A Scalable Haze‐Free Antireflective Hierarchical Surface with Self‐Cleaning Capability
The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a...
Saved in:
Published in | Advanced science Vol. 9; no. 27; pp. e2202781 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.202202781 |
Cover
Abstract | The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.
Bumpy morphology of superhydrophobic coatings scatters incident light, thereby lowering transparency. Here, broadband, haze‐free, and antireflective surfaces with self‐cleaning capability is reported. “Hierarchically” designed coatings provide large “specular” transmittance (>97%) in visible and self‐cleaning capability. As a proof‐of‐concept, experiments are conducted on photovoltaic devices in dusty environment and observed a complete recovery of performance with improved (>6%) power conversion efficiency. |
---|---|
AbstractList | The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.
Bumpy morphology of superhydrophobic coatings scatters incident light, thereby lowering transparency. Here, broadband, haze‐free, and antireflective surfaces with self‐cleaning capability is reported. “Hierarchically” designed coatings provide large “specular” transmittance (>97%) in visible and self‐cleaning capability. As a proof‐of‐concept, experiments are conducted on photovoltaic devices in dusty environment and observed a complete recovery of performance with improved (>6%) power conversion efficiency. The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment. The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze-free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close-packed, deep-subwavelength-scale colloidal silica nanoparticles and their upper, chain-like fumed silica nanoparticles individually fulfill haze-free broadband antireflection and self-cleaning functions. These double-layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a "specular" visible transmittance of >97% when double-side coated and a record-high self-cleaning capability with a near-zero sliding angle. Self-cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze-free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close-packed, deep-subwavelength-scale colloidal silica nanoparticles and their upper, chain-like fumed silica nanoparticles individually fulfill haze-free broadband antireflection and self-cleaning functions. These double-layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a "specular" visible transmittance of >97% when double-side coated and a record-high self-cleaning capability with a near-zero sliding angle. Self-cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment. |
Author | Kim, Sun‐Kyung Nam, Youngsuk Cho, Jin‐Woo Oh, Seungtae Han, Jeonghoon Lee, Jihun |
Author_xml | – sequence: 1 givenname: Seungtae surname: Oh fullname: Oh, Seungtae organization: Korea Institute of Industrial Technology (KITECH) – sequence: 2 givenname: Jin‐Woo surname: Cho fullname: Cho, Jin‐Woo organization: Kyung Hee University – sequence: 3 givenname: Jihun surname: Lee fullname: Lee, Jihun organization: Pohang University of Science and Technology (POSTECH) – sequence: 4 givenname: Jeonghoon surname: Han fullname: Han, Jeonghoon organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 5 givenname: Sun‐Kyung surname: Kim fullname: Kim, Sun‐Kyung email: sunkim@khu.ac.kr organization: Kyung Hee University – sequence: 6 givenname: Youngsuk orcidid: 0000-0002-8807-6418 surname: Nam fullname: Nam, Youngsuk email: ysnam1@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35901503$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9OGzEQxq0KVGjgyrFaiQuXpP636_UxSpumElIPAQ5crFnvLBg5u8HeBYVTH6HP2CepUUKFkCqkkeyRf9_MeL5PZK_tWiTkhNEJo5R_gfohTjjlKVTJPpBDznQ5FqWUe6_uB-Q4xjtKKcuFkqz8SA5ErlNGxSG5nmZLCx4qj9kCnvDPr9_zgJhN294FbDza3j2kJ4cBgr11ic2WQ2jAYvbo-ttsib5JoplHaF17k81gDZXzrt8ckf0GfMTj3Tkil_NvF7PF-Pzn9x-z6fnYSlrKcW1taQUrKFDV1DrXFuuclowrjelfukJQQihVFII3OdXMKgFCamUrrbFBMSJn27rr0N0PGHuzctGi99BiN0TDC12UBddFntDTN-hdN4Q2TWe4YorlMkWiPu-ooVphbdbBrSBszMvWEiC3gA1djGlNxroeete1fQDnDaPm2R_z7I_550-STd7IXir_V7Dr8-g8bt6hzfTr1VKKQoq_3xmhzQ |
CitedBy_id | crossref_primary_10_1021_acsami_4c19177 crossref_primary_10_1021_acsami_4c19793 crossref_primary_10_1016_j_triboint_2024_109932 crossref_primary_10_1016_j_nanoen_2024_109682 crossref_primary_10_1002_smll_202410171 crossref_primary_10_1016_j_eng_2024_03_024 crossref_primary_10_1016_j_surfin_2022_102576 crossref_primary_10_1016_j_xcrp_2024_101906 crossref_primary_10_3390_molecules29092098 crossref_primary_10_1016_j_jcis_2024_10_056 crossref_primary_10_1021_acsaem_4c00774 crossref_primary_10_1021_acsami_4c10416 crossref_primary_10_1016_j_colsurfa_2024_135494 crossref_primary_10_1021_acs_langmuir_4c00328 crossref_primary_10_1016_j_jcis_2023_12_053 crossref_primary_10_1002_admi_202300603 crossref_primary_10_1002_smll_202304166 crossref_primary_10_1021_acsami_4c05778 crossref_primary_10_1039_D3NR05449G crossref_primary_10_1016_j_cej_2025_160041 crossref_primary_10_1002_admi_202201847 crossref_primary_10_1016_j_cej_2024_149319 crossref_primary_10_1002_tcr_202200298 crossref_primary_10_1016_j_colsurfa_2023_131424 crossref_primary_10_1016_j_compscitech_2023_110244 crossref_primary_10_1016_j_surfin_2024_104684 crossref_primary_10_3390_nano13121855 crossref_primary_10_1016_j_porgcoat_2023_107790 crossref_primary_10_1016_j_colsurfa_2022_130173 crossref_primary_10_1016_j_porgcoat_2023_107537 crossref_primary_10_1007_s40843_024_3269_6 crossref_primary_10_1364_OE_476007 crossref_primary_10_1016_j_surfcoat_2024_131437 crossref_primary_10_1016_j_carbpol_2023_120735 crossref_primary_10_3390_coatings14040440 crossref_primary_10_1002_app_56303 crossref_primary_10_1002_adma_202407856 crossref_primary_10_1016_j_mtcomm_2024_109594 crossref_primary_10_3390_mi15111304 crossref_primary_10_1002_adom_202202825 |
Cites_doi | 10.1016/j.solener.2017.12.052 10.1063/1.5100512 10.1016/j.apsusc.2019.01.234 10.1016/j.mtener.2019.03.006 10.1002/adma.201100410 10.1039/B711226B 10.1038/nmat924 10.1016/j.joule.2018.10.019 10.1021/acsnano.6b06715 10.1038/s41560-017-0016-9 10.1021/la070159q 10.1021/acsphotonics.0c01909 10.1021/am3024417 10.1021/acsnano.8b05600 10.1021/nn901581j 10.1016/j.jmrt.2020.02.022 10.1039/c1ee01297e 10.1103/PhysRevLett.109.024504 10.1002/aenm.202000124 10.1039/C5RA22885A 10.1016/j.porgcoat.2022.106998 10.1021/acs.nanolett.8b01157 10.1016/j.apsusc.2021.149924 10.1007/s004250050096 10.1038/s41467-017-01579-0 10.1039/tf9444000546 10.1021/am503352x 10.1038/s41586-020-2331-8 10.1021/la2031208 10.1038/nphys4177 10.1021/acsami.7b11116 10.1039/C6NR03537J 10.1016/j.solmat.2020.110582 10.1039/C7TA05112C 10.1016/j.ceramint.2016.02.105 10.1126/sciadv.aaw9727 10.1038/ncomms4152 10.1016/j.solener.2016.11.053 10.1016/j.apsusc.2020.148534 10.1038/s41378-020-00197-z 10.1002/adma.202002710 10.1088/2053-1591/ab1eea 10.1007/s12274-013-0320-z 10.1016/j.jcis.2006.02.018 10.1016/j.solener.2016.11.051 10.1021/acs.macromol.8b01808 10.1039/C4CC06868H 10.1364/OE.27.000A39 10.1002/adfm.202201521 10.1021/acsami.6b03414 10.1016/j.solener.2016.02.033 10.1038/s41467-018-04906-1 10.1021/acsami.0c12465 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1002/advs.202202781 |
DatabaseName | Wiley Open Access Collection CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | 35901503 10_1002_advs_202202781 ADVS4364 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Basic Science Research Program funderid: 2022R1A2C3011684; 2020R1A2B5B01002261 – fundername: Basic Research Laboratory funderid: 2021R1A4A3027074 – fundername: Doosan Heavy Industries & Construction and the Korea Institute of Industrial Technology funderid: KITECH EO‐22‐0007 – fundername: Nano Material Technology Development Program funderid: 2021M3H4A3A01055870 – fundername: Basic Science Research Program grantid: 2022R1A2C3011684 – fundername: Nano Material Technology Development Program grantid: 2021M3H4A3A01055870 – fundername: Basic Science Research Program grantid: 2020R1A2B5B01002261 – fundername: Basic Research Laboratory grantid: 2021R1A4A3027074 – fundername: Doosan Heavy Industries & Construction and the Korea Institute of Industrial Technology grantid: KITECH EO-22-0007 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c4084-dcc8c3160a07fd959ced5081279e0279bea733776632f5091c73a3497cb99efe3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Fri Sep 05 10:36:33 EDT 2025 Sat Jul 26 02:23:48 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Tue Jul 01 03:59:43 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:23:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | scattering suppression self-cleaning hierarchical structure superhydrophobic antireflective |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4084-dcc8c3160a07fd959ced5081279e0279bea733776632f5091c73a3497cb99efe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8807-6418 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202781 |
PMID | 35901503 |
PQID | 2717154154 |
PQPubID | 4365299 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2696862965 proquest_journals_2717154154 pubmed_primary_35901503 crossref_citationtrail_10_1002_advs_202202781 crossref_primary_10_1002_advs_202202781 wiley_primary_10_1002_advs_202202781_ADVS4364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 5 2017; 8 2017; 2 2022; 170 2019; 12 2018; 169 2021; 560 2020; 12 2020; 10 2013; 5 2013; 6 2017; 9 2006; 299 2020; 6 2018; 9 2014; 5 2020; 9 2003; 2 2016; 42 2019; 27 2020; 214 2019; 476 2019; 114 2011; 23 1944; 40 2011; 27 2007; 23 2010; 4 2014; 6 2021; 8 2019; 3 2019; 6 2021; 542 2015; 51 2020; 582 2008; 18 2020; 32 2011; 4 2012; 109 1997; 202 2016; 6 2018; 18 2022 2017; 11 2017; 13 2018; 51 2017; 141 2017; 142 2018; 12 2016; 8 2016; 131 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 27 start-page: A39 year: 2019 publication-title: Opt. Express – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 214 year: 2020 publication-title: Sol. Energy Mater. Sol. Cells – volume: 202 start-page: 1 year: 1997 publication-title: Planta – volume: 42 start-page: 8706 year: 2016 publication-title: Ceram. Int. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1020 year: 2017 publication-title: Nat. Phys. – volume: 141 start-page: 203 year: 2017 publication-title: Sol. Energy – volume: 6 start-page: 429 year: 2013 publication-title: Nano Res. – volume: 51 year: 2018 publication-title: Macromolecules – volume: 299 start-page: 841 year: 2006 publication-title: J. Colloid Interface Sci. – volume: 169 start-page: 277 year: 2018 publication-title: Sol. Energy – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 18 start-page: 621 year: 2008 publication-title: J. Mater. Chem. – volume: 18 start-page: 3865 year: 2018 publication-title: Nano Lett. – volume: 142 start-page: 123 year: 2017 publication-title: Sol. Energy – volume: 12 start-page: 348 year: 2019 publication-title: Mater. Today Energy – volume: 6 start-page: 7864 year: 2016 publication-title: RSC Adv. – volume: 23 start-page: 7293 year: 2007 publication-title: Langmuir – volume: 131 start-page: 96 year: 2016 publication-title: Sol. Energy – volume: 170 year: 2022 publication-title: Prog. Org. Coatings – volume: 476 start-page: 1035 year: 2019 publication-title: Appl. Surf. Sci. – volume: 542 year: 2021 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 457 year: 2003 publication-title: Nat. Mater. – volume: 582 start-page: 55 year: 2020 publication-title: Nature – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 290 year: 2019 publication-title: Joule – volume: 27 year: 2011 publication-title: Langmuir – volume: 6 year: 2019 publication-title: Mater. Res. Express – year: 2022 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3152 year: 2014 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 2458 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 3958 year: 2020 publication-title: J. Mater. Res. Technol. – volume: 4 start-page: 3779 year: 2011 publication-title: Energy Environ. Sci. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 12 year: 2018 publication-title: ACS Nano – volume: 51 start-page: 1775 year: 2015 publication-title: Chem. Commun. – volume: 11 start-page: 587 year: 2017 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2201 year: 2010 publication-title: ACS Nano – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 87 year: 2020 publication-title: Microsystems Nanoeng. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 40 start-page: 546 year: 1944 publication-title: Trans. Faraday Soc. – volume: 560 year: 2021 publication-title: Appl. Surf. Sci. – volume: 23 start-page: 2962 year: 2011 publication-title: Adv. Mater. – volume: 5 start-page: 853 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 894 year: 2021 publication-title: ACS Photonics – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_48_1 doi: 10.1016/j.solener.2017.12.052 – ident: e_1_2_8_41_1 doi: 10.1063/1.5100512 – ident: e_1_2_8_20_1 doi: 10.1016/j.apsusc.2019.01.234 – ident: e_1_2_8_29_1 doi: 10.1016/j.mtener.2019.03.006 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201100410 – ident: e_1_2_8_40_1 doi: 10.1039/B711226B – ident: e_1_2_8_1_1 doi: 10.1038/nmat924 – ident: e_1_2_8_31_1 doi: 10.1016/j.joule.2018.10.019 – ident: e_1_2_8_19_1 doi: 10.1021/acsnano.6b06715 – ident: e_1_2_8_36_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_8_21_1 doi: 10.1021/la070159q – ident: e_1_2_8_8_1 doi: 10.1021/acsphotonics.0c01909 – ident: e_1_2_8_28_1 doi: 10.1021/am3024417 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.8b05600 – ident: e_1_2_8_22_1 doi: 10.1021/nn901581j – ident: e_1_2_8_47_1 doi: 10.1016/j.jmrt.2020.02.022 – ident: e_1_2_8_39_1 doi: 10.1039/c1ee01297e – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevLett.109.024504 – ident: e_1_2_8_34_1 doi: 10.1002/aenm.202000124 – ident: e_1_2_8_23_1 doi: 10.1039/C5RA22885A – ident: e_1_2_8_53_1 doi: 10.1016/j.porgcoat.2022.106998 – ident: e_1_2_8_38_1 doi: 10.1021/acs.nanolett.8b01157 – ident: e_1_2_8_12_1 doi: 10.1016/j.apsusc.2021.149924 – ident: e_1_2_8_2_1 doi: 10.1007/s004250050096 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-017-01579-0 – ident: e_1_2_8_30_1 doi: 10.1039/tf9444000546 – ident: e_1_2_8_27_1 doi: 10.1021/am503352x – ident: e_1_2_8_11_1 doi: 10.1038/s41586-020-2331-8 – ident: e_1_2_8_51_1 doi: 10.1021/la2031208 – ident: e_1_2_8_3_1 doi: 10.1038/nphys4177 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.7b11116 – ident: e_1_2_8_13_1 doi: 10.1039/C6NR03537J – ident: e_1_2_8_43_1 doi: 10.1016/j.solmat.2020.110582 – ident: e_1_2_8_17_1 doi: 10.1039/C7TA05112C – ident: e_1_2_8_18_1 doi: 10.1016/j.ceramint.2016.02.105 – ident: e_1_2_8_5_1 doi: 10.1126/sciadv.aaw9727 – ident: e_1_2_8_33_1 doi: 10.1038/ncomms4152 – ident: e_1_2_8_44_1 doi: 10.1016/j.solener.2016.11.053 – ident: e_1_2_8_15_1 doi: 10.1016/j.apsusc.2020.148534 – ident: e_1_2_8_49_1 doi: 10.1038/s41378-020-00197-z – ident: e_1_2_8_14_1 doi: 10.1002/adma.202002710 – ident: e_1_2_8_7_1 doi: 10.1088/2053-1591/ab1eea – ident: e_1_2_8_9_1 doi: 10.1007/s12274-013-0320-z – ident: e_1_2_8_42_1 doi: 10.1016/j.jcis.2006.02.018 – ident: e_1_2_8_46_1 doi: 10.1016/j.solener.2016.11.051 – ident: e_1_2_8_26_1 doi: 10.1021/acs.macromol.8b01808 – ident: e_1_2_8_50_1 doi: 10.1039/C4CC06868H – ident: e_1_2_8_37_1 doi: 10.1364/OE.27.000A39 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202201521 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.6b03414 – ident: e_1_2_8_45_1 doi: 10.1016/j.solener.2016.02.033 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-018-04906-1 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.0c12465 |
SSID | ssj0001537418 |
Score | 2.477594 |
Snippet | The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However,... The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2202781 |
SubjectTerms | antireflective Contact angle Design Glass substrates hierarchical structure Hydrophobic surfaces Nanoparticles scattering suppression self‐cleaning superhydrophobic |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1faxQxEB_q9cUXsf49WyWCoD4s3U12N5sHkfPocQge4lkovixJdgKF5a6evUL75EfwM_aTdGb_SREV9i0JmZ1JMr9Mkt8AvPLaF1xE25LcRKmnPatzeYhSa1CRw8uywO-dPy3y-XH68SQ72YFF_xaGr1X2a2KzUFdrzzHyQ0n7DnL39L0_-x5x1ig-Xe1TaNgutUL1rqEYuwO7tCRn8Qh2PxwtPn_5HXXJFNO19OyNsTy01QWzdksOAhTJbe_0B-S8jWAbFzS7D_c67CgmrbH3YAdXD2Cvm50_xJuOQvrtQ_g2EUtSPj-LEnN7hdc_f802iGJCwlOndbvKifkpPz9usqHUYrndBOtRcGRWLLEO1Ghao-XAiZiST22u0V4-guPZ0dfpPOqyKEQ-jYs0qrwvvEry2MY6VCYzHitCZYnUBumfjUOrldKaoIcMDB-8VlalRntnDAZUj2G0Wq_wKQhrHSEYLBJfyJQ8n9MuxDK42CLZN8nGEPXaK31HMc6ZLuqyJUeWJWu7HLQ9htdD_bOWXOOvNQ96Y5TdJKPSYUiM4eVQTNODzzzsCtdbqsPkP7k0OQn3pDXi0JXKmniPIrEbq_5HhpKAwpJ-O332b2H24S63aS-iHcDofLPF54Rczt2LbjjeACj97Nw priority: 102 providerName: ProQuest |
Title | A Scalable Haze‐Free Antireflective Hierarchical Surface with Self‐Cleaning Capability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202781 https://www.ncbi.nlm.nih.gov/pubmed/35901503 https://www.proquest.com/docview/2717154154 https://www.proquest.com/docview/2696862965 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBcjfdnLWNv9ydYGFQbbHkwcSbasxyxrCGMtZV4g7MVIygkKxh1pMtie-hH6GfdJdmc7bsMoY2AwWLIt3fmk3511PzH2xmufURG6JamJlEef1bk0RMoakDjhJUmgfOez83Q2V58WyeJeFn_DD9EF3Mgy6vGaDNy66-Edaahd_iC6bUHeO-Ve7yGyl_SNC3VxF2VJJNGz0A5z6F1HMlNqy9wYi-HuI3Znpr_g5i56raef6VP2pMWNfNwoep89guqA7beWec3ftfTR7w_ZtzHPUfCUEsVn9hf8vrmdrgD4uFrj8BbKZoTjs0tKPa53Qil5vlkF64FTVJbnUAa8aVKCpaAJn-B8Wi-h_fmMzaenXyezqN1BIfIqzlS09D7zcpTGNtZhaRLjYYmIbCS0AeyzcWC1lFoj7BCBoIPX0kpltHfGQAD5nPWqqwpeMm6tQ_QC2chnAuUsnHYhFsHFFlC3o6TPoq30Ct_Si9MuF2XRECOLgqRddNLus7dd_e8NscaDNY-2yihaA8NSdEMR_eHRZyddMZoG_e-wFVxtsA4R_6TCpNi4F40Su1fJpI71SGx2rdV_tKFAkJBjt9Wr_6z_mj2mi82qtCPWW682cIwwZu0G9Zc6YHvjj2efczx_OD2_-DKogwJ_AM217vs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiJbXlpYaCQQcoiZ2Xj5UaFm6Smm7QmwrVb0Ex5lISNFuu-2Cyomf0F_Ej-GXMJMXqhBwqpSb7cSZGXse9nwD8NxGNuYmcktC7fiWfNYsCwvHNxoVKbwgKDjf-WAcJkf---PgeAl-tLkwfK2y3ROrjTqfWY6Rb0nyO0jd0_Pm9MzhqlF8utqW0DBNaYV8u4IYaxI79vDyK7lw59u774jfL6Qc7RwOE6epMuBY3419J7c2tsoLXeNGRa4DbTEnq8WTkUby2XSGJlIqikg1y4LVq42UUb6ObKY1Fqjovbdg2ecASg-W3-6MP3z8HeUJFMPDtGiRrtwy-RdGCZccdIi969rwDxP3usVcqbzRPbjb2KpiUAvXCizhdBVWmt3gXLxqIKtf34eTgZgQszkNSyTmG_78fjWaI4oBEYs-Wta7qkg-c7pzVX2lFJPFvDAWBUeCxQTLggYNSzQcqBFD0uHVtd3LB3B0I_R8CL3pbIqPQRiTkcWEsWdj6ZOmzaKscGWRuQZJnrygD05LvdQ2kOZcWaNMazBmmTK1047afXjZ9T-twTz-2nO9ZUbaLGpq7USwD8-6ZlqOfMZipjhbUB8GGwqlDmlyj2omdp9SQRVfUjTtiqv_mUNKhsmEfttf-_dkNuF2cniwn-7vjveewB0eX1-CW4fexXyBG2Q1XWRPG9EU8OmmV8MvUKcokA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKyEuiPK7UMBIIOAQbWIncXyo0LLtakthVbFUqrgExxlLSNFu2Xap2hOP0OfqY_AkzCROUIWAU6Xc7CTOjO1vZuL5hrHnVtmMmtAtSXUQW_RZiyJ1QWw0SAS8JHGU7_xhko7343cHycEKu2hzYehYZbsn1ht1ObcUI-8L9DsQ7vHqO38sYm9r9ObwW0AVpOhPa1tOw_gyC-VmTTfmkzx24fQE3bmjzZ0t1P0LIUbbn4bjwFccCGwcZnFQWptZGaWhCZUrdaItlGjBREJpQP9NF2CUlEohTAtHUGuVNDLWyhZagwOJz73G1hSiPjqCa2-3J3sff0d8EklUMS1zZCj6pvxOjOGCAhBZdBkZ_zB3L1vPNfyNbrGb3m7lg2airbMVmN1m635nOOKvPH316zvs84BPUfGUksXH5gx-_jgfLQD4AIWFL62aHZaPv1Lqc12JpeLT5cIZC5yiwnwKlcObhhUYCtrwIeJ5fYT39C7bvxJ53mOrs_kMHjBuTIHWE2SRzUSMqFuowoXCFaEBnFtR0mNBK73cenpzqrJR5Q0xs8hJ2nkn7R572fU_bIg9_tpzo1VG7hc4tnbTsceedc24NOl_i5nBfIl9iHgoFTrFwd1vlNi9SiZ1rEnisGut_mcMORopU_zs-OG_B_OUXcdVkb_fmew-Yjfo9uY83AZbPV4s4TEaUMfFEz8zOfty1YvhF0WoLNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Haze%E2%80%90Free+Antireflective+Hierarchical+Surface+with+Self%E2%80%90Cleaning+Capability&rft.jtitle=Advanced+science&rft.au=Oh%2C+Seungtae&rft.au=Cho%2C+Jin%E2%80%90Woo&rft.au=Lee%2C+Jihun&rft.au=Han%2C+Jeonghoon&rft.date=2022-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=27&rft_id=info:doi/10.1002%2Fadvs.202202781&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202202781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |