Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations

Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototyp...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 81; no. 1; pp. 686 - 701
Main Authors Davids, Mathias, Guérin, Bastien, vom Endt, Axel, Schad, Lothar R., Wald, Lawrence L.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.27382

Cover

Abstract Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. Methods We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. Results There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Conclusions Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
AbstractList PurposeAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.MethodsWe first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.ResultsThere was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.ConclusionsOur simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. Methods We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. Results There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root‐mean‐square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Conclusions Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and “next nerve” thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils. We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient. There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation. Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.PURPOSEAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not directly included in the coil design process. Instead, the PNS characteristics of a gradient are assessed on healthy subjects after prototype construction. We attempt to develop a tool to inform coil design by predicting the PNS thresholds and activation locations in the human body using electromagnetic field simulations coupled to a neurodynamic model. We validate the approach by comparing simulated and experimentally determined thresholds for 3 gradient coils.We first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.METHODSWe first compute the electric field induced by the switching fields within a detailed electromagnetic body model, which includes a detailed atlas of peripheral nerves. We then calculate potential changes along the nerves and evaluate their response using a neurodynamic model. Both a male and female body model are used to study 2 body gradients and 1 head gradient.There was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.RESULTSThere was good agreement between the average simulated thresholds of the male and female models with the experimental average (normalized root-mean-square error: <10% and <5% in most cases). The simulation could also interrogate thresholds above those accessible by the experimental setup and allowed identification of the site of stimulation.Our simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.CONCLUSIONSOur simulation framework allows accurate prediction of gradient coil PNS thresholds and provides detailed information on location and "next nerve" thresholds that are not available experimentally. As such, we hope that PNS simulations can have a potential role in the design phase of high performance MRI gradient coils.
Author vom Endt, Axel
Davids, Mathias
Schad, Lothar R.
Wald, Lawrence L.
Guérin, Bastien
AuthorAffiliation 3 Harvard Medical School, Boston, Massachusetts, United States
5 Harvard-MIT Division of Health Sciences Technology, Cambridge USA
2 Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown USA
4 Siemens Healthcare, Erlangen, Germany
1 Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
AuthorAffiliation_xml – name: 5 Harvard-MIT Division of Health Sciences Technology, Cambridge USA
– name: 1 Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
– name: 2 Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown USA
– name: 4 Siemens Healthcare, Erlangen, Germany
– name: 3 Harvard Medical School, Boston, Massachusetts, United States
Author_xml – sequence: 1
  givenname: Mathias
  surname: Davids
  fullname: Davids, Mathias
  email: mathias.davids@medma.uni-heidelberg.de
  organization: Massachusetts General Hospital
– sequence: 2
  givenname: Bastien
  surname: Guérin
  fullname: Guérin, Bastien
  organization: Harvard Medical School
– sequence: 3
  givenname: Axel
  surname: vom Endt
  fullname: vom Endt, Axel
  organization: Siemens Healthcare
– sequence: 4
  givenname: Lothar R.
  surname: Schad
  fullname: Schad, Lothar R.
  organization: Heidelberg University
– sequence: 5
  givenname: Lawrence L.
  surname: Wald
  fullname: Wald, Lawrence L.
  organization: Harvard‐MIT Division of Health Sciences Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30094874$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1q3DAQgEVJaTY_h75AMfTSHpxIsmxZl0IJbRLI0hKSs9BK410FWXIlO2VfoM9d7U9CG9qTBs03HzPSHKEDHzwg9JbgM4IxPe9jf0Z51dJXaEZqSktaC3aAZpgzXFZEsEN0lNIDxlgIzt6gwypHrOVshn59j2CsHm3wReiKAaIdVhCVKzzERyjSaPvJqW1-XEVIq-BM2qDz2-tiGZWx4MdCB-tSMSXrlzmeBgemAAd6jKFXSw-j1YXyJkunGMzaqz5fpGd1OkGvO-USnO7PY3T_9cvdxVV58-3y-uLzTakZbmlJWoNVrbFQddvpBcdcC2YwFR3ldVO3GnRDFBOi6lTHMbAFFk3LDeOCdDUR1TH6tPMO06IHo3PveVY5RNuruJZBWfl3xtuVXIZH2dC6rSqeBR_2ghh-TJBG2dukwTnlIUxJUtzyWpAGs4y-f4E-hCn6PJ6kpOJ8I6wy9e7Pjp5befqiDJzvAB1DShE6qe24fbXcoHWSYLlZApmXQG6XIFd8fFHxJP0Xu7f_tA7W_wfl_Ha-q_gNYA3EUA
CitedBy_id crossref_primary_10_1002_mrm_28180
crossref_primary_10_1038_s41598_022_25318_8
crossref_primary_10_1088_1361_6560_ac515c
crossref_primary_10_3389_fphy_2021_666192
crossref_primary_10_1002_jmri_27157
crossref_primary_10_3389_fnint_2024_1321872
crossref_primary_10_1002_mrm_30109
crossref_primary_10_1016_j_neuroimage_2022_118958
crossref_primary_10_1016_j_rxeng_2023_01_009
crossref_primary_10_1088_1361_6560_aaf308
crossref_primary_10_3389_fnhum_2020_00034
crossref_primary_10_1002_mrm_29118
crossref_primary_10_1002_mrm_29316
crossref_primary_10_1097_RLI_0000000000000678
crossref_primary_10_3238_arztebl_m2022_0150
crossref_primary_10_1017_S1460396922000206
crossref_primary_10_1016_j_rx_2023_01_013
crossref_primary_10_1002_mrm_29861
crossref_primary_10_1088_1741_2552_ab52bd
crossref_primary_10_1002_mrm_29022
crossref_primary_10_1002_mrm_29382
crossref_primary_10_1186_s41747_021_00216_2
crossref_primary_10_1016_j_mric_2020_07_007
crossref_primary_10_1038_s42254_021_00326_1
crossref_primary_10_1002_mrm_29668
crossref_primary_10_1002_mrm_28853
crossref_primary_10_3390_s22166076
crossref_primary_10_1109_TMI_2020_3023329
crossref_primary_10_3390_app11104430
crossref_primary_10_1007_s11517_021_02435_6
crossref_primary_10_1002_mrm_28681
crossref_primary_10_1002_mrm_28966
crossref_primary_10_1002_bem_22189
crossref_primary_10_1002_bem_22387
crossref_primary_10_1259_bjr_20200113
crossref_primary_10_1002_jmri_28421
crossref_primary_10_1038_s41592_023_02068_7
crossref_primary_10_1016_j_neuroimage_2021_118530
crossref_primary_10_1007_s10334_025_01228_4
crossref_primary_10_1016_j_pneurobio_2020_101936
crossref_primary_10_1007_s00330_022_08837_w
crossref_primary_10_1002_mrm_30470
crossref_primary_10_1002_mrm_30230
crossref_primary_10_1016_j_jneumeth_2020_109007
crossref_primary_10_1002_mrm_30157
crossref_primary_10_1002_mrm_28472
crossref_primary_10_1016_j_neuroimage_2021_118503
crossref_primary_10_1002_mrm_29645
crossref_primary_10_1038_s41598_024_74231_9
crossref_primary_10_1002_mrm_27909
crossref_primary_10_1088_1741_2552_ad510a
crossref_primary_10_1097_RLI_0000000000000669
Cites_doi 10.1002/mrm.26700
10.1088/0031-9155/54/21/R01
10.1002/mrm.26954
10.1152/jn.00353.2001
10.1097/00004728-199111000-00001
10.1002/mrm.22926
10.1002/mrm.22050
10.1002/jmri.1880070524
10.1007/BF02446708
10.1002/jmri.21573
10.2174/1874120701408010001
10.1016/j.clinph.2012.01.010
10.1002/mrm.21063
10.1002/mus.10117
10.1109/TBME.2004.834251
10.1002/mrm.1910330506
10.1016/j.neuroimage.2013.05.078
10.1002/cmr.b.21269
10.1088/0031-9155/61/12/4390
10.1016/j.zemedi.2017.05.003
10.1002/mrm.1910140226
10.1002/mrm.1910290606
10.1152/jn.2002.88.4.1592
10.1088/0031-9155/61/12/4466
10.1109/TBME.1986.325670
10.1002/mrm.22505
10.1002/mus.880130812
10.1109/10.168686
10.1007/s11517-010-0704-0
10.1038/s41598-017-05493-9
10.1109/10.81560
10.1002/jmri.10300
10.21236/ADA303903
10.1002/mrm.10508
10.1109/10.341828
10.1186/1475-925X-2-19
10.1002/mrm.1910380511
10.1002/mrm.26044
10.1109/TBME.2015.2446761
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
2019 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
– notice: 2019 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27382
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 701
ExternalDocumentID PMC6258337
30094874
10_1002_mrm_27382
MRM27382
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R24MH106053 ; R00EB019482 ; U01EB025121 ; U01EB025162
– fundername: NIBIB NIH HHS
  grantid: R24MH106053
– fundername: NIBIB NIH HHS
  grantid: U01 EB025121
– fundername: NIBIB NIH HHS
  grantid: U01EB025121
– fundername: NIBIB NIH HHS
  grantid: K99 EB019482
– fundername: NIBIB NIH HHS
  grantid: U01EB025162
– fundername: NIBIB NIH HHS
  grantid: U01 EB025162
– fundername: NIBIB NIH HHS
  grantid: R00 EB019482
– fundername: NIBIB NIH HHS
  grantid: R00EB019482
– fundername: NIMH NIH HHS
  grantid: R24 MH106053
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4082-18d0a5c09a58fcb707c94d029f275658cec61a4993faf70e4b09687d4791f5193
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:21:36 EDT 2025
Thu Jul 10 22:15:52 EDT 2025
Tue Oct 07 06:19:57 EDT 2025
Wed Feb 19 02:31:40 EST 2025
Wed Oct 01 02:05:22 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:27:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MRI gradient coil switching
magnetostimulation thresholds
EM exposure safety
electromagnetic field simulation
peripheral nerve stimulation
neurodynamic model
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4082-18d0a5c09a58fcb707c94d029f275658cec61a4993faf70e4b09687d4791f5193
Notes Funding information
National Institute of Biomedical Imaging and Bioengineering; National Institute for Mental Health of the National Institutes of Health, Grant/award numbers: R24MH106053, R00EB019482, U01EB025121, and U01EB025162
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30094874
PQID 2137758333
PQPubID 1016391
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258337
proquest_miscellaneous_2087591604
proquest_journals_2137758333
pubmed_primary_30094874
crossref_citationtrail_10_1002_mrm_27382
crossref_primary_10_1002_mrm_27382
wiley_primary_10_1002_mrm_27382_MRM27382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2018; 28
1991; 38
1993; 29
2009; 62
1990; 13
2012; 123
1990; 14
1991; 15
2006; 56
1962; 5
1986; 33
1995; 33
2015; 76
1992; 39
2004; 3
1996
2003; 17
2003
2003; 50
2014; 44
1997; 7
2009; 29
1995; 42
1991; 29
2002; 25
2010; 64
2004; 51
2009; 54
2000
2015; 62
2002; 87
2002; 88
2013; 80
2003; 2
2011; 66
2018
1997; 38
2017
2016
2016; 61
2012; 6
2011; 49
2014; 8
2018; 79
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Gabriel C (e_1_2_7_45_1) 1996
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Basser PJ (e_1_2_7_30_1) 2004; 3
Daube JR (e_1_2_7_51_1) 2012; 6
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Verveen A (e_1_2_7_26_1) 1962; 5
References_xml – volume: 5
  start-page: 79
  year: 1962
  end-page: 85
  article-title: Axon diameter and fluctuation in excitability
  publication-title: Acta Morphol Neerl Scand.
– start-page: 3
  year: 2017
– volume: 64
  start-page: 1567
  year: 2010
  end-page: 1579
  article-title: Sensory and motor stimulation thresholds of the ulnar nerve from electric and magnetic field stimuli: implications to gradient coil operation
  publication-title: Magn Reson Med.
– volume: 38
  start-page: 750
  year: 1997
  end-page: 758
  article-title: Axonal stimulation under MRI magnetic field z gradients: a modeling study
  publication-title: Magn Reson Med.
– start-page: 292
  year: 2018
– volume: 61
  start-page: 4390
  year: 2016
  end-page: 4401
  article-title: Functionalized anatomical models for EM‐neuron interaction modeling
  publication-title: Phys Med Biol.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 12
  article-title: A complete model for the evaluation of the magnetic stimulation of peripheral nerves
  publication-title: Open Biomed Eng J.
– start-page: 2208
  year: 2016
– volume: 17
  start-page: 716
  year: 2003
  end-page: 721
  article-title: Simple anatomical measurements do not correlate significantly to individual peripheral nerve stimulation thresholds as measured in MRI gradient coils
  publication-title: JMagn Reson Imaging.
– volume: 76
  start-page: 1939
  year: 2015
  end-page: 1950
  article-title: Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array
  publication-title: Magn Reson Med.
– volume: 51
  start-page: 1907
  year: 2004
  end-page: 1914
  article-title: Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging
  publication-title: IEEE Trans Biomed Eng.
– volume: 6
  start-page: 290
  year: 2012
  end-page: 296
  article-title: Nerve conduction studies
  publication-title: Aminoff's Electrodiagnosis in Clinical Neurology
– volume: 49
  start-page: 107
  year: 2011
  end-page: 119
  article-title: Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model
  publication-title: Med Biol Eng Comput.
– start-page: 3552
  year: 2016
– start-page: 4176
  year: 2018
– volume: 13
  start-page: 734
  year: 1990
  end-page: 741
  article-title: A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve
  publication-title: Muscle Nerve.
– volume: 61
  start-page: 4466
  year: 2016
  end-page: 4478
  article-title: Investigation of assumptions underlying current safety guidelines on EM‐induced nerve stimulation
  publication-title: Phys Med Biol.
– volume: 79
  start-page: 3256
  year: 2018
  end-page: 3266
  article-title: A high‐performance gradient insert for rapid and short‐T2 imaging at full duty cycle
  publication-title: Magn Reson Med.
– volume: 25
  start-page: 763
  year: 2002
  end-page: 764
  article-title: Activation order of motor axons in electrically evoked contractions
  publication-title: Muscle Nerve.
– volume: 33
  start-page: 974
  year: 1986
  end-page: 977
  article-title: Analysis of models for external stimulation of axons
  publication-title: IEEE Trans Biomed Eng.
– volume: 79
  start-page: 1181
  year: 2018
  end-page: 1191
  article-title: Development and implementation of an 84‐channel matrix gradient coil
  publication-title: Magn Reson Med.
– start-page: 2424
  year: 2003
– volume: 44
  start-page: 66
  year: 2014
  end-page: 74
  article-title: Peripheral nerve stimulation measures in a composite gradient system
  publication-title: Concepts Magn Reson B.
– volume: 39
  start-page: 1207
  year: 1992
  end-page: 1210
  article-title: The activating function for magnetic stimulation derived from a three‐dimensional volume conductor model
  publication-title: IEEE Trans Biomed Eng.
– volume: 2
  start-page: 19
  year: 2003
  article-title: Peripheral nerve magnetic stimulation: influence of tissue non‐homogeneity
  publication-title: Biomed Eng Online.
– volume: 62
  start-page: 2837
  year: 2015
  end-page: 2849
  article-title: A um‐scale computational model of magnetic neural stimulation in multifascicular peripheral nerves
  publication-title: IEEE Trans Biomed Eng.
– volume: 14
  start-page: 409
  year: 1990
  end-page: 414
  article-title: Sensory stimulation by time‐varying magnetic fields
  publication-title: Magn Reson Med.
– volume: 87
  start-page: 995
  year: 2002
  end-page: 1006
  article-title: Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle
  publication-title: JNeurophysiol.
– year: 2000
– volume: 28
  start-page: 36
  year: 2018
  end-page: 48
  article-title: Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3T: evaluation of intra‐scanner repeatability
  publication-title: Z Med Phys.
– volume: 15
  start-page: 909
  year: 1991
  end-page: 914
  article-title: Physiological effects of fast oscillating magnetic field gradients
  publication-title: JComput Assist Tomogr.
– volume: 38
  start-page: 418
  year: 1991
  end-page: 422
  article-title: Prediction of magnetically induced electric fields in biological tissue
  publication-title: IEEE Trans Biomed Eng.
– start-page: 272
  year: 1996
– volume: 66
  start-page: 1498
  year: 2011
  end-page: 1509
  article-title: Reducing peripheral nerve stimulation due to gradient switching using an additional uniform field coil
  publication-title: Magn Reson Med.
– volume: 50
  start-page: 50
  year: 2003
  end-page: 58
  article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes
  publication-title: Magn Reson Med.
– volume: 54
  start-page: 99
  year: 2009
  article-title: Interaction of MRI field gradients with the human body
  publication-title: Phys Med Biol.
– volume: 33
  start-page: 619
  year: 1995
  end-page: 623
  article-title: Magnetostimulation in MRI
  publication-title: Magn Reson Med.
– volume: 3
  start-page: 227
  year: 2004
  end-page: 244
  article-title: Scaling laws for myelinated axons derived from an electronic core‐conductor model
  publication-title: JIntegr Neurosci.
– volume: 123
  start-page: 858
  year: 2012
  end-page: 882
  article-title: A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
  publication-title: Clin Neurophysiol.
– volume: 7
  start-page: 933
  year: 1997
  end-page: 937
  article-title: Peripheral nerve stimulation during MRI: Effects of high gradient amplitudes and switching rates
  publication-title: JMagn Reson.
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  article-title: Pushing the limits of in vivo diffusion MRI for the human connectome project
  publication-title: Neuroimage.
– volume: 62
  start-page: 763
  year: 2009
  end-page: 770
  article-title: Experimental determination of human peripheral nerve stimulation thresholds in a 3‐axis planar gradient system
  publication-title: Magn Reson Med.
– start-page: 2007
  year: 2000
– volume: 42
  start-page: 158
  year: 1995
  end-page: 161
  article-title: An analytical model to predict the electric field and excitation zones due to magnetic stimulation of peripheral nerves
  publication-title: IEEE Trans Biomed Eng.
– volume: 56
  start-page: 1251
  year: 2006
  end-page: 1260
  article-title: Multiple‐region gradient arrays for extended field of view, increased performance, and reduced nerve stimulation in magnetic resonance imaging
  publication-title: Magn Reson Med.
– volume: 29
  start-page: 746
  year: 1993
  end-page: 758
  article-title: Limits to neural stimulation in echo‐planar imaging
  publication-title: Magn Reson Med.
– volume: 7
  start-page: 5316
  year: 2017
  article-title: Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models
  publication-title: Sci Rep.
– volume: 29
  start-page: 261
  year: 1991
  end-page: 268
  article-title: Stimulation of a myelinated nerve axon by electromagnetic induction
  publication-title: Med Biol Eng Comput.
– start-page: 4175
  year: 2018
– volume: 88
  start-page: 1592
  year: 2002
  end-page: 1604
  article-title: Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output
  publication-title: JNeurophysiol.
– volume: 29
  start-page: 229
  year: 2009
  end-page: 236
  article-title: Stimulation threshold comparison of time‐varying magnetic pulses with different waveforms
  publication-title: JMagn Reson Imaging.
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.26700
– ident: e_1_2_7_4_1
  doi: 10.1088/0031-9155/54/21/R01
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.26954
– ident: e_1_2_7_46_1
  doi: 10.1152/jn.00353.2001
– ident: e_1_2_7_24_1
  doi: 10.1097/00004728-199111000-00001
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.22926
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.22050
– ident: e_1_2_7_8_1
  doi: 10.1002/jmri.1880070524
– ident: e_1_2_7_7_1
  doi: 10.1007/BF02446708
– ident: e_1_2_7_48_1
  doi: 10.1002/jmri.21573
– ident: e_1_2_7_37_1
  doi: 10.2174/1874120701408010001
– ident: e_1_2_7_52_1
  doi: 10.1016/j.clinph.2012.01.010
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.21063
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_27_1
  doi: 10.1002/mus.10117
– ident: e_1_2_7_19_1
– ident: e_1_2_7_43_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_25_1
  doi: 10.1109/TBME.2004.834251
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.1910330506
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_7_17_1
  doi: 10.1002/cmr.b.21269
– ident: e_1_2_7_40_1
  doi: 10.1088/0031-9155/61/12/4390
– ident: e_1_2_7_9_1
  doi: 10.1016/j.zemedi.2017.05.003
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.1910140226
– volume: 5
  start-page: 79
  year: 1962
  ident: e_1_2_7_26_1
  article-title: Axon diameter and fluctuation in excitability
  publication-title: Acta Morphol Neerl Scand.
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.1910290606
– ident: e_1_2_7_47_1
  doi: 10.1152/jn.2002.88.4.1592
– ident: e_1_2_7_39_1
  doi: 10.1088/0031-9155/61/12/4466
– volume: 6
  start-page: 290
  year: 2012
  ident: e_1_2_7_51_1
  article-title: Nerve conduction studies
  publication-title: Aminoff's Electrodiagnosis in Clinical Neurology
– ident: e_1_2_7_28_1
  doi: 10.1109/TBME.1986.325670
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.22505
– ident: e_1_2_7_32_1
  doi: 10.1002/mus.880130812
– ident: e_1_2_7_31_1
  doi: 10.1109/10.168686
– ident: e_1_2_7_36_1
  doi: 10.1007/s11517-010-0704-0
– ident: e_1_2_7_41_1
  doi: 10.1038/s41598-017-05493-9
– ident: e_1_2_7_33_1
  doi: 10.1109/10.81560
– ident: e_1_2_7_6_1
  doi: 10.1002/jmri.10300
– ident: e_1_2_7_44_1
– volume: 3
  start-page: 227
  year: 2004
  ident: e_1_2_7_30_1
  article-title: Scaling laws for myelinated axons derived from an electronic core‐conductor model
  publication-title: JIntegr Neurosci.
– start-page: 272
  volume-title: Compilation of the dielectric properties of body tissues at RF and microwave frequencies
  year: 1996
  ident: e_1_2_7_45_1
  doi: 10.21236/ADA303903
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.10508
– ident: e_1_2_7_34_1
  doi: 10.1109/10.341828
– ident: e_1_2_7_35_1
  doi: 10.1186/1475-925X-2-19
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.1910380511
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.26044
– ident: e_1_2_7_50_1
– ident: e_1_2_7_42_1
– ident: e_1_2_7_38_1
  doi: 10.1109/TBME.2015.2446761
– ident: e_1_2_7_15_1
SSID ssj0009974
Score 2.51208
Snippet Purpose As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not...
As gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not...
PurposeAs gradient performance increases, peripheral nerve stimulation (PNS) is becoming a significant constraint for fast MRI. Despite its impact, PNS is not...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 686
SubjectTerms Algorithms
Coiling
Computer Simulation
Electric fields
Electric Stimulation
electromagnetic field simulation
Electromagnetic Fields
EM exposure safety
Equipment Design
Female
Humans
Magnetic Resonance Imaging
magnetostimulation thresholds
Male
Mathematical models
Models, Anatomic
MRI gradient coil switching
neurodynamic model
Neurons - physiology
peripheral nerve stimulation
Peripheral nerves
Peripheral Nerves - physiology
Peripheral Nervous System - diagnostic imaging
Predictions
Reproducibility of Results
Simulation
Stimulation
Thresholds
Title Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27382
https://www.ncbi.nlm.nih.gov/pubmed/30094874
https://www.proquest.com/docview/2137758333
https://www.proquest.com/docview/2087591604
https://pubmed.ncbi.nlm.nih.gov/PMC6258337
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVSUQFwrl0YWCDOLAJdt448SxeqoQVUEKQisq9YAU2Y69VGy81SZ7gB_A78bjPMpSkBC3KJ687BlnbI-_AXhFLedWSO-5ZVZFTKU6UklGI8ooN3lApOE8ZPEhOztn7y_Six04HvbCdHyIccINLSP012jgUjVH19DQel1PcV8J9r80ycJwan6NjhKiIzBzhv2MYANVKJ4djVdu_4tuOJg34yR_9V_DD-h0Dz4Pr97FnXydblo11d9_ozr-57fdg7u9Y0pOOk26DzvG7cPtol9634dbIVZUNw_gx8c1nsUWJStLEJUc2ARL4jB8kvhOo-6TgpHWq0qDK1wNihbzd2SxDkFmLdGry2VDMO5-4Y83V0tTkT4pTy0XDjdXEukqEoib1Tcna3-iGW_dPITz07ef3pxFfTqHSGNW64jmVSxTHQuZ5lYrHnMtWBXPhEUEfZprozMq_QgssdLy2DDlh1c5rxgX1KKj-Qh23cqZAyBUCRVrZP_llEkqlGJaCGuS3CqbGTqB10PDlrpnnWPKjWXZUZpnpa_hMtTwBF6Oolcd4ONPQoeDdpS9jTflDGGNuGktmcCLsdhbJy65SGdWGy-DCQO8Bx6zCTzulGl8SoJRnTn3JXxLzUYBJH9vl7jLL4EA7get_rncf2bQor-_eFnMi3Dw5N9Fn8Id7xWKbp7pEHbb9cY8855Xq54HE_sJX14thQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVRGPC49CYaGAQRy4ZBtvnDiWuCBEtYWmQqtW6gVFtmMvFZtstcke4Afwu_E4j7IUJMQtiicve8YZ2-NvAF5Ry7kV0nluiVUBU7EOVJTQgDLKTeoRaTgPmR0n01P24Sw-24I3_V6Ylg8xTLihZfj-Gg0cJ6T3L6mh5aoc48YS1wFfY4kbp6BLNLuERwnRMpg5w55GsJ4rFE72h0s3_0ZXXMyrkZK_erD-F3RwBz73L99Gnnwdrxs11t9_4zr-79fdhdudb0retsp0D7ZMtQM3sm71fQeu-3BRXd-HH59WeBYblSwtQVqyxxMsSIURlMT1G2WXF4w0TltqXOSqUTSbHZL5yseZNUQvzxc1wdD7uTteXyxMQbq8PKWcV7i_ksiqIB66WXyrZOlO1MOt6wdwevD-5N006DI6BBoTWwc0LUIZ61DIOLVa8ZBrwYpwIixS6ONUG51Q6QZhkZWWh4YpN8JKecG4oBZ9zV3YrpaVeQSEKqFCjfi_lDJJhVJMC2FNlFplE0NH8Lpv2Vx3uHPMurHIW1DzJHc1nPsaHsHLQfSiZXz8SWivV4-8M_M6nyCvEfetRSN4MRQ7A8VVF1mZ5drJYM4A54SHbAQPW20anhJhYGfKXQnf0LNBAOHfmyXV-RcPAXfjVvdc7j7Tq9HfXzzPZpk_ePzvos_h5vQkO8qPDo8_PoFbzkkU7bTTHmw3q7V56hyxRj3z9vYTG9Axpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHVREVFx7ltaWAQRy4ZBtvnHUscUGUVQukqlZU6gVFtmMvVTfZ1SZ7gB_A78bjPMpSkBC3KJ687BlnbI-_AXhFLedWSOe5ja0KmIp1oKIxDSij3CQekYbzkOnJ-OiMfTiPz7fgTbcXpuFD9BNuaBm-v0YDN8vcHlxRQ4tVMcSNJa4DvsFikWBA3-H0Ch4lRMNg5gx7GsE6rlA4Ougv3fwbXXMxr0dK_urB-l_Q5A586V6-iTy5HK5rNdTff-M6_u_X3YXbrW9K3jbKdA-2TLkLO2m7-r4LN324qK7uw4_TFZ7FRiULS5CW7PEEc1JiBCVx_UbR5gUjtdOWChe5KhRNp8dktvJxZjXRi4t5RTD0fuaO18u5yUmbl6eQsxL3VxJZ5sRDN_NvpSzciaq_dfUAzibvP787CtqMDoHGxNYBTfJQxjoUMk6sVjzkWrA8HAmLFPo40UaPqXSDsMhKy0PDlBthJTxnXFCLvuZD2C4XpXkMhCqhQo34v4QySYVSTAthTZRYZceGDuB117KZbnHnmHVjnjWg5lHmajjzNTyAl73osmF8_Elov1OPrDXzKhshrxH3rUUDeNEXOwPFVRdZmsXayWDOAOeEh2wAjxpt6p8SYWBnwl0J39CzXgDh35sl5cVXDwF341b3XO4-06vR3188S6epP9j7d9HnsHN6OMk-HZ98fAK3nI8omlmnfdiuV2vz1PlhtXrmze0ngqcxKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Peripheral+Nerve+Stimulation+Thresholds+of+MRI+Gradient+Coils+using+Coupled+Electromagnetic+and+Neurodynamic+Simulations&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Davids%2C+Mathias&rft.au=Gu%C3%A9rin%2C+Bastien&rft.au=Endt%2C+Axel+vom&rft.au=Schad%2C+Lothar+R.&rft.date=2019-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=1&rft.spage=686&rft.epage=701&rft_id=info:doi/10.1002%2Fmrm.27382&rft_id=info%3Apmid%2F30094874&rft.externalDocID=PMC6258337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon