A Scalable Haze‐Free Antireflective Hierarchical Surface with Self‐Cleaning Capability

The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 27; pp. e2202781 - n/a
Main Authors Oh, Seungtae, Cho, Jin‐Woo, Lee, Jihun, Han, Jeonghoon, Kim, Sun‐Kyung, Nam, Youngsuk
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202202781

Cover

Abstract The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment. Bumpy morphology of superhydrophobic coatings scatters incident light, thereby lowering transparency. Here, broadband, haze‐free, and antireflective surfaces with self‐cleaning capability is reported. “Hierarchically” designed coatings provide large “specular” transmittance (>97%) in visible and self‐cleaning capability. As a proof‐of‐concept, experiments are conducted on photovoltaic devices in dusty environment and observed a complete recovery of performance with improved (>6%) power conversion efficiency.
AbstractList The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment. Bumpy morphology of superhydrophobic coatings scatters incident light, thereby lowering transparency. Here, broadband, haze‐free, and antireflective surfaces with self‐cleaning capability is reported. “Hierarchically” designed coatings provide large “specular” transmittance (>97%) in visible and self‐cleaning capability. As a proof‐of‐concept, experiments are conducted on photovoltaic devices in dusty environment and observed a complete recovery of performance with improved (>6%) power conversion efficiency.
The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze‐free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close‐packed, deep‐subwavelength‐scale colloidal silica nanoparticles and their upper, chain‐like fumed silica nanoparticles individually fulfill haze‐free broadband antireflection and self‐cleaning functions. These double‐layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a “specular” visible transmittance of >97% when double‐side coated and a record‐high self‐cleaning capability with a near‐zero sliding angle. Self‐cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.
The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze-free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close-packed, deep-subwavelength-scale colloidal silica nanoparticles and their upper, chain-like fumed silica nanoparticles individually fulfill haze-free broadband antireflection and self-cleaning functions. These double-layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a "specular" visible transmittance of >97% when double-side coated and a record-high self-cleaning capability with a near-zero sliding angle. Self-cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However, attaining high transmittance and clarity through a roughened surface remains challenging because of its strong scattering characteristics. Here, a haze-free, antireflective superhydrophobic surface that consists of hierarchically designed nanoparticles is demonstrated. Close-packed, deep-subwavelength-scale colloidal silica nanoparticles and their upper, chain-like fumed silica nanoparticles individually fulfill haze-free broadband antireflection and self-cleaning functions. These double-layered hierarchical surfaces are obtained via a scalable spraying process that permits precise control over the coating morphology to attain the desired optical and wetting properties. They provide a "specular" visible transmittance of >97% when double-side coated and a record-high self-cleaning capability with a near-zero sliding angle. Self-cleaning experiments on photovoltaic devices verify that the developed surfaces can significantly enhance power conversion efficiencies and aid in retaining pristine device performance in a dusty environment.
Author Kim, Sun‐Kyung
Nam, Youngsuk
Cho, Jin‐Woo
Oh, Seungtae
Han, Jeonghoon
Lee, Jihun
Author_xml – sequence: 1
  givenname: Seungtae
  surname: Oh
  fullname: Oh, Seungtae
  organization: Korea Institute of Industrial Technology (KITECH)
– sequence: 2
  givenname: Jin‐Woo
  surname: Cho
  fullname: Cho, Jin‐Woo
  organization: Kyung Hee University
– sequence: 3
  givenname: Jihun
  surname: Lee
  fullname: Lee, Jihun
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 4
  givenname: Jeonghoon
  surname: Han
  fullname: Han, Jeonghoon
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 5
  givenname: Sun‐Kyung
  surname: Kim
  fullname: Kim, Sun‐Kyung
  email: sunkim@khu.ac.kr
  organization: Kyung Hee University
– sequence: 6
  givenname: Youngsuk
  orcidid: 0000-0002-8807-6418
  surname: Nam
  fullname: Nam, Youngsuk
  email: ysnam1@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35901503$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OGzEQxq0KVGjgyrFaiQuXpP636_UxSpumElIPAQ5crFnvLBg5u8HeBYVTH6HP2CepUUKFkCqkkeyRf9_MeL5PZK_tWiTkhNEJo5R_gfohTjjlKVTJPpBDznQ5FqWUe6_uB-Q4xjtKKcuFkqz8SA5ErlNGxSG5nmZLCx4qj9kCnvDPr9_zgJhN294FbDza3j2kJ4cBgr11ic2WQ2jAYvbo-ttsib5JoplHaF17k81gDZXzrt8ckf0GfMTj3Tkil_NvF7PF-Pzn9x-z6fnYSlrKcW1taQUrKFDV1DrXFuuclowrjelfukJQQihVFII3OdXMKgFCamUrrbFBMSJn27rr0N0PGHuzctGi99BiN0TDC12UBddFntDTN-hdN4Q2TWe4YorlMkWiPu-ooVphbdbBrSBszMvWEiC3gA1djGlNxroeete1fQDnDaPm2R_z7I_550-STd7IXir_V7Dr8-g8bt6hzfTr1VKKQoq_3xmhzQ
CitedBy_id crossref_primary_10_1021_acsami_4c19177
crossref_primary_10_1021_acsami_4c19793
crossref_primary_10_1016_j_triboint_2024_109932
crossref_primary_10_1016_j_nanoen_2024_109682
crossref_primary_10_1002_smll_202410171
crossref_primary_10_1016_j_eng_2024_03_024
crossref_primary_10_1016_j_surfin_2022_102576
crossref_primary_10_1016_j_xcrp_2024_101906
crossref_primary_10_3390_molecules29092098
crossref_primary_10_1016_j_jcis_2024_10_056
crossref_primary_10_1021_acsaem_4c00774
crossref_primary_10_1021_acsami_4c10416
crossref_primary_10_1016_j_colsurfa_2024_135494
crossref_primary_10_1021_acs_langmuir_4c00328
crossref_primary_10_1016_j_jcis_2023_12_053
crossref_primary_10_1002_admi_202300603
crossref_primary_10_1002_smll_202304166
crossref_primary_10_1021_acsami_4c05778
crossref_primary_10_1039_D3NR05449G
crossref_primary_10_1016_j_cej_2025_160041
crossref_primary_10_1002_admi_202201847
crossref_primary_10_1016_j_cej_2024_149319
crossref_primary_10_1002_tcr_202200298
crossref_primary_10_1016_j_colsurfa_2023_131424
crossref_primary_10_1016_j_compscitech_2023_110244
crossref_primary_10_1016_j_surfin_2024_104684
crossref_primary_10_3390_nano13121855
crossref_primary_10_1016_j_porgcoat_2023_107790
crossref_primary_10_1016_j_colsurfa_2022_130173
crossref_primary_10_1016_j_porgcoat_2023_107537
crossref_primary_10_1007_s40843_024_3269_6
crossref_primary_10_1364_OE_476007
crossref_primary_10_1016_j_surfcoat_2024_131437
crossref_primary_10_1016_j_carbpol_2023_120735
crossref_primary_10_3390_coatings14040440
crossref_primary_10_1002_app_56303
crossref_primary_10_1002_adma_202407856
crossref_primary_10_1016_j_mtcomm_2024_109594
crossref_primary_10_3390_mi15111304
crossref_primary_10_1002_adom_202202825
Cites_doi 10.1016/j.solener.2017.12.052
10.1063/1.5100512
10.1016/j.apsusc.2019.01.234
10.1016/j.mtener.2019.03.006
10.1002/adma.201100410
10.1039/B711226B
10.1038/nmat924
10.1016/j.joule.2018.10.019
10.1021/acsnano.6b06715
10.1038/s41560-017-0016-9
10.1021/la070159q
10.1021/acsphotonics.0c01909
10.1021/am3024417
10.1021/acsnano.8b05600
10.1021/nn901581j
10.1016/j.jmrt.2020.02.022
10.1039/c1ee01297e
10.1103/PhysRevLett.109.024504
10.1002/aenm.202000124
10.1039/C5RA22885A
10.1016/j.porgcoat.2022.106998
10.1021/acs.nanolett.8b01157
10.1016/j.apsusc.2021.149924
10.1007/s004250050096
10.1038/s41467-017-01579-0
10.1039/tf9444000546
10.1021/am503352x
10.1038/s41586-020-2331-8
10.1021/la2031208
10.1038/nphys4177
10.1021/acsami.7b11116
10.1039/C6NR03537J
10.1016/j.solmat.2020.110582
10.1039/C7TA05112C
10.1016/j.ceramint.2016.02.105
10.1126/sciadv.aaw9727
10.1038/ncomms4152
10.1016/j.solener.2016.11.053
10.1016/j.apsusc.2020.148534
10.1038/s41378-020-00197-z
10.1002/adma.202002710
10.1088/2053-1591/ab1eea
10.1007/s12274-013-0320-z
10.1016/j.jcis.2006.02.018
10.1016/j.solener.2016.11.051
10.1021/acs.macromol.8b01808
10.1039/C4CC06868H
10.1364/OE.27.000A39
10.1002/adfm.202201521
10.1021/acsami.6b03414
10.1016/j.solener.2016.02.033
10.1038/s41467-018-04906-1
10.1021/acsami.0c12465
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1002/advs.202202781
DatabaseName Wiley Open Access Collection
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID 35901503
10_1002_advs_202202781
ADVS4364
Genre article
Journal Article
GrantInformation_xml – fundername: Basic Science Research Program
  funderid: 2022R1A2C3011684; 2020R1A2B5B01002261
– fundername: Basic Research Laboratory
  funderid: 2021R1A4A3027074
– fundername: Doosan Heavy Industries & Construction and the Korea Institute of Industrial Technology
  funderid: KITECH EO‐22‐0007
– fundername: Nano Material Technology Development Program
  funderid: 2021M3H4A3A01055870
– fundername: Basic Science Research Program
  grantid: 2022R1A2C3011684
– fundername: Nano Material Technology Development Program
  grantid: 2021M3H4A3A01055870
– fundername: Basic Science Research Program
  grantid: 2020R1A2B5B01002261
– fundername: Basic Research Laboratory
  grantid: 2021R1A4A3027074
– fundername: Doosan Heavy Industries & Construction and the Korea Institute of Industrial Technology
  grantid: KITECH EO-22-0007
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c4084-dcc8c3160a07fd959ced5081279e0279bea733776632f5091c73a3497cb99efe3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Fri Sep 05 10:36:33 EDT 2025
Sat Jul 26 02:23:48 EDT 2025
Mon Jul 21 06:00:45 EDT 2025
Tue Jul 01 03:59:43 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:23:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords scattering suppression
self-cleaning
hierarchical structure
superhydrophobic
antireflective
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4084-dcc8c3160a07fd959ced5081279e0279bea733776632f5091c73a3497cb99efe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8807-6418
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202781
PMID 35901503
PQID 2717154154
PQPubID 4365299
PageCount 12
ParticipantIDs proquest_miscellaneous_2696862965
proquest_journals_2717154154
pubmed_primary_35901503
crossref_citationtrail_10_1002_advs_202202781
crossref_primary_10_1002_advs_202202781
wiley_primary_10_1002_advs_202202781_ADVS4364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 8
2017; 2
2022; 170
2019; 12
2018; 169
2021; 560
2020; 12
2020; 10
2013; 5
2013; 6
2017; 9
2006; 299
2020; 6
2018; 9
2014; 5
2020; 9
2003; 2
2016; 42
2019; 27
2020; 214
2019; 476
2019; 114
2011; 23
1944; 40
2011; 27
2007; 23
2010; 4
2014; 6
2021; 8
2019; 3
2019; 6
2021; 542
2015; 51
2020; 582
2008; 18
2020; 32
2011; 4
2012; 109
1997; 202
2016; 6
2018; 18
2022
2017; 11
2017; 13
2018; 51
2017; 141
2017; 142
2018; 12
2016; 8
2016; 131
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 27
  start-page: A39
  year: 2019
  publication-title: Opt. Express
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 214
  year: 2020
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 202
  start-page: 1
  year: 1997
  publication-title: Planta
– volume: 42
  start-page: 8706
  year: 2016
  publication-title: Ceram. Int.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1020
  year: 2017
  publication-title: Nat. Phys.
– volume: 141
  start-page: 203
  year: 2017
  publication-title: Sol. Energy
– volume: 6
  start-page: 429
  year: 2013
  publication-title: Nano Res.
– volume: 51
  year: 2018
  publication-title: Macromolecules
– volume: 299
  start-page: 841
  year: 2006
  publication-title: J. Colloid Interface Sci.
– volume: 169
  start-page: 277
  year: 2018
  publication-title: Sol. Energy
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 18
  start-page: 621
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 3865
  year: 2018
  publication-title: Nano Lett.
– volume: 142
  start-page: 123
  year: 2017
  publication-title: Sol. Energy
– volume: 12
  start-page: 348
  year: 2019
  publication-title: Mater. Today Energy
– volume: 6
  start-page: 7864
  year: 2016
  publication-title: RSC Adv.
– volume: 23
  start-page: 7293
  year: 2007
  publication-title: Langmuir
– volume: 131
  start-page: 96
  year: 2016
  publication-title: Sol. Energy
– volume: 170
  year: 2022
  publication-title: Prog. Org. Coatings
– volume: 476
  start-page: 1035
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 542
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 457
  year: 2003
  publication-title: Nat. Mater.
– volume: 582
  start-page: 55
  year: 2020
  publication-title: Nature
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 290
  year: 2019
  publication-title: Joule
– volume: 27
  year: 2011
  publication-title: Langmuir
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3152
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 2458
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3958
  year: 2020
  publication-title: J. Mater. Res. Technol.
– volume: 4
  start-page: 3779
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 51
  start-page: 1775
  year: 2015
  publication-title: Chem. Commun.
– volume: 11
  start-page: 587
  year: 2017
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2201
  year: 2010
  publication-title: ACS Nano
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 87
  year: 2020
  publication-title: Microsystems Nanoeng.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 546
  year: 1944
  publication-title: Trans. Faraday Soc.
– volume: 560
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 2962
  year: 2011
  publication-title: Adv. Mater.
– volume: 5
  start-page: 853
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 894
  year: 2021
  publication-title: ACS Photonics
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_48_1
  doi: 10.1016/j.solener.2017.12.052
– ident: e_1_2_8_41_1
  doi: 10.1063/1.5100512
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apsusc.2019.01.234
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mtener.2019.03.006
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201100410
– ident: e_1_2_8_40_1
  doi: 10.1039/B711226B
– ident: e_1_2_8_1_1
  doi: 10.1038/nmat924
– ident: e_1_2_8_31_1
  doi: 10.1016/j.joule.2018.10.019
– ident: e_1_2_8_19_1
  doi: 10.1021/acsnano.6b06715
– ident: e_1_2_8_36_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_8_21_1
  doi: 10.1021/la070159q
– ident: e_1_2_8_8_1
  doi: 10.1021/acsphotonics.0c01909
– ident: e_1_2_8_28_1
  doi: 10.1021/am3024417
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.8b05600
– ident: e_1_2_8_22_1
  doi: 10.1021/nn901581j
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jmrt.2020.02.022
– ident: e_1_2_8_39_1
  doi: 10.1039/c1ee01297e
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevLett.109.024504
– ident: e_1_2_8_34_1
  doi: 10.1002/aenm.202000124
– ident: e_1_2_8_23_1
  doi: 10.1039/C5RA22885A
– ident: e_1_2_8_53_1
  doi: 10.1016/j.porgcoat.2022.106998
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.nanolett.8b01157
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apsusc.2021.149924
– ident: e_1_2_8_2_1
  doi: 10.1007/s004250050096
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-017-01579-0
– ident: e_1_2_8_30_1
  doi: 10.1039/tf9444000546
– ident: e_1_2_8_27_1
  doi: 10.1021/am503352x
– ident: e_1_2_8_11_1
  doi: 10.1038/s41586-020-2331-8
– ident: e_1_2_8_51_1
  doi: 10.1021/la2031208
– ident: e_1_2_8_3_1
  doi: 10.1038/nphys4177
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.7b11116
– ident: e_1_2_8_13_1
  doi: 10.1039/C6NR03537J
– ident: e_1_2_8_43_1
  doi: 10.1016/j.solmat.2020.110582
– ident: e_1_2_8_17_1
  doi: 10.1039/C7TA05112C
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ceramint.2016.02.105
– ident: e_1_2_8_5_1
  doi: 10.1126/sciadv.aaw9727
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms4152
– ident: e_1_2_8_44_1
  doi: 10.1016/j.solener.2016.11.053
– ident: e_1_2_8_15_1
  doi: 10.1016/j.apsusc.2020.148534
– ident: e_1_2_8_49_1
  doi: 10.1038/s41378-020-00197-z
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202002710
– ident: e_1_2_8_7_1
  doi: 10.1088/2053-1591/ab1eea
– ident: e_1_2_8_9_1
  doi: 10.1007/s12274-013-0320-z
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jcis.2006.02.018
– ident: e_1_2_8_46_1
  doi: 10.1016/j.solener.2016.11.051
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.macromol.8b01808
– ident: e_1_2_8_50_1
  doi: 10.1039/C4CC06868H
– ident: e_1_2_8_37_1
  doi: 10.1364/OE.27.000A39
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202201521
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.6b03414
– ident: e_1_2_8_45_1
  doi: 10.1016/j.solener.2016.02.033
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-018-04906-1
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.0c12465
SSID ssj0001537418
Score 2.477594
Snippet The lotus effect indicates that a superhydrophobic, self‐cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However,...
The lotus effect indicates that a superhydrophobic, self-cleaning surface can be obtained by roughening the topography of a hydrophobic surface. However,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2202781
SubjectTerms antireflective
Contact angle
Design
Glass substrates
hierarchical structure
Hydrophobic surfaces
Nanoparticles
scattering suppression
self‐cleaning
superhydrophobic
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1faxQxEB_q9cUXsf49WyWCoD4s3U12N5sHkfPocQge4lkovixJdgKF5a6evUL75EfwM_aTdGb_SREV9i0JmZ1JMr9Mkt8AvPLaF1xE25LcRKmnPatzeYhSa1CRw8uywO-dPy3y-XH68SQ72YFF_xaGr1X2a2KzUFdrzzHyQ0n7DnL39L0_-x5x1ig-Xe1TaNgutUL1rqEYuwO7tCRn8Qh2PxwtPn_5HXXJFNO19OyNsTy01QWzdksOAhTJbe_0B-S8jWAbFzS7D_c67CgmrbH3YAdXD2Cvm50_xJuOQvrtQ_g2EUtSPj-LEnN7hdc_f802iGJCwlOndbvKifkpPz9usqHUYrndBOtRcGRWLLEO1Ghao-XAiZiST22u0V4-guPZ0dfpPOqyKEQ-jYs0qrwvvEry2MY6VCYzHitCZYnUBumfjUOrldKaoIcMDB-8VlalRntnDAZUj2G0Wq_wKQhrHSEYLBJfyJQ8n9MuxDK42CLZN8nGEPXaK31HMc6ZLuqyJUeWJWu7HLQ9htdD_bOWXOOvNQ96Y5TdJKPSYUiM4eVQTNODzzzsCtdbqsPkP7k0OQn3pDXi0JXKmniPIrEbq_5HhpKAwpJ-O332b2H24S63aS-iHcDofLPF54Rczt2LbjjeACj97Nw
  priority: 102
  providerName: ProQuest
Title A Scalable Haze‐Free Antireflective Hierarchical Surface with Self‐Cleaning Capability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202781
https://www.ncbi.nlm.nih.gov/pubmed/35901503
https://www.proquest.com/docview/2717154154
https://www.proquest.com/docview/2696862965
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBcjfdnLWNv9ydYGFQbbHkwcSbasxyxrCGMtZV4g7MVIygkKxh1pMtie-hH6GfdJdmc7bsMoY2AwWLIt3fmk3511PzH2xmufURG6JamJlEef1bk0RMoakDjhJUmgfOez83Q2V58WyeJeFn_DD9EF3Mgy6vGaDNy66-Edaahd_iC6bUHeO-Ve7yGyl_SNC3VxF2VJJNGz0A5z6F1HMlNqy9wYi-HuI3Znpr_g5i56raef6VP2pMWNfNwoep89guqA7beWec3ftfTR7w_ZtzHPUfCUEsVn9hf8vrmdrgD4uFrj8BbKZoTjs0tKPa53Qil5vlkF64FTVJbnUAa8aVKCpaAJn-B8Wi-h_fmMzaenXyezqN1BIfIqzlS09D7zcpTGNtZhaRLjYYmIbCS0AeyzcWC1lFoj7BCBoIPX0kpltHfGQAD5nPWqqwpeMm6tQ_QC2chnAuUsnHYhFsHFFlC3o6TPoq30Ct_Si9MuF2XRECOLgqRddNLus7dd_e8NscaDNY-2yihaA8NSdEMR_eHRZyddMZoG_e-wFVxtsA4R_6TCpNi4F40Su1fJpI71SGx2rdV_tKFAkJBjt9Wr_6z_mj2mi82qtCPWW682cIwwZu0G9Zc6YHvjj2efczx_OD2_-DKogwJ_AM217vs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiJbXlpYaCQQcoiZ2Xj5UaFm6Smm7QmwrVb0Ex5lISNFuu-2Cyomf0F_Ej-GXMJMXqhBwqpSb7cSZGXse9nwD8NxGNuYmcktC7fiWfNYsCwvHNxoVKbwgKDjf-WAcJkf---PgeAl-tLkwfK2y3ROrjTqfWY6Rb0nyO0jd0_Pm9MzhqlF8utqW0DBNaYV8u4IYaxI79vDyK7lw59u774jfL6Qc7RwOE6epMuBY3419J7c2tsoLXeNGRa4DbTEnq8WTkUby2XSGJlIqikg1y4LVq42UUb6ObKY1Fqjovbdg2ecASg-W3-6MP3z8HeUJFMPDtGiRrtwy-RdGCZccdIi969rwDxP3usVcqbzRPbjb2KpiUAvXCizhdBVWmt3gXLxqIKtf34eTgZgQszkNSyTmG_78fjWaI4oBEYs-Wta7qkg-c7pzVX2lFJPFvDAWBUeCxQTLggYNSzQcqBFD0uHVtd3LB3B0I_R8CL3pbIqPQRiTkcWEsWdj6ZOmzaKscGWRuQZJnrygD05LvdQ2kOZcWaNMazBmmTK1047afXjZ9T-twTz-2nO9ZUbaLGpq7USwD8-6ZlqOfMZipjhbUB8GGwqlDmlyj2omdp9SQRVfUjTtiqv_mUNKhsmEfttf-_dkNuF2cniwn-7vjveewB0eX1-CW4fexXyBG2Q1XWRPG9EU8OmmV8MvUKcokA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKKyEuiPK7UMBIIOAQbWIncXyo0LLtakthVbFUqrgExxlLSNFu2Xap2hOP0OfqY_AkzCROUIWAU6Xc7CTOjO1vZuL5hrHnVtmMmtAtSXUQW_RZiyJ1QWw0SAS8JHGU7_xhko7343cHycEKu2hzYehYZbsn1ht1ObcUI-8L9DsQ7vHqO38sYm9r9ObwW0AVpOhPa1tOw_gyC-VmTTfmkzx24fQE3bmjzZ0t1P0LIUbbn4bjwFccCGwcZnFQWptZGaWhCZUrdaItlGjBREJpQP9NF2CUlEohTAtHUGuVNDLWyhZagwOJz73G1hSiPjqCa2-3J3sff0d8EklUMS1zZCj6pvxOjOGCAhBZdBkZ_zB3L1vPNfyNbrGb3m7lg2airbMVmN1m635nOOKvPH316zvs84BPUfGUksXH5gx-_jgfLQD4AIWFL62aHZaPv1Lqc12JpeLT5cIZC5yiwnwKlcObhhUYCtrwIeJ5fYT39C7bvxJ53mOrs_kMHjBuTIHWE2SRzUSMqFuowoXCFaEBnFtR0mNBK73cenpzqrJR5Q0xs8hJ2nkn7R572fU_bIg9_tpzo1VG7hc4tnbTsceedc24NOl_i5nBfIl9iHgoFTrFwd1vlNi9SiZ1rEnisGut_mcMORopU_zs-OG_B_OUXcdVkb_fmew-Yjfo9uY83AZbPV4s4TEaUMfFEz8zOfty1YvhF0WoLNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Haze%E2%80%90Free+Antireflective+Hierarchical+Surface+with+Self%E2%80%90Cleaning+Capability&rft.jtitle=Advanced+science&rft.au=Oh%2C+Seungtae&rft.au=Cho%2C+Jin%E2%80%90Woo&rft.au=Lee%2C+Jihun&rft.au=Han%2C+Jeonghoon&rft.date=2022-09-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=27&rft_id=info:doi/10.1002%2Fadvs.202202781&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202202781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon