Narrow‐leafed lupin (Lupinus angustifolius L.) β‐conglutin proteins modulate the insulin signaling pathway as potential type 2 diabetes treatment and inflammatory‐related disease amelioration
Scope We have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment. Methods and results We produced purified recombinant β1‐, β2‐, β3‐, β4‐, and β6‐conglutin proteins and showed that β1, β3, and β6 could bind to in...
Saved in:
Published in | Molecular nutrition & food research Vol. 61; no. 5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-4125 1613-4133 1613-4133 |
DOI | 10.1002/mnfr.201600819 |
Cover
Abstract | Scope
We have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.
Methods and results
We produced purified recombinant β1‐, β2‐, β3‐, β4‐, and β6‐conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β‐conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold‐change decrease in the mRNA expression level of pro‐inflammatory genes (iNOS and IL‐1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β‐conglutin proteins elicited pro‐inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased.
Conclusion
Our results raise the possibility of using these particular β‐conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti‐inflammatory molecules.
This study provides new insights about the potential use of β‐conglutin seed proteins from the legume Lupinus angustifolius L. in the type 2 diabetes prevention and treatment, and as anti‐inflammatory molecules:
(i) β1‐, β3‐, and β6‐conglutins have the ability to modulate the expression levels of crucial genes involved in the insulin molecular signaling pathway.
(ii) The same conglutins trigger the release of the pro‐inflammatory capacity of cells by diminishing IL 1 beta and inducible nitric oxide synthase expression levels, leading to amelioration of the inflammatory process associated with type 2 diabetes. |
---|---|
AbstractList | We have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.
We produced purified recombinant β1-, β2-, β3-, β4-, and β6-conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β-conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold-change decrease in the mRNA expression level of pro-inflammatory genes (iNOS and IL-1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β-conglutin proteins elicited pro-inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased.
Our results raise the possibility of using these particular β-conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti-inflammatory molecules. ScopeWe have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.Methods and resultsWe produced purified recombinant β1‐, β2‐, β3‐, β4‐, and β6‐conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β‐conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold‐change decrease in the mRNA expression level of pro‐inflammatory genes (iNOS and IL‐1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β‐conglutin proteins elicited pro‐inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased.ConclusionOur results raise the possibility of using these particular β‐conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti‐inflammatory molecules. We have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.SCOPEWe have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.We produced purified recombinant β1-, β2-, β3-, β4-, and β6-conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β-conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold-change decrease in the mRNA expression level of pro-inflammatory genes (iNOS and IL-1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β-conglutin proteins elicited pro-inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased.METHODS AND RESULTSWe produced purified recombinant β1-, β2-, β3-, β4-, and β6-conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β-conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold-change decrease in the mRNA expression level of pro-inflammatory genes (iNOS and IL-1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β-conglutin proteins elicited pro-inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased.Our results raise the possibility of using these particular β-conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti-inflammatory molecules.CONCLUSIONOur results raise the possibility of using these particular β-conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti-inflammatory molecules. Scope We have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment. Methods and results We produced purified recombinant β1‐, β2‐, β3‐, β4‐, and β6‐conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β‐conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold‐change decrease in the mRNA expression level of pro‐inflammatory genes (iNOS and IL‐1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β‐conglutin proteins elicited pro‐inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased. Conclusion Our results raise the possibility of using these particular β‐conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti‐inflammatory molecules. This study provides new insights about the potential use of β‐conglutin seed proteins from the legume Lupinus angustifolius L. in the type 2 diabetes prevention and treatment, and as anti‐inflammatory molecules: (i) β1‐, β3‐, and β6‐conglutins have the ability to modulate the expression levels of crucial genes involved in the insulin molecular signaling pathway. (ii) The same conglutins trigger the release of the pro‐inflammatory capacity of cells by diminishing IL 1 beta and inducible nitric oxide synthase expression levels, leading to amelioration of the inflammatory process associated with type 2 diabetes. |
Author | Andrikopoulos, Sofianos Lima‐Cabello, Elena Foley, Rhonda C. Jimenez‐Lopez, Jose C. Alche, Juan D. Singh, Karam B. Morahan, Grant Alche, Victor |
Author_xml | – sequence: 1 givenname: Elena surname: Lima‐Cabello fullname: Lima‐Cabello, Elena organization: Spanish National Research Council (CSIC) – sequence: 2 givenname: Victor surname: Alche fullname: Alche, Victor organization: Health Center “Villanueva de las Torres” – sequence: 3 givenname: Rhonda C. surname: Foley fullname: Foley, Rhonda C. organization: Centre for Environment and Life Sciences (CELS); Floreat – sequence: 4 givenname: Sofianos surname: Andrikopoulos fullname: Andrikopoulos, Sofianos organization: The University of Melbourne – sequence: 5 givenname: Grant surname: Morahan fullname: Morahan, Grant organization: The University of Western Australia – sequence: 6 givenname: Karam B. surname: Singh fullname: Singh, Karam B. organization: The University of Western Australia – sequence: 7 givenname: Juan D. surname: Alche fullname: Alche, Juan D. organization: Spanish National Research Council (CSIC) – sequence: 8 givenname: Jose C. surname: Jimenez‐Lopez fullname: Jimenez‐Lopez, Jose C. email: josecarlos.jimenez@eez.csic.es, jcjimenezl75@gmail.com organization: The University of Western Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28012244$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktu1EAQhi0URB6wZYlaYhMWM_TLHnuJIgJIQ5AQrK0auzzpqN1t-qGRdxyBs3AIlhyCk1BDwiyyyaqrq77_L3V1nRZHzjssiueCLwXn8vXohrCUXFSc16J5VJyISqiFFkodHWJZHhenMd5wroTU6klxLGsupNT6pPh1BSH43Z_vPyzCgD2zeTKOna_3R44M3DbHZAZvDd3Wy1fs90-CO--2Nicip-ATGhfZ6PtsISFL18gokS1Vo9k6oGDLJkjXO5gZRDaRwiUDlqV5QiZZb2CDCSNLASGNVKS-PZkMFsYRkg8z9Qy4t--JjggRGYxojQ-QjHdPi8cD2IjP7s6z4uvl2y8X7xfrT-8-XLxZLzrN62axqlGWTdNVNAe52ZRarmrBO636EgdRUQKw72qlELnQusahQhCi7GUF0K2kOivOb33p2d8yxtSOJnZoLTj0ObaiLsmyquqS0Jf30BufA02DqEbyspRSaKJe3FF5M2LfTsGMEOb2_w8RsLwFuuBjDDgcEMHb_Qq0-xVoDytAAn1P0Jn0b0gpgLEPynbG4vxAk_bj1eVnWatG_QWILc1K |
CitedBy_id | crossref_primary_10_1016_j_tifs_2017_12_008 crossref_primary_10_3389_fpls_2018_01481 crossref_primary_10_1016_j_foodchem_2023_136104 crossref_primary_10_3390_nu10081082 crossref_primary_10_1111_1541_4337_13342 crossref_primary_10_1002_leg3_33 crossref_primary_10_3390_ijms24087676 crossref_primary_10_1016_j_foodres_2019_108585 crossref_primary_10_1111_pce_13320 crossref_primary_10_3390_nu15030523 crossref_primary_10_1007_s00217_021_03909_5 crossref_primary_10_1002_fsn3_2206 crossref_primary_10_1039_C8FO01164H crossref_primary_10_1016_j_fochx_2020_100099 crossref_primary_10_1080_07853890_2017_1366042 crossref_primary_10_3389_fpls_2019_01385 crossref_primary_10_1016_j_biopha_2020_110969 crossref_primary_10_1016_j_foodchem_2017_10_015 crossref_primary_10_1016_j_jff_2017_07_039 crossref_primary_10_1111_1541_4337_12646 crossref_primary_10_1016_j_molimm_2021_06_023 crossref_primary_10_1016_j_tifs_2023_02_011 crossref_primary_10_1016_j_mce_2018_10_015 crossref_primary_10_3390_foods8100513 crossref_primary_10_3390_plants13060785 crossref_primary_10_1080_87559129_2020_1762641 crossref_primary_10_1016_j_jff_2017_11_040 crossref_primary_10_3390_foods12142749 crossref_primary_10_3390_antiox9010012 |
Cites_doi | 10.1016/j.fitote.2005.11.008 10.1017/S0007114511001334 10.1016/j.foodres.2014.11.046 10.1186/1471-2229-11-59 10.1016/j.tifs.2008.07.002 10.1097/SHK.0b013e3182793e2e 10.1021/jf500106r 10.1186/s12870-015-0485-6 10.1016/j.foodchem.2010.10.073 10.1016/j.freeradbiomed.2010.12.006 10.3389/fpls.2015.00705 10.1080/02648725.1998.10647950 10.1016/j.jnutbio.2004.06.009 10.1146/annurev-arplant-050312-120142 10.1242/jeb.048041 10.1093/ajcn/83.6.1505S 10.1080/07352689.2014.897908 10.1371/journal.pone.0008542 10.1017/S000711450894215X 10.1146/annurev-physiol-021909-135846 10.1105/tpc.114.123620 10.1038/ijo.2010.213 10.1021/jf9017542 10.1093/ajcn/84.5.975 10.1042/bj3250487 10.1007/978-3-319-16483-0_10 10.1017/S0014479712000026 10.1016/S2221-1691(12)60032-X 10.1016/j.numecd.2009.09.004 10.1016/j.appet.2011.08.015 10.1007/s00394-008-0710-2 10.1097/00024382-199609000-00002 10.1016/j.bbadis.2008.10.019 10.1371/journal.pone.0030160 10.1007/s00709-010-0242-5 10.1016/j.pep.2005.01.016 10.1017/S0007114511002601 10.1042/bj3450437 10.1007/s00709-015-0830-5 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7T5 7T7 7TK 8FD C1K FR3 H94 K9. NAPCQ P64 7X8 |
DOI | 10.1002/mnfr.201600819 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nursing & Allied Health Premium MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | n/a |
ExternalDocumentID | 28012244 10_1002_mnfr_201600819 MNFR2839 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Spanish Ministry of Economy and Competitiveness ‐ Research Program “Ramon y Cajal” funderid: RYC‐2014‐16536 – fundername: European Research Program MARIE CURIE (FP7‐PEOPLE‐2011‐IOF) funderid: PIOF‐GA‐2011‐301550 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7QP 7T5 7T7 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c4089-78e2599c61242bb5427810c43d5ef16b54aedc833ee01448ef6ea115d26aac723 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Thu Sep 04 18:37:00 EDT 2025 Wed Aug 13 06:56:25 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Tue Jul 01 01:51:43 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Wed Jan 22 17:00:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Type 2 diabetes Legumes Vicilin GLUT-4 Sweet lupins PI3-kinase Antioxidant IL-1β Anti-inflammatory |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4089-78e2599c61242bb5427810c43d5ef16b54aedc833ee01448ef6ea115d26aac723 |
Notes | See the article online to view Figs. 1 and 2 in colour. Both authors contributed equally to this work. Colour Online ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mnfr.201600819 |
PMID | 28012244 |
PQID | 1920552214 |
PQPubID | 2045123 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1852786685 proquest_journals_1920552214 pubmed_primary_28012244 crossref_primary_10_1002_mnfr_201600819 crossref_citationtrail_10_1002_mnfr_201600819 wiley_primary_10_1002_mnfr_201600819_MNFR2839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 2017-May 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol Nutr Food Res |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 125 2015; 34 2011; 214 2015; 9043 2015; 15 2015; 6 2010; 35 2006; 77 2008; 19 2013; 64 2015; 76 2005; 41 2014; 26 2011; 11 2011; 57 2014; 62 2008; 100 2012; 107 2011; 248 1998; 15 2011; 125 2009; 57 1997; 325 2012; 2 2013; 39 2006; 83 2006; 84 2011; 106 2000; 345 2004; 15 2011; 50 2008; 47 2011; 21 2016; 253 2012; 48 2012; 7 2010; 5 2009; 1792 2016; 25 2016. 1996; 6 2010; 72 2005; 14 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 Donath M. Y. (e_1_2_8_42_1) 2011; 11 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 Evans J. L. (e_1_2_8_43_1) 2007; 125 e_1_2_8_40_1 e_1_2_8_17_1 Hall R. S. (e_1_2_8_26_1) 2005; 14 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Kouris‐Blazos A. (e_1_2_8_12_1) 2016; 25 Saia R. S. (e_1_2_8_36_1) 2013; 39 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 57 start-page: 8612 year: 2009 end-page: 8616 article-title: Susceptibility of lupin γ‐conglutin, the plasma glucose‐lowering protein of lupin seeds, to proteolytic enzymes publication-title: J. Agric. Food Chem. – volume: 76 start-page: 58 year: 2015 end-page: 65 article-title: The effects of lupin ( ) addition to wheat bread on its nutritional, phytochemical and bioactive composition and protein quality publication-title: Food Res. Int. – volume: 11 start-page: 59 year: 2011 article-title: Identification and characterisation of seed storage protein transcripts from publication-title: BMC Plant Biol. – volume: 14 start-page: 91 year: 2005 end-page: 97 article-title: Australian sweet lupin flour addition reduced the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers publication-title: Asia Pac. J. Clin. Nutr. – volume: 48 start-page: 414 year: 2012 end-page: 427 article-title: Crude protein, amino acid and alkaloid contents of annual sweet lupin ( spp.) forages and seeds grown in ethiopia publication-title: Exp. Agric. – volume: 25 start-page: 1 year: 2016 end-page: 17 article-title: Health benefits of legumes and pulses with a focus on Australian sweet lupins publication-title: Asia Pac. J. Clin. Nutr. – volume: 9043 start-page: 96 year: 2015 end-page: 107 article-title: Lupin allergy: uncovering structural features and epitopes of β‐conglutin proteins in L. with a focus on cross‐allergenic reactivity to peanut and other legumes publication-title: Lect. Notes Comput. Sci. – volume: 62 start-page: 4313 year: 2014 end-page: 4321 article-title: Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: effects of in vitro digestion publication-title: J. Agric. Food Chem. – volume: 107 start-page: 67 year: 2012 end-page: 73 article-title: Lupin seed γ‐conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells publication-title: Br. J. Nutr. – volume: 21 start-page: 197 year: 2011 end-page: 205 article-title: Insulin‐mimetic action of conglutin‐γ, a lupin seed protein, in mouse myoblasts publication-title: Nutr. Metab. Cardiovasc. Dis. – volume: 6 start-page: 705 year: 2015 article-title: The future of lupin as a protein crop in Europe publication-title: Front. Plant Sci. – volume: 35 start-page: 810 year: 2010 end-page: 819 article-title: Effects of lupin‐enriched foods on body composition and cardiovascular disease risk factors: a 12‐month randomized controlled weight loss trial publication-title: Int. J. Obes. – volume: 41 start-page: 207 year: 2005 end-page: 234 article-title: Protein production by auto‐induction in high density shaking cultures publication-title: Protein Expr. Purif. – year: 2016. – volume: 214 start-page: 254 year: 2011 end-page: 262 article-title: The physiological regulation of glucose flux into muscle publication-title: J. Exp. Biol. – volume: 6 start-page: 164 year: 1996 end-page: 170 article-title: Endotoxin‐induced alterations in insulin‐stimulated phosphorylation of insulin receptor, IRS‐1, and MAP kinase in skeletal muscle publication-title: Shock – volume: 83 start-page: 1505S year: 2006 end-page: 1519S article-title: N‐3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases publication-title: Am. J. Clin. Nutr. – volume: 84 start-page: 975 year: 2006 end-page: 980 article-title: Lupin‐enriched bread increases satiety and reduces energy intake acutely publication-title: Am. J. Clin. Nutr. – volume: 15 start-page: 646 year: 2004 end-page: 650 article-title: Conglutin gamma, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats publication-title: J. Nutr. Biochem. – volume: 125 start-page: 1279 year: 2011 end-page: 1283 article-title: Assessment of the lupin seed glucose‐lowering protein intestinal absorption by using in vitro and models publication-title: Food Chem – volume: 100 start-page: 707 year: 2008 end-page: 710 article-title: Hypolipidaemic and anti‐atherosclerotic effects of lupin proteins in a rabbit model publication-title: Br. J. Nutr. – volume: 64 start-page: 19 year: 2013 end-page: 46 article-title: Plants, diet, and health publication-title: Annu. Rev. Plant Biol – volume: 15 start-page: 1 year: 1998 end-page: 32 article-title: Cupins: a new superfamily of functionally‐diverse proteins that include germins and plant seed storage proteins publication-title: Biotechnol. Genet. Eng. Rev. – volume: 11 start-page: 98 year: 2011 end-page: 107 article-title: Type 2 diabetes as an inflammatory disease publication-title: Nat. Rev. – volume: 248 start-page: 751 year: 2011 end-page: 765 article-title: Development of the cotyledon cells during olive ( L.) in vitro seed germination and seedling growth publication-title: Protoplasma – volume: 7 start-page: e30160 year: 2012 article-title: Disassociation of muscle insulin signaling and insulin‐stimulated glucose uptake during endotoxemia publication-title: PLoS One – volume: 253 start-page: 517 year: 2016 end-page: 530 article-title: Biogenesis of protein bodies during legumin accumulation in L. seed development and differentiation publication-title: Protoplasma – volume: 34 start-page: 144 year: 2015 end-page: 168 article-title: The role of grain legumes in the prevention of hypercholesterolemia and hypertension publication-title: Crit. Rev. Plant Sci. – volume: 50 start-page: 567 year: 2011 end-page: 575 article-title: Oxidative stress, insulin signaling, and diabetes publication-title: Free Radic. Biol. Med. – volume: 72 start-page: 219 year: 2010 end-page: 246 article-title: Macrophages, inflammation, and insulin resistance publication-title: Ann. Rev. Physiol. – start-page: 452 end-page: 454 – volume: 77 start-page: 67 year: 2006 end-page: 82 article-title: Grain legume proteins and nutraceutical properties publication-title: Fitoterapia – volume: 15 start-page: 106 year: 2015 article-title: Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches publication-title: BMC Plant Biol – volume: 1792 start-page: 83 year: 2009 end-page: 92 article-title: Alterations of insulin signalling in type 2 diabetes: a review of the current evidence from humans publication-title: Biochim. Biophys. Acta – volume: 5 start-page: e8542 year: 2010 article-title: The unique biosynthetic route from β‐conglutin gene to blad publication-title: PLoS One – volume: 47 start-page: 171 year: 2008 end-page: 182 article-title: Bioactive peptides and proteins from foods: indication for health effects publication-title: Eur. J. Clin. Nutr. – volume: 106 start-page: 1045 year: 2011 end-page: 1051 article-title: Lupin and soya reduce glycaemia acutely in type 2 diabetes publication-title: Br. J. Nutr. – volume: 57 start-page: 707 year: 2011 end-page: 710 article-title: Food intake, postprandial glucose, insulin and subjective satiety responses to three different bread‐based test meals publication-title: Appetite – volume: 325 start-page: 487 year: 1997 end-page: 493 article-title: Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase publication-title: Biochem. J. – volume: 26 start-page: 981 year: 2014 end-page: 995 article-title: Evolutionary origins of a bioactive peptide buried within preproalbumin publication-title: Plant Cell – volume: 84 start-page: 975 year: 2006 end-page: 980 article-title: Lupin‐enriched bread increases satiety and reduces energy intakeacutely publication-title: Am. J. Clin. Nutr. – volume: 345 start-page: 437 year: 2000 end-page: 443 article-title: The regulation of AMP‐activated protein kinase by phosphorylation publication-title: Biochem. J. – volume: 19 start-page: 624 year: 2008 end-page: 633 article-title: The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients publication-title: Trends Food Sci. Technol. – volume: 2 start-page: 320 year: 2012 end-page: 330 article-title: An overview on antidiabetic medicinal plants having insulin mimetic property publication-title: Asian Pac. J. Trop. Biomed. – volume: 125 start-page: 355 year: 2007 end-page: 372 article-title: Antioxidants: do they have a role in the treatment of insulin resistance? publication-title: Ind. J. Med. Res. – volume: 39 start-page: 104 year: 2013 end-page: 113 article-title: Cardiovascular and inflammatory response to cholecystokinin during endotoxemic shock publication-title: Shock – ident: e_1_2_8_5_1 doi: 10.1016/j.fitote.2005.11.008 – ident: e_1_2_8_29_1 doi: 10.1017/S0007114511001334 – ident: e_1_2_8_11_1 doi: 10.1016/j.foodres.2014.11.046 – ident: e_1_2_8_14_1 doi: 10.1017/S0007114511001334 – ident: e_1_2_8_15_1 doi: 10.1186/1471-2229-11-59 – ident: e_1_2_8_19_1 doi: 10.1016/j.tifs.2008.07.002 – volume: 11 start-page: 98 year: 2011 ident: e_1_2_8_42_1 article-title: Type 2 diabetes as an inflammatory disease publication-title: Nat. Rev. – ident: e_1_2_8_20_1 – volume: 39 start-page: 104 year: 2013 ident: e_1_2_8_36_1 article-title: Cardiovascular and inflammatory response to cholecystokinin during endotoxemic shock publication-title: Shock doi: 10.1097/SHK.0b013e3182793e2e – ident: e_1_2_8_3_1 – volume: 125 start-page: 355 year: 2007 ident: e_1_2_8_43_1 article-title: Antioxidants: do they have a role in the treatment of insulin resistance? publication-title: Ind. J. Med. Res. – ident: e_1_2_8_4_1 doi: 10.1021/jf500106r – ident: e_1_2_8_16_1 doi: 10.1186/s12870-015-0485-6 – ident: e_1_2_8_35_1 doi: 10.1016/j.foodchem.2010.10.073 – ident: e_1_2_8_23_1 doi: 10.1016/j.freeradbiomed.2010.12.006 – ident: e_1_2_8_9_1 doi: 10.3389/fpls.2015.00705 – ident: e_1_2_8_17_1 doi: 10.1080/02648725.1998.10647950 – volume: 25 start-page: 1 year: 2016 ident: e_1_2_8_12_1 article-title: Health benefits of legumes and pulses with a focus on Australian sweet lupins publication-title: Asia Pac. J. Clin. Nutr. – ident: e_1_2_8_30_1 doi: 10.1016/j.jnutbio.2004.06.009 – ident: e_1_2_8_6_1 doi: 10.1146/annurev-arplant-050312-120142 – ident: e_1_2_8_37_1 doi: 10.1242/jeb.048041 – ident: e_1_2_8_21_1 – ident: e_1_2_8_44_1 doi: 10.1093/ajcn/83.6.1505S – ident: e_1_2_8_8_1 doi: 10.1080/07352689.2014.897908 – ident: e_1_2_8_18_1 doi: 10.1371/journal.pone.0008542 – ident: e_1_2_8_25_1 doi: 10.1017/S000711450894215X – ident: e_1_2_8_45_1 doi: 10.1146/annurev-physiol-021909-135846 – volume: 14 start-page: 91 year: 2005 ident: e_1_2_8_26_1 article-title: Australian sweet lupin flour addition reduced the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers publication-title: Asia Pac. J. Clin. Nutr. – ident: e_1_2_8_49_1 doi: 10.1105/tpc.114.123620 – ident: e_1_2_8_13_1 doi: 10.1038/ijo.2010.213 – ident: e_1_2_8_34_1 doi: 10.1021/jf9017542 – ident: e_1_2_8_28_1 doi: 10.1093/ajcn/84.5.975 – ident: e_1_2_8_41_1 doi: 10.1042/bj3250487 – ident: e_1_2_8_46_1 doi: 10.1007/978-3-319-16483-0_10 – ident: e_1_2_8_10_1 doi: 10.1017/S0014479712000026 – ident: e_1_2_8_24_1 doi: 10.1016/S2221-1691(12)60032-X – ident: e_1_2_8_33_1 doi: 10.1016/j.numecd.2009.09.004 – ident: e_1_2_8_27_1 doi: 10.1016/j.appet.2011.08.015 – ident: e_1_2_8_2_1 doi: 10.1007/s00394-008-0710-2 – ident: e_1_2_8_38_1 doi: 10.1097/00024382-199609000-00002 – ident: e_1_2_8_7_1 doi: 10.1093/ajcn/84.5.975 – ident: e_1_2_8_32_1 doi: 10.1016/j.bbadis.2008.10.019 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pone.0030160 – ident: e_1_2_8_48_1 doi: 10.1007/s00709-010-0242-5 – ident: e_1_2_8_22_1 doi: 10.1016/j.pep.2005.01.016 – ident: e_1_2_8_31_1 doi: 10.1017/S0007114511002601 – ident: e_1_2_8_39_1 doi: 10.1042/bj3450437 – ident: e_1_2_8_47_1 doi: 10.1007/s00709-015-0830-5 |
SSID | ssj0031243 |
Score | 2.3636703 |
Snippet | Scope
We have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.... We have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment. We produced... ScopeWe have investigated the potential use of β‐conglutin protein isoforms from narrow‐leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.Methods... We have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment.SCOPEWe have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Activation analysis Adult AKT protein Antioxidant Anti‐inflammatory Biotechnology Blood Blood Glucose - metabolism Body Mass Index Case-Control Studies Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - drug therapy Female Gene expression Genes Glucose transporter Glucose Transporter Type 4 - genetics Glucose Transporter Type 4 - metabolism GLUT‐4 Humans IL‐1β Insulin Insulin - metabolism Insulin receptor substrate 1 Interleukin 1 Interleukin-1beta - genetics Interleukin-1beta - metabolism Isoforms Kinases Legumes Leukocytes (mononuclear) Leukocytes, Mononuclear - metabolism Lupinus - chemistry Male Middle Aged Nitric oxide Nitric Oxide Synthase Type II - genetics Nitric Oxide Synthase Type II - metabolism Nitric-oxide synthase Peripheral blood mononuclear cells Phosphatidylinositol 3-Kinase - genetics Phosphatidylinositol 3-Kinase - metabolism PI3‐kinase Plant Leaves - chemistry Proteins Seed Storage Proteins - pharmacology Signal transduction Signal Transduction - drug effects Sweet lupins Type 2 diabetes Vicilin |
Title | Narrow‐leafed lupin (Lupinus angustifolius L.) β‐conglutin proteins modulate the insulin signaling pathway as potential type 2 diabetes treatment and inflammatory‐related disease amelioration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201600819 https://www.ncbi.nlm.nih.gov/pubmed/28012244 https://www.proquest.com/docview/1920552214 https://www.proquest.com/docview/1852786685 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELXQnLiwL4EBFRJiOaQncTbniBhaIzT0YcRIc4ucuIxak063SEcITnwC38JHcOQj-BKqnAUahBDi1OmkHDtJuerZLr8S4iENuKxBzgGorfZjxIyOtPWNqUqZYUQnXJTvIj06jV-eJWc_7eLv-SGmCTfuGc5ecwfXZXvwgzR01Vjm8wxT59XICIdRyuT5hycTf1REzstF2JPP8mNy5SNrYyAPdovveqXfoOYucnWuZ35Z6LHRfcTJ-azblrPqwy98jv_zVFfEpQGXwrNeka6KC9hcE97hErfwCAby0BoWI3f_dfFl4egbv338VKO2aKDuNssGnhzzT9cCz4OS-bDrekn_jmdP4etnEqbh9xtW9gYcQ8SyaWG1NpxDDIGwKAyx8cBxJZq3ygPnTH6n34NuYUMlGjJJNfDMMUgYZ45hipeneg3dxJKir1wAAdXp9utQC4fFKNArekmD6t8Qp_MXr58f-UNSCL-KA5X7mUIaseUVIbNYlmXCqULCoIojk6ANUzqh0VQqIi3jwaJCm6Im2GtkqnWVyeim2GvWDd4WIDUGhA5LJdHGiVWlshndwoaYq9zqyBP-qBRFNTCmc-KOuui5nmXBX6uYvpYnHk_ym54r5I-S-6OOFYPNaAvC2kFCcDiMPfFguky9nZdwdIPrjmRUQs-bpirxxK1eN6eqpHLLpFTadxr2lzYUrxbzEwKX-Z1_lL8rLkrGNi7qc1_sbd92eI-Q2ba873rfd4m6O0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LrtMwELXgsoAN70fgAoOEeCzSmzgvZ4mAqkBvFlf3SuwiJxmjijStaCMEKz6Bb-EjWPIRfAkzzgMVhBBi1TQZx04y9hyPx2eEuE8TLlMh5wDURrshYkJH2rhVVRYywYBO2CjfLJ6dhC9fR0M0Ie-F6fghRocb9ww7XnMHZ4f0wU_W0GVjmNDTj61ZOy3O2EU6xkVHI4NUQObLxtiT1XJDMuYDb6MnD3bL79ql38DmLna1xmd6QRRDs7uYk7eTdltMyo-_MDr-13NdFOd7aApPOl26JE5hc1k4zxa4hQfQ84fWkA30_VfE18wyOH7_9LlGbbCCul0vGng05592A-wKpRHErOoF_ZtPHsO3LyRMM_A3rO8NWJKIRbOB5ariNGIIBEehD48HDi3RvFseOG3ye_0B9AbWVKKhUakGdh6DhMF5DGPIPNVb0U0M6frSxhBQnXbLDrWwX48CvaS31Gv_VXEyfX78dOb2eSHcMvRU6iYKadKWlgTOQlkUEWcL8b0yDKoIjR_TCY1VqQJSNJ4vKjQxakK-lYy1LhMZXBN7zarBGwKkRo8AYqEkmjAyqlAmoVsYH1OVGh04wh20Ii970nTO3VHnHd2zzPlr5ePXcsTDUX7d0YX8UXJ_ULK8HzY2OcFtLyJE7IeOuDdepg7Pqzi6wVVLMiqi541jFTnieqecY1VS2ZVSKu1aFftLG_LDbHpE-DK9-Y_yd8XZ2fHhPJ-_yF7dEuckQx0bBLov9rbvWrxNQG1b3LFd8QcMUj9i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELVgkBAX9iUwQCEhlkN6EmdzjoihNUAToREjzS1y4jJqkXa36I4QnPgEvoWP4MhH8CWUnQUahBDilK28JCm7nu3yK8bu0oBLK7QxAKWWfoyY0ZnUvlJ1xTOM6Ibz8i3Sg6P42XFy_NMu_o4fYpxwsy3D9de2ga-U3vtBGrow2vJ5hqmzaifZqTglW2lh0eFIIBWR9XIu9mS0_Jhs-UDbGPC97fTbZuk3rLkNXZ3tmZ5jcqh153LyZtJuqkn94RdCx_95rfPsbA9M4VGnSRfYCTQXmbc_xw3cg549tIFiIO-_xL4Ujr_x28dPDUqNCpp2NTfwYGYP7RrsRCj1H3rZzOlqNnkIXz-TMI2_X1ttN-AoIuZmDYulskHEEAiMQu8cD9axRNq98mCDJr-T70GuYUUpDPVJDdipY-AwTB3D6DBP5SrKRJOmL5wHAZXpNuxQDfvVKJAL-ki97l9mR9Mnrx4f-H1UCL-OA5H7mUAasuU1QbOYV1ViY4WEQR1HKkEdpnRDoqpFRGpmR4sCdYqScK_iqZR1xqMrbMcsDV5jwCUGBA8rwVHHiRaV0BlloUPMRa5l5DF_UIqy7inTbeSOpuzInnlp_1Y5_i2P3R_lVx1ZyB8ldwcdK_tOY10S2A4SwsNh7LE742Nq7nYNRxpctiQjEnrfNBWJx652ujkWxYVbJ6XUvtOwv9ShfFFMDwld5tf_Uf42O_1yf1rOnhbPb7Az3OIc5wG6y3Y2b1u8SShtU91yDfE7MPo-EQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrow%E2%80%90leafed+lupin+%28Lupinus+angustifolius+L.%29+%CE%B2%E2%80%90conglutin+proteins+modulate+the+insulin+signaling+pathway+as+potential+type+2+diabetes+treatment+and+inflammatory%E2%80%90related+disease+amelioration&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Elena+Lima%E2%80%90Cabello&rft.au=Alche%2C+Victor&rft.au=Foley%2C+Rhonda+C&rft.au=Andrikopoulos%2C+Sofianos&rft.date=2017-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=61&rft.issue=5&rft_id=info:doi/10.1002%2Fmnfr.201600819&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |