Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures

A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large databas...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 15; no. 5; pp. 724 - 736
Main Authors Natsoulis, Georges, El Ghaoui, Laurent, Lanckriet, Gert R.G., Tolley, Alexander M., Leroy, Fabrice, Dunlea, Shane, Eynon, Barrett P., Pearson, Cecelia I., Tugendreich, Stuart, Jarnagin, Kurt
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.05.2005
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5469
DOI10.1101/gr.2807605

Cover

Abstract A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”) to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.
AbstractList A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.
A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.
Author Natsoulis, Georges
El Ghaoui, Laurent
Tolley, Alexander M.
Pearson, Cecelia I.
Tugendreich, Stuart
Dunlea, Shane
Eynon, Barrett P.
Lanckriet, Gert R.G.
Leroy, Fabrice
Jarnagin, Kurt
AuthorAffiliation 1 Iconix Pharmaceuticals, Mountain View, California 94043, USA
3 SPSS, Chicago, Illinois 60606, USA
2 Dept. Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, USA
AuthorAffiliation_xml – name: 2 Dept. Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, USA
– name: 1 Iconix Pharmaceuticals, Mountain View, California 94043, USA
– name: 3 SPSS, Chicago, Illinois 60606, USA
Author_xml – sequence: 1
  givenname: Georges
  surname: Natsoulis
  fullname: Natsoulis, Georges
– sequence: 2
  givenname: Laurent
  surname: El Ghaoui
  fullname: El Ghaoui, Laurent
– sequence: 3
  givenname: Gert R.G.
  surname: Lanckriet
  fullname: Lanckriet, Gert R.G.
– sequence: 4
  givenname: Alexander M.
  surname: Tolley
  fullname: Tolley, Alexander M.
– sequence: 5
  givenname: Fabrice
  surname: Leroy
  fullname: Leroy, Fabrice
– sequence: 6
  givenname: Shane
  surname: Dunlea
  fullname: Dunlea, Shane
– sequence: 7
  givenname: Barrett P.
  surname: Eynon
  fullname: Eynon, Barrett P.
– sequence: 8
  givenname: Cecelia I.
  surname: Pearson
  fullname: Pearson, Cecelia I.
– sequence: 9
  givenname: Stuart
  surname: Tugendreich
  fullname: Tugendreich, Stuart
– sequence: 10
  givenname: Kurt
  surname: Jarnagin
  fullname: Jarnagin, Kurt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15867433$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYOMOA_d-AMkKxdKjUnn7UIYmvEBA250HW4nqZpIqtImqZH-91ZPN4yK6CIkkO8ezj3nHJ1MeQoIPafkklJC3wzlcqWJkkQ8QmdUcNMJLs3J8iZad4YIeorOa_1GCGFc6yfolAotFWfsDLl1glpjHx20mCeceww4QRkCHqMrGUqBHfbQANfQ3uKrNOQS2-2IXR63UGJdhmDyy4G0q7HuFXyZB1zjMEGbS6hP0eMeUg3PjvcF-vr--sv6Y3fz-cOn9dVN5zhRreu952B8MFRKZ8RGgfZSbrg3wnDijVc9WWmlHFPAVsqTIIShCrxnklPWswv0-qA7T1vY_YCU7LbEEcrOUmL3Udmh2GNUC_3uQG_nzRi8C1Mr8DCRIdrff6Z4a4d8Z_epMkIXgZdHgZK_z6E2O8bqQkowhTxXK5XSdJ_5_0CqBDNmxRfwxa-WHtwf61oAcgCWZmotobcutvviFocx_X3NV3-M_COTn--5tvM
CitedBy_id crossref_primary_10_1016_j_mrfmmm_2007_06_010
crossref_primary_10_1093_nar_gkw1077
crossref_primary_10_1126_science_1132939
crossref_primary_10_1089_cmb_2008_0227
crossref_primary_10_1093_bioinformatics_bts509
crossref_primary_10_2217_14622416_7_7_1003
crossref_primary_10_1016_j_neunet_2013_07_005
crossref_primary_10_1186_1471_2164_14_S8_S7
crossref_primary_10_1016_j_patcog_2008_08_001
crossref_primary_10_1109_LSP_2019_2918485
crossref_primary_10_1186_1471_2105_7_299
crossref_primary_10_1177_1087057112469257
crossref_primary_10_1093_bioinformatics_btw506
crossref_primary_10_1093_toxsci_kfj018
crossref_primary_10_1080_15376510701857072
crossref_primary_10_4137_CIN_S408
crossref_primary_10_2217_14622416_9_1_35
crossref_primary_10_1186_1471_2164_12_S5_S6
crossref_primary_10_1100_2012_380495
crossref_primary_10_1897_07_192_1
crossref_primary_10_2217_14622416_8_4_401
crossref_primary_10_1142_S0219720010005063
crossref_primary_10_1016_j_phrs_2018_01_023
crossref_primary_10_1038_tpj_2010_35
crossref_primary_10_1093_toxsci_kfm156
crossref_primary_10_1038_msb_2008_9
crossref_primary_10_1371_journal_pone_0107230
crossref_primary_10_1016_j_drudis_2012_11_001
crossref_primary_10_1016_j_jbi_2009_08_010
crossref_primary_10_1093_carcin_bgp190
crossref_primary_10_1016_j_taap_2008_06_015
crossref_primary_10_1016_j_fct_2018_06_064
crossref_primary_10_1371_journal_pcbi_1000116
crossref_primary_10_1016_j_patrec_2021_07_026
crossref_primary_10_1016_j_toxlet_2010_12_019
crossref_primary_10_1021_es702745d
crossref_primary_10_2217_14622416_7_7_1025
crossref_primary_10_1109_TCBB_2010_90
crossref_primary_10_1186_gb_2007_8_7_r133
crossref_primary_10_1093_bioinformatics_btn476
crossref_primary_10_1186_1471_2105_11_137
crossref_primary_10_1016_j_compbiolchem_2018_07_008
crossref_primary_10_1080_00498250600861603
crossref_primary_10_1093_toxsci_kfm065
crossref_primary_10_1109_LSP_2021_3095017
crossref_primary_10_1093_bib_bbz122
crossref_primary_10_1162_NECO_a_00379
crossref_primary_10_1093_bioinformatics_btr262
crossref_primary_10_1080_01926230600611752
crossref_primary_10_1038_nrc2044
crossref_primary_10_1371_journal_pone_0024233
crossref_primary_10_1111_j_1472_8206_2009_00673_x
crossref_primary_10_1080_01926230500321213
crossref_primary_10_1016_j_jbiotec_2005_03_022
crossref_primary_10_4103_ijp_ijp_53_22
crossref_primary_10_1111_j_1752_1688_2008_00291_x
crossref_primary_10_1517_17425255_2011_553191
crossref_primary_10_1371_journal_pcbi_1000790
crossref_primary_10_1371_journal_pcbi_1001087
crossref_primary_10_1016_j_mrfmmm_2007_03_013
crossref_primary_10_2217_14622416_8_5_425
crossref_primary_10_1007_s10107_010_0415_1
crossref_primary_10_1016_j_knosys_2013_08_008
crossref_primary_10_1016_j_toxlet_2008_09_017
crossref_primary_10_1093_bioinformatics_btp605
Cites_doi 10.1073/pnas.77.7.3957
10.1023/A:1012487302797
10.1007/978-0-387-21606-5
10.1097/00041433-199904000-00008
10.1074/jbc.273.40.25713
10.1016/S0378-4274(01)00267-3
10.1101/gr.190001
10.1016/j.jbiotec.2005.03.022
10.1073/pnas.211566398
10.1126/science.286.5439.531
10.1016/S0022-2275(20)42003-6
10.1017/CBO9780511801389
10.1073/pnas.1632587100
10.1128/MCB.15.6.3012
10.1101/gr.227402
10.1016/0009-2797(78)90068-6
10.1073/pnas.95.25.14863
10.1073/pnas.96.20.11041
10.2165/00003088-200038020-00002
10.1124/mol.60.6.1189
10.1038/35013000
ContentType Journal Article
Copyright Copyright © 2005, Cold Spring Harbor Laboratory Press 2005
Copyright_xml – notice: Copyright © 2005, Cold Spring Harbor Laboratory Press 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1101/gr.2807605
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1549-5469
EndPage 736
ExternalDocumentID oai:pubmedcentral.nih.gov:1088301
PMC1088301
15867433
10_1101_gr_2807605
Genre Journal Article
Comparative Study
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
AAYOK
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
RHF
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-fdd4a9de9166c95b7a8d66b4d95940d9d7f02877c37a327d0e55917add36413f3
IEDL.DBID UNPAY
ISSN 1088-9051
1549-5469
IngestDate Sun Oct 26 03:34:01 EDT 2025
Thu Aug 21 13:35:13 EDT 2025
Fri Sep 05 10:38:59 EDT 2025
Thu Oct 02 11:56:44 EDT 2025
Wed Feb 19 01:37:24 EST 2025
Wed Oct 01 03:01:36 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-fdd4a9de9166c95b7a8d66b4d95940d9d7f02877c37a327d0e55917add36413f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Article and publication are at http://www.genome.org/cgi/doi/10.1101/gr.2807605.
Corresponding author.…E-mail gnatsoulis@iconixpharm.com; fax (650) 567-5540.
Supplemental material is available online at www.genome.org.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://genome.cshlp.org/content/15/5/724.full.pdf
PMID 15867433
PQID 17539924
PQPubID 23462
PageCount 13
ParticipantIDs unpaywall_primary_10_1101_gr_2807605
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1088301
proquest_miscellaneous_67781000
proquest_miscellaneous_17539924
pubmed_primary_15867433
crossref_citationtrail_10_1101_gr_2807605
crossref_primary_10_1101_gr_2807605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-00
2005-May
20050501
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2005
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References (2021111811003385000_15.5.724.21) 1996; 37
(2021111811003385000_15.5.724.29) 2001; 1
2021111811003385000_15.5.724.8
2021111811003385000_15.5.724.9
2021111811003385000_15.5.724.4
2021111811003385000_15.5.724.5
2021111811003385000_15.5.724.6
2021111811003385000_15.5.724.7
2021111811003385000_15.5.724.1
2021111811003385000_15.5.724.2
2021111811003385000_15.5.724.20
2021111811003385000_15.5.724.3
2021111811003385000_15.5.724.22
2021111811003385000_15.5.724.23
2021111811003385000_15.5.724.24
2021111811003385000_15.5.724.25
2021111811003385000_15.5.724.26
2021111811003385000_15.5.724.27
2021111811003385000_15.5.724.19
(2021111811003385000_15.5.724.28) 2001; 11
(2021111811003385000_15.5.724.17) 1995; 15
2021111811003385000_15.5.724.30
2021111811003385000_15.5.724.31
2021111811003385000_15.5.724.10
2021111811003385000_15.5.724.32
2021111811003385000_15.5.724.11
2021111811003385000_15.5.724.12
2021111811003385000_15.5.724.13
2021111811003385000_15.5.724.14
2021111811003385000_15.5.724.15
2021111811003385000_15.5.724.16
2021111811003385000_15.5.724.18
10500120 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041-8
12045151 - Genome Res. 2002 Jun;12(6):976-84
11473024 - Bioinformatics. 2001;17 Suppl 1:S323-31
11742071 - Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54
11323195 - Toxicol Lett. 2001 Mar 31;120(1-3):359-68
7539101 - Mol Cell Biol. 1995 Jun;15(6):3012-22
10327282 - Curr Opin Lipidol. 1999 Apr;10(2):143-50
12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13
10709776 - Clin Pharmacokinet. 2000 Feb;38(2):111-80
352553 - Chem Biol Interact. 1978 Apr;21(1):59-78
6933445 - Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957-61
16005536 - J Biotechnol. 2005 Sep 29;119(3):219-44
9748239 - J Biol Chem. 1998 Oct 2;273(40):25713-20
10839530 - Nature. 2000 May 25;405(6785):421-4
8725145 - J Lipid Res. 1996 May;37(5):907-25
11691853 - Genome Res. 2001 Nov;11(11):1878-87
10521349 - Science. 1999 Oct 15;286(5439):531-7
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
11723225 - Mol Pharmacol. 2001 Dec;60(6):1189-94
References_xml – ident: 2021111811003385000_15.5.724.1
  doi: 10.1073/pnas.77.7.3957
– ident: 2021111811003385000_15.5.724.32
– ident: 2021111811003385000_15.5.724.6
– ident: 2021111811003385000_15.5.724.11
  doi: 10.1023/A:1012487302797
– ident: 2021111811003385000_15.5.724.13
  doi: 10.1007/978-0-387-21606-5
– ident: 2021111811003385000_15.5.724.14
  doi: 10.1097/00041433-199904000-00008
– ident: 2021111811003385000_15.5.724.25
  doi: 10.1074/jbc.273.40.25713
– ident: 2021111811003385000_15.5.724.30
– ident: 2021111811003385000_15.5.724.27
  doi: 10.1016/S0378-4274(01)00267-3
– volume: 11
  start-page: 1878
  year: 2001
  ident: 2021111811003385000_15.5.724.28
  publication-title: Genome Res.
  doi: 10.1101/gr.190001
– ident: 2021111811003385000_15.5.724.8
  doi: 10.1016/j.jbiotec.2005.03.022
– ident: 2021111811003385000_15.5.724.12
– ident: 2021111811003385000_15.5.724.31
– ident: 2021111811003385000_15.5.724.19
  doi: 10.1073/pnas.211566398
– ident: 2021111811003385000_15.5.724.7
– ident: 2021111811003385000_15.5.724.9
  doi: 10.1126/science.286.5439.531
– volume: 37
  start-page: 907
  year: 1996
  ident: 2021111811003385000_15.5.724.21
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)42003-6
– ident: 2021111811003385000_15.5.724.3
  doi: 10.1017/CBO9780511801389
– volume: 1
  start-page: S323
  year: 2001
  ident: 2021111811003385000_15.5.724.29
  publication-title: Bioinformatics
– ident: 2021111811003385000_15.5.724.10
  doi: 10.1073/pnas.1632587100
– volume: 15
  start-page: 3012
  year: 1995
  ident: 2021111811003385000_15.5.724.17
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.15.6.3012
– ident: 2021111811003385000_15.5.724.4
  doi: 10.1101/gr.227402
– ident: 2021111811003385000_15.5.724.23
  doi: 10.1016/0009-2797(78)90068-6
– ident: 2021111811003385000_15.5.724.20
– ident: 2021111811003385000_15.5.724.18
– ident: 2021111811003385000_15.5.724.26
– ident: 2021111811003385000_15.5.724.16
– ident: 2021111811003385000_15.5.724.5
  doi: 10.1073/pnas.95.25.14863
– ident: 2021111811003385000_15.5.724.2
  doi: 10.1073/pnas.96.20.11041
– ident: 2021111811003385000_15.5.724.24
  doi: 10.2165/00003088-200038020-00002
– ident: 2021111811003385000_15.5.724.22
  doi: 10.1124/mol.60.6.1189
– ident: 2021111811003385000_15.5.724.15
  doi: 10.1038/35013000
– reference: 10839530 - Nature. 2000 May 25;405(6785):421-4
– reference: 11691853 - Genome Res. 2001 Nov;11(11):1878-87
– reference: 11323195 - Toxicol Lett. 2001 Mar 31;120(1-3):359-68
– reference: 9748239 - J Biol Chem. 1998 Oct 2;273(40):25713-20
– reference: 11742071 - Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54
– reference: 16005536 - J Biotechnol. 2005 Sep 29;119(3):219-44
– reference: 11473024 - Bioinformatics. 2001;17 Suppl 1:S323-31
– reference: 10709776 - Clin Pharmacokinet. 2000 Feb;38(2):111-80
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7
– reference: 352553 - Chem Biol Interact. 1978 Apr;21(1):59-78
– reference: 6933445 - Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957-61
– reference: 10500120 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041-8
– reference: 11723225 - Mol Pharmacol. 2001 Dec;60(6):1189-94
– reference: 7539101 - Mol Cell Biol. 1995 Jun;15(6):3012-22
– reference: 10327282 - Curr Opin Lipidol. 1999 Apr;10(2):143-50
– reference: 12045151 - Genome Res. 2002 Jun;12(6):976-84
– reference: 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13
– reference: 8725145 - J Lipid Res. 1996 May;37(5):907-25
SSID ssj0003488
Score 2.1625338
Snippet A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 724
SubjectTerms Algorithms
Animals
Bone Marrow - metabolism
Classification - methods
Dose-Response Relationship, Drug
Gene Expression Regulation
Kidney - metabolism
Liver - metabolism
Logistic Models
Male
Methods
Myocardium - metabolism
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - standards
Pharmaceutical Preparations - metabolism
Principal Component Analysis
Rats
Rats, Sprague-Dawley
Reproducibility of Results
RNA, Messenger - isolation & purification
Title Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
URI https://www.ncbi.nlm.nih.gov/pubmed/15867433
https://www.proquest.com/docview/17539924
https://www.proquest.com/docview/67781000
https://pubmed.ncbi.nlm.nih.gov/PMC1088301
http://genome.cshlp.org/content/15/5/724.full.pdf
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: KQ8
  dateStart: 19910801
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: DIK
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1549-5469
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0003488
  issn: 1088-9051
  databaseCode: RPM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aOqE9MdhgBMGwxITEQ9Jc7LjmrUxME4gJEJXGU-TYTjuRplWaaCq_nuNcyqYC2kOkSDnKzcc-37E_fwfgVKRxGGZauKEOjUtjxHAiY6GLmXPKAo4YpFnB_3wZX0zoxyt2tQN94UIrTDo3nlrN8mWzjm8J2zj6DgM2ZEMeUs_OSntLne3CXswQfg9gb3L5ZfyjJdJj5_VZq5FKhcsw9-skSdHzhtPSs9ovsS1VdzsIbSHLbYLkfl0s5fpG5vmt6HN-AN_6PTwt6eSnV1epp35tSzre_8MewcMOi5Jx6zyPYccUh3A0LjAPn6_JG9KwQ5tp90N48L4_2z_ra8QdgWpqalq2UdPAZJERSXJLLidzy_STZSnXxLJQycpU78g4ny7K62o2J2pT_5DIQuPRaqPYO-iynhLLK2k0R1dPYHL-4fvZhduVbXAVZoeVm2lNpdAGgWesBEu5HOk4TqkWTFBfC80zBDWcq4jLKOTaN5jVBBwH2ijGkJpFT2FQLArzDAiPVMiykQox0tKMBqkfGkoZRl3NfDPyHXjbt2OiOk1zW1ojT5rcxg-SaZl0be7A643tslXy-KvVq94dEvyXdvVEFmZRrxIraSowW_23hdXis8slDhy37vPnOWxkN3tEDvA7jrUxsCLfd68U17NG7Ns6NQ7CDpxuXPA_r__8fmYvYFCVtXmJeKpKT2D309fRSdePfgMlSiI_
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD50KaNP3dZunccugpXBHuw4smRFe8vKShmsjLFA92RkSU7KHCc4NiX79TvyJWvJNvpgMPjgm450viN9-g7AqUxjSjMjfWqo9VmMGE5mnPqYOad8JBCDNCv4Xy7jiyn7fMWv9qAvXOiESRc20Ot5vmrW8R1hG0ff4YgP-VBQFrhZ6WBlsgewH3OE3wPYn15-nfxoifTYeUPeaqQy6XPM_TpJUvS84awMnPZL7ErV3Q5CO8hylyB5UBcrtblReX4r-pw_gm_9Hp6WdPIzqKs00L92JR3v_2GP4bDDomTSOs8T2LPFERxPCszDFxvyjjTs0Gba_QgefuzPDs76GnHHoJuamo5t1DQwWWZEkdyRy8nCMf1UWaoNcSxUsrbVBzLJZ8vyupoviN7WPySqMHi02ijuDqasZ8TxShrN0fVTmJ5_-n524XdlG3yN2WHlZ8YwJY1F4BlryVOhxiaOU2Yklyw00ogMQY0QOhIqosKEFrOakcCBNooxpGbRMxgUy8I-ByIiTXk21hQjLcvYKA2pZYxj1DU8tOPQg_d9Oya60zR3pTXypMltwlEyK5OuzT14u7VdtUoef7V607tDgv_SrZ6owi7rdeIkTSVmq_-2cFp8brnEg5PWff48h4_dZo_IA3HHsbYGTuT77pXiet6IfTunxkHYg9OtC_7n9V_cz-wlDKqytq8QT1Xp664H_QZdfCFK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+a+large+microarray+data+set%3A+algorithm+comparison+and+analysis+of+drug+signatures&rft.jtitle=Genome+research&rft.au=Natsoulis%2C+Georges&rft.au=El+Ghaoui%2C+Laurent&rft.au=Lanckriet%2C+Gert+R+G&rft.au=Tolley%2C+Alexander+M&rft.date=2005-05-01&rft.issn=1088-9051&rft.volume=15&rft.issue=5&rft.spage=724&rft_id=info:doi/10.1101%2Fgr.2807605&rft_id=info%3Apmid%2F15867433&rft.externalDocID=15867433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon