MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation

Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scal...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 62; no. 4; pp. 1121 - 1137
Main Authors Li, Gang, Xie, Jinjie, Zhang, Ling, Sun, Mengxia, Li, Zhichao, Sun, Yuanjin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-023-02995-9

Cover

Abstract Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet . Graphical abstract
AbstractList Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet.
Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model’s ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet . Graphical abstract
Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet .Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet .
Author Li, Zhichao
Sun, Mengxia
Zhang, Ling
Li, Gang
Xie, Jinjie
Sun, Yuanjin
Author_xml – sequence: 1
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: Taiyuan University of Technology Software College
– sequence: 2
  givenname: Jinjie
  surname: Xie
  fullname: Xie, Jinjie
  organization: Taiyuan University of Technology Software College
– sequence: 3
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
  email: zl2090@126.com
  organization: Taiyuan University of Technology Software College
– sequence: 4
  givenname: Mengxia
  surname: Sun
  fullname: Sun, Mengxia
  organization: Taiyuan University of Technology Software College
– sequence: 5
  givenname: Zhichao
  surname: Li
  fullname: Li, Zhichao
  organization: Taiyuan University of Technology Software College
– sequence: 6
  givenname: Yuanjin
  surname: Sun
  fullname: Sun, Yuanjin
  organization: Taiyuan University of Technology Software College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38150110$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFP8ABReLCJWXGH3HMrVpRqNSPC5wtb2IvKU5cbEdo_z3eTSukHtqDNZL1PKOZeU_I0RQmS8h7hDMEkJ8TokBZA2XlKSVq9YqsUHKsgXN-RFaAHGpAbI_JSUp3ABQF5W_IMWtRlH9YEX29Pr-4sflLNc4-D6kz3lZdDCnV3uxsrEzOdspDmCo3p32ZbP4b4u_KhVj9KgPtujBuKj9P28rbA5HsdiyO2VtvyWtnfLLvHuop-Xnx9cf6e311--1yfX5VdxzaXCPrRUMdbQCp2GCvGrR00ymmlOwdN0YZdNwJi0ZY5XqjnDJOGpCt66WT7JR8Wvrex_BntinrsSxjvTeTDXPSDAVrgFFoXkSpgkZKgcAL-vEJehfmOJVFCtUwjk2ZvlAfHqh5M9pe38dhNHGnH69cgHYBDoeN1uluWM6Toxm8RtD7QPUSqC6B6kOgWhWVPlEfuz8rsUVKBZ62Nv4f-xnrH1lwslU
CitedBy_id crossref_primary_10_3390_electronics13112115
crossref_primary_10_23919_ICN_2024_0023
crossref_primary_10_3390_electronics14010209
crossref_primary_10_1038_s41598_024_74701_0
crossref_primary_10_1109_JBHI_2024_3404273
Cites_doi 10.2214/AJR.10.4873
10.1007/978-3-030-00889-5_1
10.1164/rccm.201607-1385OC
10.1109/TPAMI.2017.2699184
10.1016/j.inffus.2022.09.031
10.1016/j.compmedimag.2015.02.007
10.1016/j.compbiomed.2023.106838
10.1016/j.compmedimag.2021.101885
10.1016/j.patcog.2017.12.016
10.1080/02564602.2014.906861
10.1109/TIP.2022.3203223
10.1016/j.compbiomed.2023.106891
10.1016/j.cmpb.2022.107147
10.1155/2017/4037190
10.1016/j.compbiomed.2022.106516
10.1371/journal.pone.0215303
10.1016/j.bspc.2022.104407
10.1016/j.compbiomed.2023.106960
10.1371/journal.pone.0163569
10.1007/978-3-030-37734-2_37
10.1109/IGARSS46834.2022.9883628
10.1016/j.knosys.2022.109512
10.1016/j.bspc.2023.105330
10.1016/j.bspc.2022.104173
10.1109/CVPR.2018.00745
10.1016/j.patcog.2023.109524
10.1016/j.engappai.2023.107139
10.1007/978-3-030-59725-2_26
10.1007/978-3-031-16443-9_3
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2017.667
10.1109/CVPR52688.2022.01167
10.1016/j.acra.2023.04.028
10.1109/ICCV48922.2021.00986
10.1007/978-3-319-24574-4_28
10.1016/j.compbiomed.2023.107218
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. International Federation for Medical and Biological Engineering.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. International Federation for Medical and Biological Engineering.
DBID AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1007/s11517-023-02995-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Science Database (ProQuest)
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1137
ExternalDocumentID 38150110
10_1007_s11517_023_02995_9
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanxi Province
  grantid: 20210302124554
  funderid: http://dx.doi.org/10.13039/501100004480
– fundername: Central Leading Local Science and Technology Development Fund
  grantid: YDZJSX2021C004; YDZJSX20231C004
– fundername: Central Leading Local Science and Technology Development Fund
  grantid: YDZJSX2021C004
– fundername: Central Leading Local Science and Technology Development Fund
  grantid: YDZJSX20231C004
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 20210302124554
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-13d562f260125b1d961e2bc93997df4aa9a1f4f5e1a5e9fda9f9af7a078fd7f73
IEDL.DBID AGYKE
ISSN 0140-0118
1741-0444
IngestDate Thu Sep 04 18:22:44 EDT 2025
Thu Oct 02 11:18:37 EDT 2025
Sun Oct 19 00:07:54 EDT 2025
Thu Apr 03 07:03:34 EDT 2025
Wed Oct 01 03:38:03 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Fri Feb 21 02:39:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bi-directional attention gate
Cross-layer feature fusion
Multi-scale input
Honeycomb lung segmentation
Language English
License 2023. International Federation for Medical and Biological Engineering.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-13d562f260125b1d961e2bc93997df4aa9a1f4f5e1a5e9fda9f9af7a078fd7f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38150110
PQID 2963416408
PQPubID 54161
PageCount 17
ParticipantIDs proquest_miscellaneous_3153603206
proquest_miscellaneous_2906775104
proquest_journals_2963416408
pubmed_primary_38150110
crossref_citationtrail_10_1007_s11517_023_02995_9
crossref_primary_10_1007_s11517_023_02995_9
springer_journals_10_1007_s11517_023_02995_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Vázquez, Bernal, Sánchez, Fernández-Esparrach, López, Romero, Drozdzal, Courville (CR40) 2017; 2017
Alom, Yakopcic, Hasan, Taha, Asari (CR7) 2019; 6
CR17
CR16
CR38
CR37
CR14
CR36
CR13
CR35
CR34
CR10
CR31
Xuan, Jiang, Cui, Jin, Cheng, Nakaguchi, Zhang, Li, Ning, Guo, Wang (CR23) 2022; 226
CR30
Qin, Guerrero, Bowles, Chen, Dickie, Valdes-Hernandez, Wardlaw, Rueckert (CR33) 2018; 77
Bernal, Sánchez, Fernández-Esparrach, Gil, Rodríguez, Vilariño (CR39) 2015; 43
Norouzi, Rahim, Altameem, Saba, Rad, Rehman, Uddin (CR4) 2014; 31
Arakawa, Honma (CR1) 2011; 196
Zhang, Qin, Ye, Ruan (CR25) 2023; 153
Qureshi, Yan, Abbas, Shaheed, Riaz, Wahid, Khan, Szczuko (CR11) 2023; 90
Bak, Park, Nam, Lee, Lee, Sohn, Chung (CR3) 2019; 14
CR5
CR8
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR19) 2017; 40
CR29
CR28
CR9
CR27
CR26
CR24
Zhang, Liu, Guo, Song (CR15) 2023; 158
CR22
Salisbury, Lynch, van Beek, Kazerooni, Guo, Xia, Murray, Anstrom, Yow, Martinez, Hoffman, Flaherty, Investigators (CR2) 2017; 195
Zhou, Siddiquee, Tajbakhsh, Liang (CR6) 2018; 11045
Zhang, Zhong, Li, Liu, Liu, Ji, Li, Wu (CR12) 2023; 159
Wu, Xin, Qian, Dong (CR21) 2023; 80
Jiang, Ou, Liu, Zou, Xie, Xiao, Bai (CR18) 2023; 158
Kushnure, Talbar (CR20) 2021; 89
Yu, Qi, Gao, Wang, Shi (CR32) 2022; 31
2995_CR26
2995_CR24
SH Bak (2995_CR3) 2019; 14
I Qureshi (2995_CR11) 2023; 90
2995_CR22
C Qin (2995_CR33) 2018; 77
Z Zhou (2995_CR6) 2018; 11045
J Bernal (2995_CR39) 2015; 43
X Zhang (2995_CR15) 2023; 158
2995_CR5
2995_CR8
L Jiang (2995_CR18) 2023; 158
2995_CR9
H Arakawa (2995_CR1) 2011; 196
MZ Alom (2995_CR7) 2019; 6
DT Kushnure (2995_CR20) 2021; 89
H Zhang (2995_CR12) 2023; 159
2995_CR29
2995_CR28
2995_CR27
2995_CR37
2995_CR14
2995_CR36
2995_CR13
2995_CR35
2995_CR34
Q Yu (2995_CR32) 2022; 31
2995_CR10
R Wu (2995_CR21) 2023; 80
2995_CR31
2995_CR30
ML Salisbury (2995_CR2) 2017; 195
J Zhang (2995_CR25) 2023; 153
D Vázquez (2995_CR40) 2017; 2017
A Norouzi (2995_CR4) 2014; 31
L-C Chen (2995_CR19) 2017; 40
P Xuan (2995_CR23) 2022; 226
2995_CR17
2995_CR16
2995_CR38
References_xml – ident: CR22
– volume: 196
  start-page: 773
  year: 2011
  end-page: 782
  ident: CR1
  article-title: Honeycomb lung: history and current concepts
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.4873
– volume: 11045
  start-page: 3
  issue: 2018
  year: 2018
  end-page: 11
  ident: CR6
  article-title: UNet++: a nested U-Net architecture for medical image segmentation
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_1
– volume: 195
  start-page: 921
  year: 2017
  end-page: 929
  ident: CR2
  article-title: idiopathic pulmonary fibrosis: the association between the adaptive multiple features method and fibrosis outcomes
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201607-1385OC
– ident: CR14
– ident: CR16
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: CR19
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– ident: CR37
– ident: CR30
– volume: 90
  start-page: 316
  year: 2023
  end-page: 352
  ident: CR11
  article-title: Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2022.09.031
– ident: CR10
– ident: CR35
– ident: CR29
– volume: 43
  start-page: 99
  year: 2015
  end-page: 111
  ident: CR39
  article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 158
  year: 2023
  ident: CR18
  article-title: RMAU-Net: residual multi-scale attention U-Net for liver and tumor segmentation in CT images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106838
– volume: 89
  year: 2021
  ident: CR20
  article-title: MS-UNet: a multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101885
– volume: 6
  year: 2019
  ident: CR7
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J Med Imaging (Bellingham)
– ident: CR8
– ident: CR27
– volume: 77
  start-page: 150
  year: 2018
  end-page: 159
  ident: CR33
  article-title: A large margin algorithm for automated segmentation of white matter hyperintensity
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.016
– volume: 31
  start-page: 199
  year: 2014
  end-page: 213
  ident: CR4
  article-title: Medical image segmentation methods, algorithms, and applications
  publication-title: IETE Tech Rev
  doi: 10.1080/02564602.2014.906861
– volume: 31
  start-page: 5893
  year: 2022
  end-page: 5908
  ident: CR32
  article-title: Crosslink-Net: double-branch encoder network via fusing vertical and horizontal convolutions for medical image segmentation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3203223
– volume: 158
  year: 2023
  ident: CR15
  article-title: EG-Unet: edge-Guided cascaded networks for automated frontal brain segmentation in MR images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106891
– volume: 226
  year: 2022
  ident: CR23
  article-title: Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.107147
– ident: CR38
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR40
  article-title: A benchmark for endoluminal scene segmentation of colonoscopy images
  publication-title: J Healthc Eng
  doi: 10.1155/2017/4037190
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR9
– volume: 153
  year: 2023
  ident: CR25
  article-title: ST-Unet: Swin Transformer boosted U-Net with cross-layer feature enhancement for medical image segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106516
– ident: CR34
– volume: 14
  year: 2019
  ident: CR3
  article-title: Predicting clinical outcome with phenotypic clusters using quantitative CT fibrosis and emphysema features in patients with idiopathic pulmonary fibrosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0215303
– ident: CR36
– volume: 80
  start-page: 104407
  year: 2023
  ident: CR21
  article-title: A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104407
– ident: CR5
– ident: CR28
– volume: 159
  year: 2023
  ident: CR12
  article-title: BCU-Net: bridging ConvNeXt and U-Net for medical image segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106960
– ident: CR26
– ident: CR24
– ident: 2995_CR34
  doi: 10.1371/journal.pone.0163569
– ident: 2995_CR38
  doi: 10.1007/978-3-030-37734-2_37
– volume: 31
  start-page: 5893
  year: 2022
  ident: 2995_CR32
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3203223
– ident: 2995_CR30
– ident: 2995_CR8
  doi: 10.1109/IGARSS46834.2022.9883628
– ident: 2995_CR35
  doi: 10.1016/j.knosys.2022.109512
– volume: 226
  year: 2022
  ident: 2995_CR23
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.107147
– volume: 195
  start-page: 921
  year: 2017
  ident: 2995_CR2
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201607-1385OC
– volume: 159
  year: 2023
  ident: 2995_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106960
– ident: 2995_CR36
  doi: 10.1016/j.bspc.2023.105330
– ident: 2995_CR14
  doi: 10.1016/j.bspc.2022.104173
– volume: 153
  year: 2023
  ident: 2995_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106516
– ident: 2995_CR9
– volume: 158
  year: 2023
  ident: 2995_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106838
– ident: 2995_CR29
  doi: 10.1109/CVPR.2018.00745
– ident: 2995_CR22
  doi: 10.1016/j.patcog.2023.109524
– volume: 14
  year: 2019
  ident: 2995_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0215303
– ident: 2995_CR27
  doi: 10.1016/j.engappai.2023.107139
– ident: 2995_CR24
  doi: 10.1007/978-3-030-59725-2_26
– volume: 43
  start-page: 99
  year: 2015
  ident: 2995_CR39
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 196
  start-page: 773
  year: 2011
  ident: 2995_CR1
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.4873
– ident: 2995_CR10
  doi: 10.1007/978-3-031-16443-9_3
– volume: 77
  start-page: 150
  year: 2018
  ident: 2995_CR33
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.12.016
– volume: 90
  start-page: 316
  year: 2023
  ident: 2995_CR11
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2022.09.031
– volume: 89
  year: 2021
  ident: 2995_CR20
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101885
– volume: 11045
  start-page: 3
  issue: 2018
  year: 2018
  ident: 2995_CR6
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_1
– volume: 6
  year: 2019
  ident: 2995_CR7
  publication-title: J Med Imaging (Bellingham)
– ident: 2995_CR37
– ident: 2995_CR16
  doi: 10.1007/978-3-030-01234-2_49
– ident: 2995_CR28
  doi: 10.1109/CVPR.2017.667
– volume: 80
  start-page: 104407
  year: 2023
  ident: 2995_CR21
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104407
– ident: 2995_CR13
  doi: 10.1109/CVPR52688.2022.01167
– ident: 2995_CR17
  doi: 10.1016/j.acra.2023.04.028
– ident: 2995_CR26
  doi: 10.1109/ICCV48922.2021.00986
– ident: 2995_CR5
  doi: 10.1007/978-3-319-24574-4_28
– volume: 40
  start-page: 834
  year: 2017
  ident: 2995_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 2017
  start-page: 1
  year: 2017
  ident: 2995_CR40
  publication-title: J Healthc Eng
  doi: 10.1155/2017/4037190
– volume: 31
  start-page: 199
  year: 2014
  ident: 2995_CR4
  publication-title: IETE Tech Rev
  doi: 10.1080/02564602.2014.906861
– volume: 158
  year: 2023
  ident: 2995_CR15
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106891
– ident: 2995_CR31
  doi: 10.1016/j.compbiomed.2023.107218
SSID ssj0021524
Score 2.434715
Snippet Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1121
SubjectTerms Algorithms
automation
Availability
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computed tomography
Computer Applications
data collection
Datasets
Diagnosis
Feature maps
Health services
Human Physiology
image analysis
Image processing
Image segmentation
Imaging
Lesions
Lung diseases
lungs
Medical diagnosis
Medical imaging
Medical treatment
Modules
Original Article
Radiology
Spatial data
Target recognition
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfEivq0vInjTYlvbdCOIqLiI4CKi4K1M20QPa1fd3YP_3pk07SKih546JcNMkvnSzHwDcICyCIoiyH1pVEAHlCLwu10sfYN5N49ShQnaLN--vHmKb5-T5xnoN7UwnFbZ7Il2oy6HBf8jP45ophB4iIPu-fuHz12j-Ha1aaGBrrVCeWYpxmZhLmJmrA7MXV737x_aIxhFq7hNaiRs7cpo6mI6Cn6pTzGMHq5bVj9D1S_8-evu1Iak3hIsOiwpLmrnL8OMrlZg_s7dlq9Cdnd10evr8amwaYMjcocWdix_gAS1BXNr2mxHYSb810xUdVK4ICQrXoeV_iLb5GJAG4IYaCsx0i9vrlypWoOn3vXj1Y3vGir4BdmN286XBHcMs4hFSR6WSoY6ygtFICUtTYyoMDSxSXSIiVamRGUUmhQJRpgyNenJOnQqGnwThNKSgILECJnCL0nQUJQLZY6RMaFWoQdhY7uscGzj3PRikE15ktneGdk7s_bOlAeH7TfvNdfGv9I7jUsyt-5G2XSWeLDfvqYVw9cgWOnhhGWYNY_2ovhvmRMKBJJ7y0sPNmp3tyoRxkkYNXlw1Ph_qsDf-m79r-82LESEl-qkoB3ojD8nepfwzjjfc5P4G_f6-v4
  priority: 102
  providerName: ProQuest
Title MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation
URI https://link.springer.com/article/10.1007/s11517-023-02995-9
https://www.ncbi.nlm.nih.gov/pubmed/38150110
https://www.proquest.com/docview/2963416408
https://www.proquest.com/docview/2906775104
https://www.proquest.com/docview/3153603206
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VIFW9UFr6cAvRVuJGjWzHXnt7S1AMAhEhRKT0ZM3auyA1NahJDu2v7-x67QgolTjYPnhszz7nW8_MtwD7yMugLAPpcy0CWqCUgZ9lWPkaZSajVGCCNsp3wk-m8eksmbmksEUb7d66JO1MvU52I-OU-mRj6DB5xWIDNi3fVg82h8ffz8bdQotsUtyFLhKCdsky_37LfYP0CGU-8pBaw5O_hmmrchNv8uNwtZSH5Z8HbI7PLdM2bDkkyoZN13kDL1T9Fl6eO1_7DhTnR8N8opbfmA06XFBjKmbL4M-RgDozzJw2VpLplfnnxuompJwRDmY3t7X6TUpINqfphM2VlVio658u2al-B9N8fHV04rvtGPwyDjKzaX1FYEkbDrIokWEleKgiWQqCOGmlY0SBoY51okJMlNAVCi1Qp0ggRFepTgfvoVfTxz8CE4oTzOAYoSEATBLUZCNDLjHSOlQi9CBs26QoHVe52TJjXqxZlk3NFVRzha25Qnhw0D1z1zB1_Fd6t23qwo3aRRHRbEQAlUrrwZfuNo0340TBWt2ujIzh3KOZLH5aZkBmhJud6bkHH5pu1KlECCkxmMuDr22XWCvwtL6fnif-GV5FhL6aEKNd6C1_rdQeoael7MNGOkvpnOXHfRo4-Wg06bsBRNfReHJxSXen0fAvNhoUWA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFouqPRFgFJXak9t1MSbOOtKqKKU1VLYVVWBxM1MEhsOSxbYXSH-HL-tY8fJqkJw45BTHMeasf199rwAPqEooqKI8lAYGdEBpYjCbhfL0GDezXkmMUXn5TsU_ePk90l6sgB3TSyMdats9kS3UZfjwt6Rf-M0U4g8JFH3x-VVaKtGWetqU0IDfWmFctulGPOBHQf69oaOcJPt_V-k78-c9_aOdvuhrzIQFtSZrcVeEgcwNrUWT_O4lCLWPC8kIXdWmgRRYmwSk-oYUy1NidJINBkStpoyM1mH-n0GS0knkXT4W_q5N_zztz3yETomrRMlcXkftlMH7xHYZiFhJj02Tlr-D433-O49W62DwN5LWPHcle3Uk20VFnT1Cp4PvHX-NajB7k5vqKffmXNTnJD6NXP_CkdI1J7ZXJ7Ou5KZmb2lY1XthM6IObPzcaVvSRc5G9EGxEbatZjoswsfHlW9geMnEe1bWKzo52vApBZETARytCkD0xQNoWoscuTGxFrGAcSN7FThs5vbIhsjNc_LbOWtSN7KyVvJAL6031zWuT0ebb3ZqET5dT5R81kZwMf2Na1Qa3bBSo9nto3N0kd7X_Jwmw4Bj7C17EUA72p1t0MiTpValhbA10b_8wE8PN71x8f7AV70jwaH6nB_eLABy5y4Wu2QtAmL0-uZfk9ca5pv-QnN4PSp19A_GyI5GQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlRCXiraUBmjrSnCiEYk3cdaVqgpBVzxXHEDam5kkdntYssDuquKv9dd1xkl2VSG4ccgpjmPNjP19tucBsI2qiIoiykPldEQblCIKu10sQ4d5N5eZxhS9l29fHV0lJ4N0sAB_21gYdqts10S_UJejgs_I9yRZCpGHJOruucYt4uKw9-P2LuQKUnzT2pbTqE3k1D78oe3b-PvxIel6R8rez8uDo7CpMBAW1BHXYS8J_x2n1ZJpHpdaxVbmhSbUzkqXIGqMXeJSG2NqtStRO40uQ8JVV2Yu61C_i_Aq63Q0uxNmg_lmj3AxmblPEotvAnbqsD2C2SwktKSHI6T1_6D4iOk-uqX14NdbhdcNaxX7tZm9gQVbvYXl8-Ze_h2Y84P9Xt9OvgnvoDgmxVvh_xUOkUi94Cye3q9SuCmfz4mqdj8XxJnF71FlH0gLuRjS0iOG1rcY2183TWBUtQZXLyLY97BU0c8_gNBWESVRKJGTBaYpOsLTWOUonYutjgOIW9mZoslrzuU1hmaekZnlbUjexsvb6AB2Z9_c1lk9nm291arENDN8bOb2GMCX2Wuam3zhgpUdTbkN5-ejVS95uk2HIEdxFXsVwHqt7tmQiE2lzM8C-Nrqfz6Ap8e78fx4P8MyzRxzdtw_3YQVSSSt9kTagqXJ_dR-JJI1yT95axZw_dLT5x96zzaz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCAFNet%3A+multiscale+cross-layer+attention+fusion+network+for+honeycomb+lung+lesion+segmentation&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Li%2C+Gang&rft.au=Xie%2C+Jinjie&rft.au=Zhang%2C+Ling&rft.au=Sun%2C+Mengxia&rft.date=2024-04-01&rft.issn=0140-0118&rft.volume=62&rft.issue=4+p.1121-1137&rft.spage=1121&rft.epage=1137&rft_id=info:doi/10.1007%2Fs11517-023-02995-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon