3UZfjwt6Rf-M0U4g8JFH3x-VVaKtGWetqU0IDfWmFctulGPOBHQf69oaOcJPt_V-k78-c9_aOdvuhrzIQFtSZrcVeEgcwNrUWT_O4lCLWPC8kIXdWmgRRYmwSk-oYUy1NidJINBkStpoyM1mH-n0GS0knkXT4W_q5N_zztz3yETomrRMlcXkftlMH7xHYZiFhJj02Tlr-D433-O49W62DwN5LWPHcle3Uk20VFnT1Cp4PvHX-NajB7k5vqKffmXNTnJD6NXP_CkdI1J7ZXJ7Ou5KZmb2lY1XthM6IObPzcaVvSRc5G9EGxEbatZjoswsfHlW9geMnEe1bWKzo52vApBZETARytCkD0xQNoWoscuTGxFrGAcSN7FThs5vbIhsjNc_LbOWtSN7KyVvJAL6031zWuT0ebb3ZqET5dT5R81kZwMf2Na1Qa3bBSo9nto3N0kd7X_Jwmw4Bj7C17EUA72p1t0MiTpValhbA10b_8wE8PN71x8f7AV70jwaH6nB_eLABy5y4Wu2QtAmL0-uZfk9ca5pv-QnN4PSp19A_GyI5GQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlRCXiraUBmjrSnCiEYk3cdaVqgpBVzxXHEDam5kkdntYssDuquKv9dd1xkl2VSG4ccgpjmPNjP19tucBsI2qiIoiykPldEQblCIKu10sQ4d5N5eZxhS9l29fHV0lJ4N0sAB_21gYdqts10S_UJejgs_I9yRZCpGHJOruucYt4uKw9-P2LuQKUnzT2pbTqE3k1D78oe3b-PvxIel6R8rez8uDo7CpMBAW1BHXYS8J_x2n1ZJpHpdaxVbmhSbUzkqXIGqMXeJSG2NqtStRO40uQ8JVV2Yu61C_i_Aq63Q0uxNmg_lmj3AxmblPEotvAnbqsD2C2SwktKSHI6T1_6D4iOk-uqX14NdbhdcNaxX7tZm9gQVbvYXl8-Ze_h2Y84P9Xt9OvgnvoDgmxVvh_xUOkUi94Cye3q9SuCmfz4mqdj8XxJnF71FlH0gLuRjS0iOG1rcY2183TWBUtQZXLyLY97BU0c8_gNBWESVRKJGTBaYpOsLTWOUonYutjgOIW9mZoslrzuU1hmaekZnlbUjexsvb6AB2Z9_c1lk9nm291arENDN8bOb2GMCX2Wuam3zhgpUdTbkN5-ejVS95uk2HIEdxFXsVwHqt7tmQiE2lzM8C-Nrqfz6Ap8e78fx4P8MyzRxzdtw_3YQVSSSt9kTagqXJ_dR-JJI1yT95axZw_dLT5x96zzaz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCAFNet%3A+multiscale+cross-layer+attention+fusion+network+for+honeycomb+lung+lesion+segmentation&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Li%2C+Gang&rft.au=Xie%2C+Jinjie&rft.au=Zhang%2C+Ling&rft.au=Sun%2C+Mengxia&rft.date=2024-04-01&rft.issn=0140-0118&rft.volume=62&rft.issue=4+p.1121-1137&rft.spage=1121&rft.epage=1137&rft_id=info:doi/10.1007%2Fs11517-023-02995-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |