Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations
Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototyp...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 81; no. 1; pp. 686 - 701 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.27382 |
Cover
| Abstract | Purpose
As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.
Methods
We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.
Results
There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.
Conclusions
Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils. |
|---|---|
| AbstractList | PurposeAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.MethodsWe first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.ResultsThere was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.ConclusionsOur simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils. Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. Methods We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. Results There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Conclusions Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils. As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils. As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.PURPOSEAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.METHODSWe first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.RESULTSThere was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.CONCLUSIONSOur simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils. |
| Author | vom Endt, Axel Davids, Mathias Schad, Lothar R. Wald, Lawrence L. Guérin, Bastien |
| AuthorAffiliation | 3 Harvard Medical School, Boston, Massachusetts, United States 5 Harvard-MIT Division of Health Sciences Technology, Cambridge USA 2 Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown USA 4 Siemens Healthcare, Erlangen, Germany 1 Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany |
| AuthorAffiliation_xml | – name: 5 Harvard-MIT Division of Health Sciences Technology, Cambridge USA – name: 1 Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany – name: 2 Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown USA – name: 4 Siemens Healthcare, Erlangen, Germany – name: 3 Harvard Medical School, Boston, Massachusetts, United States |
| Author_xml | – sequence: 1 givenname: Mathias surname: Davids fullname: Davids, Mathias email: mathias.davids@medma.uni-heidelberg.de organization: Massachusetts General Hospital – sequence: 2 givenname: Bastien surname: Guérin fullname: Guérin, Bastien organization: Harvard Medical School – sequence: 3 givenname: Axel surname: vom Endt fullname: vom Endt, Axel organization: Siemens Healthcare – sequence: 4 givenname: Lothar R. surname: Schad fullname: Schad, Lothar R. organization: Heidelberg University – sequence: 5 givenname: Lawrence L. surname: Wald fullname: Wald, Lawrence L. organization: Harvard‐MIT Division of Health Sciences Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30094874$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1q3DAQgEVJaTY_h75AMfTSHpxIsmxZl0IJbRLI0hKSs9BK410FWXIlO2VfoM9d7U9CG9qTBs03HzPSHKEDHzwg9JbgM4IxPe9jf0Z51dJXaEZqSktaC3aAZpgzXFZEsEN0lNIDxlgIzt6gwypHrOVshn59j2CsHm3wReiKAaIdVhCVKzzERyjSaPvJqW1-XEVIq-BM2qDz2-tiGZWx4MdCB-tSMSXrlzmeBgemAAd6jKFXSw-j1YXyJkunGMzaqz5fpGd1OkGvO-USnO7PY3T_9cvdxVV58-3y-uLzTakZbmlJWoNVrbFQddvpBcdcC2YwFR3ldVO3GnRDFBOi6lTHMbAFFk3LDeOCdDUR1TH6tPMO06IHo3PveVY5RNuruJZBWfl3xtuVXIZH2dC6rSqeBR_2ghh-TJBG2dukwTnlIUxJUtzyWpAGs4y-f4E-hCn6PJ6kpOJ8I6wy9e7Pjp5befqiDJzvAB1DShE6qe24fbXcoHWSYLlZApmXQG6XIFd8fFHxJP0Xu7f_tA7W_wfl_Ha-q_gNYA3EUA |
| CitedBy_id | crossref_primary_10_1002_mrm_28180 crossref_primary_10_1038_s41598_022_25318_8 crossref_primary_10_1088_1361_6560_ac515c crossref_primary_10_3389_fphy_2021_666192 crossref_primary_10_1002_jmri_27157 crossref_primary_10_3389_fnint_2024_1321872 crossref_primary_10_1002_mrm_30109 crossref_primary_10_1016_j_neuroimage_2022_118958 crossref_primary_10_1016_j_rxeng_2023_01_009 crossref_primary_10_1088_1361_6560_aaf308 crossref_primary_10_3389_fnhum_2020_00034 crossref_primary_10_1002_mrm_29118 crossref_primary_10_1002_mrm_29316 crossref_primary_10_1097_RLI_0000000000000678 crossref_primary_10_3238_arztebl_m2022_0150 crossref_primary_10_1017_S1460396922000206 crossref_primary_10_1016_j_rx_2023_01_013 crossref_primary_10_1002_mrm_29861 crossref_primary_10_1088_1741_2552_ab52bd crossref_primary_10_1002_mrm_29022 crossref_primary_10_1002_mrm_29382 crossref_primary_10_1186_s41747_021_00216_2 crossref_primary_10_1016_j_mric_2020_07_007 crossref_primary_10_1038_s42254_021_00326_1 crossref_primary_10_1002_mrm_29668 crossref_primary_10_1002_mrm_28853 crossref_primary_10_3390_s22166076 crossref_primary_10_1109_TMI_2020_3023329 crossref_primary_10_3390_app11104430 crossref_primary_10_1007_s11517_021_02435_6 crossref_primary_10_1002_mrm_28681 crossref_primary_10_1002_mrm_28966 crossref_primary_10_1002_bem_22189 crossref_primary_10_1002_bem_22387 crossref_primary_10_1259_bjr_20200113 crossref_primary_10_1002_jmri_28421 crossref_primary_10_1038_s41592_023_02068_7 crossref_primary_10_1016_j_neuroimage_2021_118530 crossref_primary_10_1007_s10334_025_01228_4 crossref_primary_10_1016_j_pneurobio_2020_101936 crossref_primary_10_1007_s00330_022_08837_w crossref_primary_10_1002_mrm_30470 crossref_primary_10_1002_mrm_30230 crossref_primary_10_1016_j_jneumeth_2020_109007 crossref_primary_10_1002_mrm_30157 crossref_primary_10_1002_mrm_28472 crossref_primary_10_1016_j_neuroimage_2021_118503 crossref_primary_10_1002_mrm_29645 crossref_primary_10_1038_s41598_024_74231_9 crossref_primary_10_1002_mrm_27909 crossref_primary_10_1088_1741_2552_ad510a crossref_primary_10_1097_RLI_0000000000000669 |
| Cites_doi | 10.1002/mrm.26700 10.1088/0031-9155/54/21/R01 10.1002/mrm.26954 10.1152/jn.00353.2001 10.1097/00004728-199111000-00001 10.1002/mrm.22926 10.1002/mrm.22050 10.1002/jmri.1880070524 10.1007/BF02446708 10.1002/jmri.21573 10.2174/1874120701408010001 10.1016/j.clinph.2012.01.010 10.1002/mrm.21063 10.1002/mus.10117 10.1109/TBME.2004.834251 10.1002/mrm.1910330506 10.1016/j.neuroimage.2013.05.078 10.1002/cmr.b.21269 10.1088/0031-9155/61/12/4390 10.1016/j.zemedi.2017.05.003 10.1002/mrm.1910140226 10.1002/mrm.1910290606 10.1152/jn.2002.88.4.1592 10.1088/0031-9155/61/12/4466 10.1109/TBME.1986.325670 10.1002/mrm.22505 10.1002/mus.880130812 10.1109/10.168686 10.1007/s11517-010-0704-0 10.1038/s41598-017-05493-9 10.1109/10.81560 10.1002/jmri.10300 10.21236/ADA303903 10.1002/mrm.10508 10.1109/10.341828 10.1186/1475-925X-2-19 10.1002/mrm.1910380511 10.1002/mrm.26044 10.1109/TBME.2015.2446761 |
| ContentType | Journal Article |
| Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. 2019 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. – notice: 2019 International Society for Magnetic Resonance in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.27382 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 701 |
| ExternalDocumentID | PMC6258337 30094874 10_1002_mrm_27382 MRM27382 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Mental Health – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: R24MH106053 ; R00EB019482 ; U01EB025121 ; U01EB025162 – fundername: NIBIB NIH HHS grantid: R24MH106053 – fundername: NIBIB NIH HHS grantid: U01 EB025121 – fundername: NIBIB NIH HHS grantid: U01EB025121 – fundername: NIBIB NIH HHS grantid: K99 EB019482 – fundername: NIBIB NIH HHS grantid: U01EB025162 – fundername: NIBIB NIH HHS grantid: U01 EB025162 – fundername: NIBIB NIH HHS grantid: R00 EB019482 – fundername: NIBIB NIH HHS grantid: R00EB019482 – fundername: NIMH NIH HHS grantid: R24 MH106053 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4082-18d0a5c09a58fcb707c94d029f275658cec61a4993faf70e4b09687d4791f5193 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 14:21:36 EDT 2025 Thu Jul 10 22:15:52 EDT 2025 Tue Oct 07 06:19:57 EDT 2025 Wed Feb 19 02:31:40 EST 2025 Wed Oct 01 02:05:22 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:27:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | MRI gradient coil switching magnetostimulation thresholds EM exposure safety electromagnetic field simulation peripheral nerve stimulation neurodynamic model |
| Language | English |
| License | 2018 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4082-18d0a5c09a58fcb707c94d029f275658cec61a4993faf70e4b09687d4791f5193 |
| Notes | Funding information National Institute of Biomedical Imaging and Bioengineering; National Institute for Mental Health of the National Institutes of Health, Grant/award numbers: R24MH106053, R00EB019482, U01EB025121, and U01EB025162 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30094874 |
| PQID | 2137758333 |
| PQPubID | 1016391 |
| PageCount | 22 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258337 proquest_miscellaneous_2087591604 proquest_journals_2137758333 pubmed_primary_30094874 crossref_citationtrail_10_1002_mrm_27382 crossref_primary_10_1002_mrm_27382 wiley_primary_10_1002_mrm_27382_MRM27382 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2018; 28 1991; 38 1993; 29 2009; 62 1990; 13 2012; 123 1990; 14 1991; 15 2006; 56 1962; 5 1986; 33 1995; 33 2015; 76 1992; 39 2004; 3 1996 2003; 17 2003 2003; 50 2014; 44 1997; 7 2009; 29 1995; 42 1991; 29 2002; 25 2010; 64 2004; 51 2009; 54 2000 2015; 62 2002; 87 2002; 88 2013; 80 2003; 2 2011; 66 2018 1997; 38 2017 2016 2016; 61 2012; 6 2011; 49 2014; 8 2018; 79 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Gabriel C (e_1_2_7_45_1) 1996 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Basser PJ (e_1_2_7_30_1) 2004; 3 Daube JR (e_1_2_7_51_1) 2012; 6 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Verveen A (e_1_2_7_26_1) 1962; 5 |
| References_xml | – volume: 5 start-page: 79 year: 1962 end-page: 85 article-title: Axon diameter and fluctuation in excitability publication-title: Acta Morphol Neerl Scand. – start-page: 3 year: 2017 – volume: 64 start-page: 1567 year: 2010 end-page: 1579 article-title: Sensory and motor stimulation thresholds of the ulnar nerve from electric and magnetic field stimuli: implications to gradient coil operation publication-title: Magn Reson Med. – volume: 38 start-page: 750 year: 1997 end-page: 758 article-title: Axonal stimulation under MRI magnetic field z gradients: a modeling study publication-title: Magn Reson Med. – start-page: 292 year: 2018 – volume: 61 start-page: 4390 year: 2016 end-page: 4401 article-title: Functionalized anatomical models for EM‐neuron interaction modeling publication-title: Phys Med Biol. – volume: 8 start-page: 1 year: 2014 end-page: 12 article-title: A complete model for the evaluation of the magnetic stimulation of peripheral nerves publication-title: Open Biomed Eng J. – start-page: 2208 year: 2016 – volume: 17 start-page: 716 year: 2003 end-page: 721 article-title: Simple anatomical measurements do not correlate significantly to individual peripheral nerve stimulation thresholds as measured in MRI gradient coils publication-title: JMagn Reson Imaging. – volume: 76 start-page: 1939 year: 2015 end-page: 1950 article-title: Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array publication-title: Magn Reson Med. – volume: 51 start-page: 1907 year: 2004 end-page: 1914 article-title: Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging publication-title: IEEE Trans Biomed Eng. – volume: 6 start-page: 290 year: 2012 end-page: 296 article-title: Nerve conduction studies publication-title: Aminoff's Electrodiagnosis in Clinical Neurology – volume: 49 start-page: 107 year: 2011 end-page: 119 article-title: Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model publication-title: Med Biol Eng Comput. – start-page: 3552 year: 2016 – start-page: 4176 year: 2018 – volume: 13 start-page: 734 year: 1990 end-page: 741 article-title: A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve publication-title: Muscle Nerve. – volume: 61 start-page: 4466 year: 2016 end-page: 4478 article-title: Investigation of assumptions underlying current safety guidelines on EM‐induced nerve stimulation publication-title: Phys Med Biol. – volume: 79 start-page: 3256 year: 2018 end-page: 3266 article-title: A high‐performance gradient insert for rapid and short‐T2 imaging at full duty cycle publication-title: Magn Reson Med. – volume: 25 start-page: 763 year: 2002 end-page: 764 article-title: Activation order of motor axons in electrically evoked contractions publication-title: Muscle Nerve. – volume: 33 start-page: 974 year: 1986 end-page: 977 article-title: Analysis of models for external stimulation of axons publication-title: IEEE Trans Biomed Eng. – volume: 79 start-page: 1181 year: 2018 end-page: 1191 article-title: Development and implementation of an 84‐channel matrix gradient coil publication-title: Magn Reson Med. – start-page: 2424 year: 2003 – volume: 44 start-page: 66 year: 2014 end-page: 74 article-title: Peripheral nerve stimulation measures in a composite gradient system publication-title: Concepts Magn Reson B. – volume: 39 start-page: 1207 year: 1992 end-page: 1210 article-title: The activating function for magnetic stimulation derived from a three‐dimensional volume conductor model publication-title: IEEE Trans Biomed Eng. – volume: 2 start-page: 19 year: 2003 article-title: Peripheral nerve magnetic stimulation: influence of tissue non‐homogeneity publication-title: Biomed Eng Online. – volume: 62 start-page: 2837 year: 2015 end-page: 2849 article-title: A um‐scale computational model of magnetic neural stimulation in multifascicular peripheral nerves publication-title: IEEE Trans Biomed Eng. – volume: 14 start-page: 409 year: 1990 end-page: 414 article-title: Sensory stimulation by time‐varying magnetic fields publication-title: Magn Reson Med. – volume: 87 start-page: 995 year: 2002 end-page: 1006 article-title: Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle publication-title: JNeurophysiol. – year: 2000 – volume: 28 start-page: 36 year: 2018 end-page: 48 article-title: Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3T: evaluation of intra‐scanner repeatability publication-title: Z Med Phys. – volume: 15 start-page: 909 year: 1991 end-page: 914 article-title: Physiological effects of fast oscillating magnetic field gradients publication-title: JComput Assist Tomogr. – volume: 38 start-page: 418 year: 1991 end-page: 422 article-title: Prediction of magnetically induced electric fields in biological tissue publication-title: IEEE Trans Biomed Eng. – start-page: 272 year: 1996 – volume: 66 start-page: 1498 year: 2011 end-page: 1509 article-title: Reducing peripheral nerve stimulation due to gradient switching using an additional uniform field coil publication-title: Magn Reson Med. – volume: 50 start-page: 50 year: 2003 end-page: 58 article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes publication-title: Magn Reson Med. – volume: 54 start-page: 99 year: 2009 article-title: Interaction of MRI field gradients with the human body publication-title: Phys Med Biol. – volume: 33 start-page: 619 year: 1995 end-page: 623 article-title: Magnetostimulation in MRI publication-title: Magn Reson Med. – volume: 3 start-page: 227 year: 2004 end-page: 244 article-title: Scaling laws for myelinated axons derived from an electronic core‐conductor model publication-title: JIntegr Neurosci. – volume: 123 start-page: 858 year: 2012 end-page: 882 article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee publication-title: Clin Neurophysiol. – volume: 7 start-page: 933 year: 1997 end-page: 937 article-title: Peripheral nerve stimulation during MRI: Effects of high gradient amplitudes and switching rates publication-title: JMagn Reson. – volume: 80 start-page: 220 year: 2013 end-page: 233 article-title: Pushing the limits of in vivo diffusion MRI for the human connectome project publication-title: Neuroimage. – volume: 62 start-page: 763 year: 2009 end-page: 770 article-title: Experimental determination of human peripheral nerve stimulation thresholds in a 3‐axis planar gradient system publication-title: Magn Reson Med. – start-page: 2007 year: 2000 – volume: 42 start-page: 158 year: 1995 end-page: 161 article-title: An analytical model to predict the electric field and excitation zones due to magnetic stimulation of peripheral nerves publication-title: IEEE Trans Biomed Eng. – volume: 56 start-page: 1251 year: 2006 end-page: 1260 article-title: Multiple‐region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging publication-title: Magn Reson Med. – volume: 29 start-page: 746 year: 1993 end-page: 758 article-title: Limits to neural stimulation in echo‐planar imaging publication-title: Magn Reson Med. – volume: 7 start-page: 5316 year: 2017 article-title: Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models publication-title: Sci Rep. – volume: 29 start-page: 261 year: 1991 end-page: 268 article-title: Stimulation of a myelinated nerve axon by electromagnetic induction publication-title: Med Biol Eng Comput. – start-page: 4175 year: 2018 – volume: 88 start-page: 1592 year: 2002 end-page: 1604 article-title: Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output publication-title: JNeurophysiol. – volume: 29 start-page: 229 year: 2009 end-page: 236 article-title: Stimulation threshold comparison of time‐varying magnetic pulses with different waveforms publication-title: JMagn Reson Imaging. – ident: e_1_2_7_20_1 doi: 10.1002/mrm.26700 – ident: e_1_2_7_4_1 doi: 10.1088/0031-9155/54/21/R01 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.26954 – ident: e_1_2_7_46_1 doi: 10.1152/jn.00353.2001 – ident: e_1_2_7_24_1 doi: 10.1097/00004728-199111000-00001 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.22926 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.22050 – ident: e_1_2_7_8_1 doi: 10.1002/jmri.1880070524 – ident: e_1_2_7_7_1 doi: 10.1007/BF02446708 – ident: e_1_2_7_48_1 doi: 10.1002/jmri.21573 – ident: e_1_2_7_37_1 doi: 10.2174/1874120701408010001 – ident: e_1_2_7_52_1 doi: 10.1016/j.clinph.2012.01.010 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.21063 – ident: e_1_2_7_13_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_27_1 doi: 10.1002/mus.10117 – ident: e_1_2_7_19_1 – ident: e_1_2_7_43_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_25_1 doi: 10.1109/TBME.2004.834251 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.1910330506 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2013.05.078 – ident: e_1_2_7_17_1 doi: 10.1002/cmr.b.21269 – ident: e_1_2_7_40_1 doi: 10.1088/0031-9155/61/12/4390 – ident: e_1_2_7_9_1 doi: 10.1016/j.zemedi.2017.05.003 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.1910140226 – volume: 5 start-page: 79 year: 1962 ident: e_1_2_7_26_1 article-title: Axon diameter and fluctuation in excitability publication-title: Acta Morphol Neerl Scand. – ident: e_1_2_7_2_1 doi: 10.1002/mrm.1910290606 – ident: e_1_2_7_47_1 doi: 10.1152/jn.2002.88.4.1592 – ident: e_1_2_7_39_1 doi: 10.1088/0031-9155/61/12/4466 – volume: 6 start-page: 290 year: 2012 ident: e_1_2_7_51_1 article-title: Nerve conduction studies publication-title: Aminoff's Electrodiagnosis in Clinical Neurology – ident: e_1_2_7_28_1 doi: 10.1109/TBME.1986.325670 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.22505 – ident: e_1_2_7_32_1 doi: 10.1002/mus.880130812 – ident: e_1_2_7_31_1 doi: 10.1109/10.168686 – ident: e_1_2_7_36_1 doi: 10.1007/s11517-010-0704-0 – ident: e_1_2_7_41_1 doi: 10.1038/s41598-017-05493-9 – ident: e_1_2_7_33_1 doi: 10.1109/10.81560 – ident: e_1_2_7_6_1 doi: 10.1002/jmri.10300 – ident: e_1_2_7_44_1 – volume: 3 start-page: 227 year: 2004 ident: e_1_2_7_30_1 article-title: Scaling laws for myelinated axons derived from an electronic core‐conductor model publication-title: JIntegr Neurosci. – start-page: 272 volume-title: Compilation of the dielectric properties of body tissues at RF and microwave frequencies year: 1996 ident: e_1_2_7_45_1 doi: 10.21236/ADA303903 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.10508 – ident: e_1_2_7_34_1 doi: 10.1109/10.341828 – ident: e_1_2_7_35_1 doi: 10.1186/1475-925X-2-19 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.1910380511 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.26044 – ident: e_1_2_7_50_1 – ident: e_1_2_7_42_1 – ident: e_1_2_7_38_1 doi: 10.1109/TBME.2015.2446761 – ident: e_1_2_7_15_1 |
| SSID | ssj0009974 |
| Score | 2.51208 |
| Snippet | Purpose
As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not... As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not... PurposeAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 686 |
| SubjectTerms | Algorithms Coiling Computer Simulation Electric fields Electric Stimulation electromagnetic field simulation Electromagnetic Fields EM exposure safety Equipment Design Female Humans Magnetic Resonance Imaging magnetostimulation thresholds Male Mathematical models Models, Anatomic MRI gradient coil switching neurodynamic model Neurons - physiology peripheral nerve stimulation Peripheral nerves Peripheral Nerves - physiology Peripheral Nervous System - diagnostic imaging Predictions Reproducibility of Results Simulation Stimulation Thresholds |
| Title | Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27382 https://www.ncbi.nlm.nih.gov/pubmed/30094874 https://www.proquest.com/docview/2137758333 https://www.proquest.com/docview/2087591604 https://pubmed.ncbi.nlm.nih.gov/PMC6258337 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVSUQFwrl0YWCDOLAJdt448SxeqoQVUEKQisq9YAU2Y69VGy81SZ7gB_A78bjPMpSkBC3KJ687BlnbI-_AXhFLedWSO-5ZVZFTKU6UklGI8ooN3lApOE8ZPEhOztn7y_Six04HvbCdHyIccINLSP012jgUjVH19DQel1PcV8J9r80ycJwan6NjhKiIzBzhv2MYANVKJ4djVdu_4tuOJg34yR_9V_DD-h0Dz4Pr97FnXydblo11d9_ozr-57fdg7u9Y0pOOk26DzvG7cPtol9634dbIVZUNw_gx8c1nsUWJStLEJUc2ARL4jB8kvhOo-6TgpHWq0qDK1wNihbzd2SxDkFmLdGry2VDMO5-4Y83V0tTkT4pTy0XDjdXEukqEoib1Tcna3-iGW_dPITz07ef3pxFfTqHSGNW64jmVSxTHQuZ5lYrHnMtWBXPhEUEfZprozMq_QgssdLy2DDlh1c5rxgX1KKj-Qh23cqZAyBUCRVrZP_llEkqlGJaCGuS3CqbGTqB10PDlrpnnWPKjWXZUZpnpa_hMtTwBF6Oolcd4ONPQoeDdpS9jTflDGGNuGktmcCLsdhbJy65SGdWGy-DCQO8Bx6zCTzulGl8SoJRnTn3JXxLzUYBJH9vl7jLL4EA7get_rncf2bQor-_eFnMi3Dw5N9Fn8Id7xWKbp7pEHbb9cY8855Xq54HE_sJX14thQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVRGPC49CYaGAQRy4ZBtvnDiWuCBEtYWmQqtW6gVFtmMvFZtstcke4Afwu_E4j7IUJMQtiicve8YZ2-NvAF5Ry7kV0nluiVUBU7EOVJTQgDLKTeoRaTgPmR0n01P24Sw-24I3_V6Ylg8xTLihZfj-Gg0cJ6T3L6mh5aoc48YS1wFfY4kbp6BLNLuERwnRMpg5w55GsJ4rFE72h0s3_0ZXXMyrkZK_erD-F3RwBz73L99Gnnwdrxs11t9_4zr-79fdhdudb0retsp0D7ZMtQM3sm71fQeu-3BRXd-HH59WeBYblSwtQVqyxxMsSIURlMT1G2WXF4w0TltqXOSqUTSbHZL5yseZNUQvzxc1wdD7uTteXyxMQbq8PKWcV7i_ksiqIB66WXyrZOlO1MOt6wdwevD-5N006DI6BBoTWwc0LUIZ61DIOLVa8ZBrwYpwIixS6ONUG51Q6QZhkZWWh4YpN8JKecG4oBZ9zV3YrpaVeQSEKqFCjfi_lDJJhVJMC2FNlFplE0NH8Lpv2Vx3uHPMurHIW1DzJHc1nPsaHsHLQfSiZXz8SWivV4-8M_M6nyCvEfetRSN4MRQ7A8VVF1mZ5drJYM4A54SHbAQPW20anhJhYGfKXQnf0LNBAOHfmyXV-RcPAXfjVvdc7j7Tq9HfXzzPZpk_ePzvos_h5vQkO8qPDo8_PoFbzkkU7bTTHmw3q7V56hyxRj3z9vYTG9Axpg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVREVFx7ltaWAQRy4ZBtvnHUscUGUVQukqlZU6gVFtmMvVTfZ1SZ7gB_A78bjPMpSkBC3KJ687BlnbI-_AXhFLedWSOe5ja0KmIp1oKIxDSij3CQekYbzkOnJ-OiMfTiPz7fgTbcXpuFD9BNuaBm-v0YDN8vcHlxRQ4tVMcSNJa4DvsFikWBA3-H0Ch4lRMNg5gx7GsE6rlA4Ougv3fwbXXMxr0dK_urB-l_Q5A586V6-iTy5HK5rNdTff-M6_u_X3YXbrW9K3jbKdA-2TLkLO2m7-r4LN324qK7uw4_TFZ7FRiULS5CW7PEEc1JiBCVx_UbR5gUjtdOWChe5KhRNp8dktvJxZjXRi4t5RTD0fuaO18u5yUmbl6eQsxL3VxJZ5sRDN_NvpSzciaq_dfUAzibvP787CtqMDoHGxNYBTfJQxjoUMk6sVjzkWrA8HAmLFPo40UaPqXSDsMhKy0PDlBthJTxnXFCLvuZD2C4XpXkMhCqhQo34v4QySYVSTAthTZRYZceGDuB117KZbnHnmHVjnjWg5lHmajjzNTyAl73osmF8_Elov1OPrDXzKhshrxH3rUUDeNEXOwPFVRdZmsXayWDOAOeEh2wAjxpt6p8SYWBnwl0J39CzXgDh35sl5cVXDwF341b3XO4-06vR3188S6epP9j7d9HnsHN6OMk-HZ98fAK3nI8omlmnfdiuV2vz1PlhtXrmze0ngqcxKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Peripheral+Nerve+Stimulation+Thresholds+of+MRI+Gradient+Coils+using+Coupled+Electromagnetic+and+Neurodynamic+Simulations&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davids%2C+Mathias&rft.au=Gu%C3%A9rin%2C+Bastien&rft.au=Endt%2C+Axel+vom&rft.au=Schad%2C+Lothar+R.&rft.date=2019-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=1&rft.spage=686&rft.epage=701&rft_id=info:doi/10.1002%2Fmrm.27382&rft_id=info%3Apmid%2F30094874&rft.externalDocID=PMC6258337 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |