Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large databas...
        Saved in:
      
    
          | Published in | Genome research Vol. 15; no. 5; pp. 724 - 736 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Cold Spring Harbor Laboratory Press
    
        01.05.2005
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1088-9051 1549-5469 1549-5469  | 
| DOI | 10.1101/gr.2807605 | 
Cover
| Abstract | A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”) to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class. | 
    
|---|---|
| AbstractList | A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class. A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.  | 
    
| Author | Natsoulis, Georges El Ghaoui, Laurent Tolley, Alexander M. Pearson, Cecelia I. Tugendreich, Stuart Dunlea, Shane Eynon, Barrett P. Lanckriet, Gert R.G. Leroy, Fabrice Jarnagin, Kurt  | 
    
| AuthorAffiliation | 1 Iconix Pharmaceuticals, Mountain View, California 94043, USA 3 SPSS, Chicago, Illinois 60606, USA 2 Dept. Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, USA  | 
    
| AuthorAffiliation_xml | – name: 2 Dept. Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, USA – name: 1 Iconix Pharmaceuticals, Mountain View, California 94043, USA – name: 3 SPSS, Chicago, Illinois 60606, USA  | 
    
| Author_xml | – sequence: 1 givenname: Georges surname: Natsoulis fullname: Natsoulis, Georges – sequence: 2 givenname: Laurent surname: El Ghaoui fullname: El Ghaoui, Laurent – sequence: 3 givenname: Gert R.G. surname: Lanckriet fullname: Lanckriet, Gert R.G. – sequence: 4 givenname: Alexander M. surname: Tolley fullname: Tolley, Alexander M. – sequence: 5 givenname: Fabrice surname: Leroy fullname: Leroy, Fabrice – sequence: 6 givenname: Shane surname: Dunlea fullname: Dunlea, Shane – sequence: 7 givenname: Barrett P. surname: Eynon fullname: Eynon, Barrett P. – sequence: 8 givenname: Cecelia I. surname: Pearson fullname: Pearson, Cecelia I. – sequence: 9 givenname: Stuart surname: Tugendreich fullname: Tugendreich, Stuart – sequence: 10 givenname: Kurt surname: Jarnagin fullname: Jarnagin, Kurt  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15867433$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkUuLFDEUhYOMOA_d-AMkKxdKjUnn7UIYmvEBA250HW4nqZpIqtImqZH-91ZPN4yK6CIkkO8ezj3nHJ1MeQoIPafkklJC3wzlcqWJkkQ8QmdUcNMJLs3J8iZad4YIeorOa_1GCGFc6yfolAotFWfsDLl1glpjHx20mCeceww4QRkCHqMrGUqBHfbQANfQ3uKrNOQS2-2IXR63UGJdhmDyy4G0q7HuFXyZB1zjMEGbS6hP0eMeUg3PjvcF-vr--sv6Y3fz-cOn9dVN5zhRreu952B8MFRKZ8RGgfZSbrg3wnDijVc9WWmlHFPAVsqTIIShCrxnklPWswv0-qA7T1vY_YCU7LbEEcrOUmL3Udmh2GNUC_3uQG_nzRi8C1Mr8DCRIdrff6Z4a4d8Z_epMkIXgZdHgZK_z6E2O8bqQkowhTxXK5XSdJ_5_0CqBDNmxRfwxa-WHtwf61oAcgCWZmotobcutvviFocx_X3NV3-M_COTn--5tvM | 
    
| CitedBy_id | crossref_primary_10_1016_j_mrfmmm_2007_06_010 crossref_primary_10_1093_nar_gkw1077 crossref_primary_10_1126_science_1132939 crossref_primary_10_1089_cmb_2008_0227 crossref_primary_10_1093_bioinformatics_bts509 crossref_primary_10_2217_14622416_7_7_1003 crossref_primary_10_1016_j_neunet_2013_07_005 crossref_primary_10_1186_1471_2164_14_S8_S7 crossref_primary_10_1016_j_patcog_2008_08_001 crossref_primary_10_1109_LSP_2019_2918485 crossref_primary_10_1186_1471_2105_7_299 crossref_primary_10_1177_1087057112469257 crossref_primary_10_1093_bioinformatics_btw506 crossref_primary_10_1093_toxsci_kfj018 crossref_primary_10_1080_15376510701857072 crossref_primary_10_4137_CIN_S408 crossref_primary_10_2217_14622416_9_1_35 crossref_primary_10_1186_1471_2164_12_S5_S6 crossref_primary_10_1100_2012_380495 crossref_primary_10_1897_07_192_1 crossref_primary_10_2217_14622416_8_4_401 crossref_primary_10_1142_S0219720010005063 crossref_primary_10_1016_j_phrs_2018_01_023 crossref_primary_10_1038_tpj_2010_35 crossref_primary_10_1093_toxsci_kfm156 crossref_primary_10_1038_msb_2008_9 crossref_primary_10_1371_journal_pone_0107230 crossref_primary_10_1016_j_drudis_2012_11_001 crossref_primary_10_1016_j_jbi_2009_08_010 crossref_primary_10_1093_carcin_bgp190 crossref_primary_10_1016_j_taap_2008_06_015 crossref_primary_10_1016_j_fct_2018_06_064 crossref_primary_10_1371_journal_pcbi_1000116 crossref_primary_10_1016_j_patrec_2021_07_026 crossref_primary_10_1016_j_toxlet_2010_12_019 crossref_primary_10_1021_es702745d crossref_primary_10_2217_14622416_7_7_1025 crossref_primary_10_1109_TCBB_2010_90 crossref_primary_10_1186_gb_2007_8_7_r133 crossref_primary_10_1093_bioinformatics_btn476 crossref_primary_10_1186_1471_2105_11_137 crossref_primary_10_1016_j_compbiolchem_2018_07_008 crossref_primary_10_1080_00498250600861603 crossref_primary_10_1093_toxsci_kfm065 crossref_primary_10_1109_LSP_2021_3095017 crossref_primary_10_1093_bib_bbz122 crossref_primary_10_1162_NECO_a_00379 crossref_primary_10_1093_bioinformatics_btr262 crossref_primary_10_1080_01926230600611752 crossref_primary_10_1038_nrc2044 crossref_primary_10_1371_journal_pone_0024233 crossref_primary_10_1111_j_1472_8206_2009_00673_x crossref_primary_10_1080_01926230500321213 crossref_primary_10_1016_j_jbiotec_2005_03_022 crossref_primary_10_4103_ijp_ijp_53_22 crossref_primary_10_1111_j_1752_1688_2008_00291_x crossref_primary_10_1517_17425255_2011_553191 crossref_primary_10_1371_journal_pcbi_1000790 crossref_primary_10_1371_journal_pcbi_1001087 crossref_primary_10_1016_j_mrfmmm_2007_03_013 crossref_primary_10_2217_14622416_8_5_425 crossref_primary_10_1007_s10107_010_0415_1 crossref_primary_10_1016_j_knosys_2013_08_008 crossref_primary_10_1016_j_toxlet_2008_09_017 crossref_primary_10_1093_bioinformatics_btp605  | 
    
| Cites_doi | 10.1073/pnas.77.7.3957 10.1023/A:1012487302797 10.1007/978-0-387-21606-5 10.1097/00041433-199904000-00008 10.1074/jbc.273.40.25713 10.1016/S0378-4274(01)00267-3 10.1101/gr.190001 10.1016/j.jbiotec.2005.03.022 10.1073/pnas.211566398 10.1126/science.286.5439.531 10.1016/S0022-2275(20)42003-6 10.1017/CBO9780511801389 10.1073/pnas.1632587100 10.1128/MCB.15.6.3012 10.1101/gr.227402 10.1016/0009-2797(78)90068-6 10.1073/pnas.95.25.14863 10.1073/pnas.96.20.11041 10.2165/00003088-200038020-00002 10.1124/mol.60.6.1189 10.1038/35013000  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2005, Cold Spring Harbor Laboratory Press 2005 | 
    
| Copyright_xml | – notice: Copyright © 2005, Cold Spring Harbor Laboratory Press 2005 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1101/gr.2807605 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry Biology  | 
    
| EISSN | 1549-5469 | 
    
| EndPage | 736 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:1088301 PMC1088301 15867433 10_1101_gr_2807605  | 
    
| Genre | Journal Article Comparative Study  | 
    
| GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP AAYOK AEILP CGR CUY CVF ECM EIF NPM RHF 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c407t-fdd4a9de9166c95b7a8d66b4d95940d9d7f02877c37a327d0e55917add36413f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1088-9051 1549-5469  | 
    
| IngestDate | Sun Oct 26 03:34:01 EDT 2025 Thu Aug 21 13:35:13 EDT 2025 Fri Sep 05 10:38:59 EDT 2025 Thu Oct 02 11:56:44 EDT 2025 Wed Feb 19 01:37:24 EST 2025 Wed Oct 01 03:01:36 EDT 2025 Thu Apr 24 22:53:40 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-fdd4a9de9166c95b7a8d66b4d95940d9d7f02877c37a327d0e55917add36413f3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Article and publication are at http://www.genome.org/cgi/doi/10.1101/gr.2807605. Corresponding author. E-mail gnatsoulis@iconixpharm.com; fax (650) 567-5540. Supplemental material is available online at www.genome.org.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://genome.cshlp.org/content/15/5/724.full.pdf | 
    
| PMID | 15867433 | 
    
| PQID | 17539924 | 
    
| PQPubID | 23462 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1101_gr_2807605 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1088301 proquest_miscellaneous_67781000 proquest_miscellaneous_17539924 pubmed_primary_15867433 crossref_citationtrail_10_1101_gr_2807605 crossref_primary_10_1101_gr_2807605  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005-05-00 2005-May 20050501  | 
    
| PublicationDateYYYYMMDD | 2005-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Genome research | 
    
| PublicationTitleAlternate | Genome Res | 
    
| PublicationYear | 2005 | 
    
| Publisher | Cold Spring Harbor Laboratory Press | 
    
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press | 
    
| References | (2021111811003385000_15.5.724.21) 1996; 37 (2021111811003385000_15.5.724.29) 2001; 1 2021111811003385000_15.5.724.8 2021111811003385000_15.5.724.9 2021111811003385000_15.5.724.4 2021111811003385000_15.5.724.5 2021111811003385000_15.5.724.6 2021111811003385000_15.5.724.7 2021111811003385000_15.5.724.1 2021111811003385000_15.5.724.2 2021111811003385000_15.5.724.20 2021111811003385000_15.5.724.3 2021111811003385000_15.5.724.22 2021111811003385000_15.5.724.23 2021111811003385000_15.5.724.24 2021111811003385000_15.5.724.25 2021111811003385000_15.5.724.26 2021111811003385000_15.5.724.27 2021111811003385000_15.5.724.19 (2021111811003385000_15.5.724.28) 2001; 11 (2021111811003385000_15.5.724.17) 1995; 15 2021111811003385000_15.5.724.30 2021111811003385000_15.5.724.31 2021111811003385000_15.5.724.10 2021111811003385000_15.5.724.32 2021111811003385000_15.5.724.11 2021111811003385000_15.5.724.12 2021111811003385000_15.5.724.13 2021111811003385000_15.5.724.14 2021111811003385000_15.5.724.15 2021111811003385000_15.5.724.16 2021111811003385000_15.5.724.18 10500120 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041-8 12045151 - Genome Res. 2002 Jun;12(6):976-84 11473024 - Bioinformatics. 2001;17 Suppl 1:S323-31 11742071 - Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54 11323195 - Toxicol Lett. 2001 Mar 31;120(1-3):359-68 7539101 - Mol Cell Biol. 1995 Jun;15(6):3012-22 10327282 - Curr Opin Lipidol. 1999 Apr;10(2):143-50 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13 10709776 - Clin Pharmacokinet. 2000 Feb;38(2):111-80 352553 - Chem Biol Interact. 1978 Apr;21(1):59-78 6933445 - Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957-61 16005536 - J Biotechnol. 2005 Sep 29;119(3):219-44 9748239 - J Biol Chem. 1998 Oct 2;273(40):25713-20 10839530 - Nature. 2000 May 25;405(6785):421-4 8725145 - J Lipid Res. 1996 May;37(5):907-25 11691853 - Genome Res. 2001 Nov;11(11):1878-87 10521349 - Science. 1999 Oct 15;286(5439):531-7 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 11723225 - Mol Pharmacol. 2001 Dec;60(6):1189-94  | 
    
| References_xml | – ident: 2021111811003385000_15.5.724.1 doi: 10.1073/pnas.77.7.3957 – ident: 2021111811003385000_15.5.724.32 – ident: 2021111811003385000_15.5.724.6 – ident: 2021111811003385000_15.5.724.11 doi: 10.1023/A:1012487302797 – ident: 2021111811003385000_15.5.724.13 doi: 10.1007/978-0-387-21606-5 – ident: 2021111811003385000_15.5.724.14 doi: 10.1097/00041433-199904000-00008 – ident: 2021111811003385000_15.5.724.25 doi: 10.1074/jbc.273.40.25713 – ident: 2021111811003385000_15.5.724.30 – ident: 2021111811003385000_15.5.724.27 doi: 10.1016/S0378-4274(01)00267-3 – volume: 11 start-page: 1878 year: 2001 ident: 2021111811003385000_15.5.724.28 publication-title: Genome Res. doi: 10.1101/gr.190001 – ident: 2021111811003385000_15.5.724.8 doi: 10.1016/j.jbiotec.2005.03.022 – ident: 2021111811003385000_15.5.724.12 – ident: 2021111811003385000_15.5.724.31 – ident: 2021111811003385000_15.5.724.19 doi: 10.1073/pnas.211566398 – ident: 2021111811003385000_15.5.724.7 – ident: 2021111811003385000_15.5.724.9 doi: 10.1126/science.286.5439.531 – volume: 37 start-page: 907 year: 1996 ident: 2021111811003385000_15.5.724.21 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)42003-6 – ident: 2021111811003385000_15.5.724.3 doi: 10.1017/CBO9780511801389 – volume: 1 start-page: S323 year: 2001 ident: 2021111811003385000_15.5.724.29 publication-title: Bioinformatics – ident: 2021111811003385000_15.5.724.10 doi: 10.1073/pnas.1632587100 – volume: 15 start-page: 3012 year: 1995 ident: 2021111811003385000_15.5.724.17 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.15.6.3012 – ident: 2021111811003385000_15.5.724.4 doi: 10.1101/gr.227402 – ident: 2021111811003385000_15.5.724.23 doi: 10.1016/0009-2797(78)90068-6 – ident: 2021111811003385000_15.5.724.20 – ident: 2021111811003385000_15.5.724.18 – ident: 2021111811003385000_15.5.724.26 – ident: 2021111811003385000_15.5.724.16 – ident: 2021111811003385000_15.5.724.5 doi: 10.1073/pnas.95.25.14863 – ident: 2021111811003385000_15.5.724.2 doi: 10.1073/pnas.96.20.11041 – ident: 2021111811003385000_15.5.724.24 doi: 10.2165/00003088-200038020-00002 – ident: 2021111811003385000_15.5.724.22 doi: 10.1124/mol.60.6.1189 – ident: 2021111811003385000_15.5.724.15 doi: 10.1038/35013000 – reference: 10839530 - Nature. 2000 May 25;405(6785):421-4 – reference: 11691853 - Genome Res. 2001 Nov;11(11):1878-87 – reference: 11323195 - Toxicol Lett. 2001 Mar 31;120(1-3):359-68 – reference: 9748239 - J Biol Chem. 1998 Oct 2;273(40):25713-20 – reference: 11742071 - Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15149-54 – reference: 16005536 - J Biotechnol. 2005 Sep 29;119(3):219-44 – reference: 11473024 - Bioinformatics. 2001;17 Suppl 1:S323-31 – reference: 10709776 - Clin Pharmacokinet. 2000 Feb;38(2):111-80 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 10521349 - Science. 1999 Oct 15;286(5439):531-7 – reference: 352553 - Chem Biol Interact. 1978 Apr;21(1):59-78 – reference: 6933445 - Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957-61 – reference: 10500120 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041-8 – reference: 11723225 - Mol Pharmacol. 2001 Dec;60(6):1189-94 – reference: 7539101 - Mol Cell Biol. 1995 Jun;15(6):3012-22 – reference: 10327282 - Curr Opin Lipidol. 1999 Apr;10(2):143-50 – reference: 12045151 - Genome Res. 2002 Jun;12(6):976-84 – reference: 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13 – reference: 8725145 - J Lipid Res. 1996 May;37(5):907-25  | 
    
| SSID | ssj0003488 | 
    
| Score | 2.1625338 | 
    
| Snippet | A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 724 | 
    
| SubjectTerms | Algorithms Animals Bone Marrow - metabolism Classification - methods Dose-Response Relationship, Drug Gene Expression Regulation Kidney - metabolism Liver - metabolism Logistic Models Male Methods Myocardium - metabolism Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Array Sequence Analysis - standards Pharmaceutical Preparations - metabolism Principal Component Analysis Rats Rats, Sprague-Dawley Reproducibility of Results RNA, Messenger - isolation & purification  | 
    
| Title | Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15867433 https://www.proquest.com/docview/17539924 https://www.proquest.com/docview/67781000 https://pubmed.ncbi.nlm.nih.gov/PMC1088301 http://genome.cshlp.org/content/15/5/724.full.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1549-5469 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: KQ8 dateStart: 19910801 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1549-5469 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: DIK dateStart: 19910101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1549-5469 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1549-5469 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0003488 issn: 1088-9051 databaseCode: RPM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aOqE9MdhgBMGwxITEQ9Jc7LjmrUxME4gJEJXGU-TYTjuRplWaaCq_nuNcyqYC2kOkSDnKzcc-37E_fwfgVKRxGGZauKEOjUtjxHAiY6GLmXPKAo4YpFnB_3wZX0zoxyt2tQN94UIrTDo3nlrN8mWzjm8J2zj6DgM2ZEMeUs_OSntLne3CXswQfg9gb3L5ZfyjJdJj5_VZq5FKhcsw9-skSdHzhtPSs9ovsS1VdzsIbSHLbYLkfl0s5fpG5vmt6HN-AN_6PTwt6eSnV1epp35tSzre_8MewcMOi5Jx6zyPYccUh3A0LjAPn6_JG9KwQ5tp90N48L4_2z_ra8QdgWpqalq2UdPAZJERSXJLLidzy_STZSnXxLJQycpU78g4ny7K62o2J2pT_5DIQuPRaqPYO-iynhLLK2k0R1dPYHL-4fvZhduVbXAVZoeVm2lNpdAGgWesBEu5HOk4TqkWTFBfC80zBDWcq4jLKOTaN5jVBBwH2ijGkJpFT2FQLArzDAiPVMiykQox0tKMBqkfGkoZRl3NfDPyHXjbt2OiOk1zW1ojT5rcxg-SaZl0be7A643tslXy-KvVq94dEvyXdvVEFmZRrxIraSowW_23hdXis8slDhy37vPnOWxkN3tEDvA7jrUxsCLfd68U17NG7Ns6NQ7CDpxuXPA_r__8fmYvYFCVtXmJeKpKT2D309fRSdePfgMlSiI_ | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD50KaNP3dZunccugpXBHuw4smRFe8vKShmsjLFA92RkSU7KHCc4NiX79TvyJWvJNvpgMPjgm450viN9-g7AqUxjSjMjfWqo9VmMGE5mnPqYOad8JBCDNCv4Xy7jiyn7fMWv9qAvXOiESRc20Ot5vmrW8R1hG0ff4YgP-VBQFrhZ6WBlsgewH3OE3wPYn15-nfxoifTYeUPeaqQy6XPM_TpJUvS84awMnPZL7ErV3Q5CO8hylyB5UBcrtblReX4r-pw_gm_9Hp6WdPIzqKs00L92JR3v_2GP4bDDomTSOs8T2LPFERxPCszDFxvyjjTs0Gba_QgefuzPDs76GnHHoJuamo5t1DQwWWZEkdyRy8nCMf1UWaoNcSxUsrbVBzLJZ8vyupoviN7WPySqMHi02ijuDqasZ8TxShrN0fVTmJ5_-n524XdlG3yN2WHlZ8YwJY1F4BlryVOhxiaOU2Yklyw00ogMQY0QOhIqosKEFrOakcCBNooxpGbRMxgUy8I-ByIiTXk21hQjLcvYKA2pZYxj1DU8tOPQg_d9Oya60zR3pTXypMltwlEyK5OuzT14u7VdtUoef7V607tDgv_SrZ6owi7rdeIkTSVmq_-2cFp8brnEg5PWff48h4_dZo_IA3HHsbYGTuT77pXiet6IfTunxkHYg9OtC_7n9V_cz-wlDKqytq8QT1Xp664H_QZdfCFK | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+a+large+microarray+data+set%3A+algorithm+comparison+and+analysis+of+drug+signatures&rft.jtitle=Genome+research&rft.au=Natsoulis%2C+Georges&rft.au=El+Ghaoui%2C+Laurent&rft.au=Lanckriet%2C+Gert+R+G&rft.au=Tolley%2C+Alexander+M&rft.date=2005-05-01&rft.issn=1088-9051&rft.volume=15&rft.issue=5&rft.spage=724&rft_id=info:doi/10.1101%2Fgr.2807605&rft_id=info%3Apmid%2F15867433&rft.externalDocID=15867433 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |