Diffusion models for super-resolution microscopy: a tutorial

Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with...

Full description

Saved in:
Bibliographic Details
Published inJPhys photonics Vol. 7; no. 1; pp. 13001 - 13035
Main Authors Bachimanchi, Harshith, Volpe, Giovanni
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 31.01.2025
Subjects
Online AccessGet full text
ISSN2515-7647
2515-7647
DOI10.1088/2515-7647/ada101

Cover

Abstract Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with a specific focus on transforming low-resolution microscopy images into their corresponding high-resolution versions in the context of super-resolution microscopy. We provide the necessary theoretical background, the essential mathematical derivations, and a detailed Python code implementation using PyTorch. We discuss the metrics to quantitatively evaluate the model, illustrate the model performance at different noise levels of the input low-resolution images, and briefly discuss how to adapt the tutorial for other applications. The code provided in this tutorial is also available as a Python notebook in the supplementary information.
AbstractList Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with a specific focus on transforming low-resolution microscopy images into their corresponding high-resolution versions in the context of super-resolution microscopy. We provide the necessary theoretical background, the essential mathematical derivations, and a detailed Python code implementation using PyTorch. We discuss the metrics to quantitatively evaluate the model, illustrate the model performance at different noise levels of the input low-resolution images, and briefly discuss how to adapt the tutorial for other applications. The code provided in this tutorial is also available as a Python notebook in the supplementary information.
Author Bachimanchi, Harshith
Volpe, Giovanni
Author_xml – sequence: 1
  givenname: Harshith
  orcidid: 0000-0001-9497-8410
  surname: Bachimanchi
  fullname: Bachimanchi, Harshith
  organization: University of Gothenburg Department of Physics, Gothenburg, Sweden
– sequence: 2
  givenname: Giovanni
  orcidid: 0000-0001-5057-1846
  surname: Volpe
  fullname: Volpe, Giovanni
  organization: University of Gothenburg Department of Physics, Gothenburg, Sweden
BackLink https://gup.ub.gu.se/publication/348399$$DView record from Swedish Publication Index
BookMark eNqNkEtLxDAUhYMoqKN7lwW31kmaNGnFjfgcENzoOtzmMXSoTU0ahvn3tlMZdSG4yuXknMO93zHab11rEDoj-JLgophnOclTwZmYgwaCyR462kn7P-ZDdBrCCmOciZLhjB-h67va2hhq1ybvTpsmJNb5JMTO-NSb4JrYb_9q5V1QrttcJZD0sXe-huYEHVhogjn9emfo7eH-9fYpfX55XNzePKeKYdGnVnPgSmieKU5BWwCgJGcZgKEwDFRDyZSthMDUVDxj1mQ5ZYIojoFaTmdoMfVqByvZ-fod_EY6qOVWcH4pwfe1aozUmquSVDk3tmAZpUBVbkGboiKqFFU1dJGpK7YdbNbQNLtCguVIU4645IhLTjSHTDplwtp0sfq1wTJ2cpCWUQYjKStoWQ7-88nfefcRTejlykXfDojkcDjHZcmK0YUn14g2eGP_s8jFFKld9935p_0TzGikQA
Cites_doi 10.1364/OL.19.000780
10.1109/TPAMI.2015.2439281
10.1038/s41467-023-38452-2
10.1109/TMM.2019.2919431
10.1038/s41467-024-49125-z
10.1038/nature14539
10.1038/s42256-024-00831-9
10.1007/BF02956173
10.1038/s41592-018-0239-0
10.1038/s41467-024-48575-9
10.1038/s41587-022-01471-3
10.1073/pnas.0406877102
10.1038/nmeth929
10.1145/3528233.3530757
10.1016/j.cell.2018.09.057
10.1529/biophysj.107.120345
10.6084/m9.figshare.13264793.v9
10.1046/j.1365-2818.2000.00710.x
10.1126/science.1127344
10.1007/s11042-023-17660-4
10.1038/nbt895
10.1016/j.neucom.2022.01.029
10.1126/science.aab3500
10.1038/s41592-020-01048-5
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7SP
7XB
88I
8FD
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTPV
AOWAS
F1U
ADTOC
UNPAY
DOA
DOI 10.1088/2515-7647/ada101
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2515-7647
ExternalDocumentID oai_doaj_org_article_dd6c91b56ef84233a3c5fade8b1c97bb
10.1088/2515-7647/ada101
oai_gup_ub_gu_se_348399
10_1088_2515_7647_ada101
jpphotonada101
GrantInformation_xml – fundername: Knut och Alice Wallenbergs Stiftelse
  grantid: Grant No. 2019.0079
  funderid: http://dx.doi.org/10.13039/501100004063
– fundername: HORIZON EUROPE European Research Council
  grantid: Consolidator Grant MAPEI (Grant No. 101001267)
  funderid: http://dx.doi.org/10.13039/100019180
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
ADBBV
AFKRA
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
CCPQU
CJUJL
CRLBU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IJHAN
IOP
M2P
M~E
N5L
O3W
OK1
PIMPY
PJBAE
TSCCA
AAFWJ
AAYXX
CITATION
PHGZM
PHGZT
PUEGO
3V.
7SP
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTPV
AOWAS
EJD
F1U
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-fd6a6c7d62c63adfaaa31542aae3a1543da94cfb7703eb624fe253471c60a3f63
IEDL.DBID O3W
ISSN 2515-7647
IngestDate Fri Oct 03 12:39:32 EDT 2025
Sun Oct 26 03:43:06 EDT 2025
Wed Sep 10 00:23:14 EDT 2025
Mon Jun 30 13:04:15 EDT 2025
Wed Oct 01 05:03:51 EDT 2025
Tue Feb 04 22:30:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-fd6a6c7d62c63adfaaa31542aae3a1543da94cfb7703eb624fe253471c60a3f63
Notes JPPHOTON-100692.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9497-8410
0000-0001-5057-1846
OpenAccessLink https://iopscience.iop.org/article/10.1088/2515-7647/ada101
PQID 3156099489
PQPubID 4916452
PageCount 35
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_348399
iop_journals_10_1088_2515_7647_ada101
unpaywall_primary_10_1088_2515_7647_ada101
crossref_primary_10_1088_2515_7647_ada101
proquest_journals_3156099489
doaj_primary_oai_doaj_org_article_dd6c91b56ef84233a3c5fade8b1c97bb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-31
PublicationDateYYYYMMDD 2025-01-31
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-31
  day: 31
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle JPhys photonics
PublicationTitleAbbrev JPhysPhotonics
PublicationTitleAlternate J. Phys. Photonics
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Qiao (jpphotonada101bib27) 2023; 41
della Maggiora (jpphotonada101bib35) 2024
Guo (jpphotonada101bib52) 2018; 175
Della Maggiora (jpphotonada101bib34) 2024
Li (jpphotonada101bib33) 2022; 479
Lai (jpphotonada101bib14) 2017
Ronneberger (jpphotonada101bib48) 2015
Midtvedt (jpphotonada101bib50) 2024
Bachimanchi (jpphotonada101bib39) 2024
Goodfellow (jpphotonada101bib43) 2014; vol 27
Parmar (jpphotonada101bib21) 2018; vol 80
Gustafsson (jpphotonada101bib6) 2000; 198
Karras (jpphotonada101bib44) 2018
Ho (jpphotonada101bib29) 2020; vol 33
Yu (jpphotonada101bib10) 2024; 83
Abbe (jpphotonada101bib1) 1873; 9
Hell (jpphotonada101bib2) 1994; 19
Dahl (jpphotonada101bib23) 2017
Rombach (jpphotonada101bib30) 2022
Dong (jpphotonada101bib12) 2016; 38
Rust (jpphotonada101bib5) 2006; 3
Zhang (jpphotonada101bib16) 2018
Lu (jpphotonada101bib38) 2024; 15
Cai (jpphotonada101bib19) 2019
Chen (jpphotonada101bib24) 2018
Wang (jpphotonada101bib25) 2019; 16
Qiao (jpphotonada101bib55) 2020
Lim (jpphotonada101bib13) 2017
Qiao (jpphotonada101bib40) 2021
Weng (jpphotonada101bib47) 2021
Gustafsson (jpphotonada101bib54) 2008; 94
Fürrutter (jpphotonada101bib37) 2024; 6
Yang (jpphotonada101bib17) 2019; 21
Oscar Cross-Zamirski (jpphotonada101bib36) 2023
Qiao (jpphotonada101bib11) 2024; 15
Li (jpphotonada101bib53) 2015; 349
Midtvedt (jpphotonada101bib9) 2025
Saharia (jpphotonada101bib32) 2022
Vaswani (jpphotonada101bib49) 2017; vol 30
LeCun (jpphotonada101bib8) 2015; 521
Menon (jpphotonada101bib22) 2020
Chen (jpphotonada101bib28) 2023; 14
Radford (jpphotonada101bib45) 2016
Betzig (jpphotonada101bib4) 2006; 313
Ledig (jpphotonada101bib15) 2017
Saharia (jpphotonada101bib46) 2021
Qiao (jpphotonada101bib26) 2021; 18
Cai (jpphotonada101bib18) 2019
Hell (jpphotonada101bib3) 2003; 21
Gustafsson (jpphotonada101bib7) 2005; 102
Lugmayr (jpphotonada101bib20) 2020
Kingma (jpphotonada101bib41) 2022
Vahdat (jpphotonada101bib42) 2020; vol 33
Dhariwal (jpphotonada101bib31) 2021; vol 34
Ho (jpphotonada101bib51) 2021
References_xml – volume: 19
  start-page: 780
  year: 1994
  ident: jpphotonada101bib2
  article-title: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.000780
– year: 2016
  ident: jpphotonada101bib45
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 38
  start-page: 295
  year: 2016
  ident: jpphotonada101bib12
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 14
  start-page: 2854
  year: 2023
  ident: jpphotonada101bib28
  article-title: Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38452-2
– year: 2022
  ident: jpphotonada101bib41
  article-title: Auto-encoding variational Bayes
– volume: 21
  start-page: 3106
  year: 2019
  ident: jpphotonada101bib17
  article-title: Deep learning for single image super-resolution: a brief review
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2019.2919431
– year: 2024
  ident: jpphotonada101bib39
  article-title: biosr_dataset
– volume: 15
  start-page: 4677
  year: 2024
  ident: jpphotonada101bib38
  article-title: Diffusion-based deep learning method for augmenting ultrastructural imaging and volume electron microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49125-z
– year: 2025
  ident: jpphotonada101bib9
– start-page: pp 3086
  year: 2019
  ident: jpphotonada101bib18
  article-title: Toward real-world single image super-resolution: a new benchmark and a new model
– volume: 521
  start-page: 436
  year: 2015
  ident: jpphotonada101bib8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2024
  ident: jpphotonada101bib35
  article-title: Single exposure quantitative phase imaging with a conventional microscope using diffusion models
– start-page: pp 5835
  year: 2017
  ident: jpphotonada101bib14
  article-title: Deep Laplacian pyramid networks for fast and accurate super-resolution
– volume: 6
  start-page: 515
  year: 2024
  ident: jpphotonada101bib37
  article-title: Quantum circuit synthesis with diffusion models
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-024-00831-9
– start-page: pp 286
  year: 2018
  ident: jpphotonada101bib16
  article-title: Image super-resolution using very deep residual channel attention networks
– volume: vol 34
  start-page: pp 8780
  year: 2021
  ident: jpphotonada101bib31
  article-title: Diffusion models beat GANs on image synthesis
– volume: vol 30
  year: 2017
  ident: jpphotonada101bib49
  article-title: Attention is all you need
– volume: 9
  start-page: 413
  year: 1873
  ident: jpphotonada101bib1
  article-title: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung
  publication-title: Arch. Mikrosk. Anat.
  doi: 10.1007/BF02956173
– volume: 16
  start-page: 103
  year: 2019
  ident: jpphotonada101bib25
  article-title: Deep learning enables cross-modality super-resolution in fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0239-0
– volume: 15
  start-page: 4180
  year: 2024
  ident: jpphotonada101bib11
  article-title: Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48575-9
– volume: vol 33
  start-page: pp 19667
  year: 2020
  ident: jpphotonada101bib42
  article-title: NVAE: a deep hierarchical variational autoencoder
– volume: 41
  start-page: 367
  year: 2023
  ident: jpphotonada101bib27
  article-title: Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01471-3
– volume: 102
  start-page: 13081
  year: 2005
  ident: jpphotonada101bib7
  article-title: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0406877102
– start-page: pp 5449
  year: 2017
  ident: jpphotonada101bib23
  article-title: Pixel recursive super resolution
– start-page: pp 10674
  year: 2022
  ident: jpphotonada101bib30
  article-title: High-resolution image synthesis with latent diffusion models
– start-page: pp 2492
  year: 2018
  ident: jpphotonada101bib24
  article-title: FSRNet: end-to-end learning face super-resolution with facial priors
– year: 2024
  ident: jpphotonada101bib50
  article-title: Deeplay
– start-page: pp 2058
  year: 2020
  ident: jpphotonada101bib20
  article-title: NTIRE 2020 challenge on real-world image super-resolution: methods and results
– volume: 3
  start-page: 793
  year: 2006
  ident: jpphotonada101bib5
  article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nat. Methods
  doi: 10.1038/nmeth929
– year: 2022
  ident: jpphotonada101bib32
  article-title: Palette: image-to-image diffusion models
  doi: 10.1145/3528233.3530757
– year: 2018
  ident: jpphotonada101bib44
  article-title: Progressive growing of GANs for improved quality, stability and variation
– volume: 175
  start-page: 1430
  year: 2018
  ident: jpphotonada101bib52
  article-title: Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.057
– volume: vol 27
  year: 2014
  ident: jpphotonada101bib43
  article-title: Generative adversarial nets
– volume: 94
  start-page: 4957
  year: 2008
  ident: jpphotonada101bib54
  article-title: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.120345
– year: 2020
  ident: jpphotonada101bib55
  article-title: BioSR: a biological image dataset for super-resolution microscopy
  doi: 10.6084/m9.figshare.13264793.v9
– start-page: pp 234
  year: 2015
  ident: jpphotonada101bib48
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: pp 2211
  year: 2019
  ident: jpphotonada101bib19
  article-title: NTIRE 2019 challenge on real image super-resolution: methods and results
– volume: 198
  start-page: 82
  year: 2000
  ident: jpphotonada101bib6
  article-title: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2000.00710.x
– start-page: pp 3802
  year: 2023
  ident: jpphotonada101bib36
  article-title: Class-guided image-to-image diffusion: cell painting from brightfield images with class labels
– volume: 313
  start-page: 1642
  year: 2006
  ident: jpphotonada101bib4
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– year: 2021
  ident: jpphotonada101bib46
  article-title: Image super-resolution via iterative refinement
– volume: vol 33
  start-page: pp 6840
  year: 2020
  ident: jpphotonada101bib29
  article-title: Denoising diffusion probabilistic models
– start-page: pp 2434
  year: 2020
  ident: jpphotonada101bib22
  article-title: Pulse: self-supervised photo upsampling via latent space exploration of generative models
– year: 2021
  ident: jpphotonada101bib47
  article-title: What are diffusion models?
– volume: 83
  start-page: 55921
  year: 2024
  ident: jpphotonada101bib10
  article-title: A review of single image super-resolution reconstruction based on deep learning
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-17660-4
– year: 2021
  ident: jpphotonada101bib51
  article-title: Classifier-free diffusion guidance
– volume: 21
  start-page: 1347
  year: 2003
  ident: jpphotonada101bib3
  article-title: Toward fluorescence nanoscopy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt895
– volume: 479
  start-page: 47
  year: 2022
  ident: jpphotonada101bib33
  article-title: SRDiff: single image super-resolution with diffusion probabilistic models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.029
– volume: 349
  start-page: aab3500
  year: 2015
  ident: jpphotonada101bib53
  article-title: Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics
  publication-title: Science
  doi: 10.1126/science.aab3500
– volume: 18
  start-page: 194
  year: 2021
  ident: jpphotonada101bib26
  article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01048-5
– year: 2024
  ident: jpphotonada101bib34
  article-title: Conditional variational diffusion models
– volume: vol 80
  start-page: pp 4055
  year: 2018
  ident: jpphotonada101bib21
  article-title: Image transformer
– start-page: pp 1132
  year: 2017
  ident: jpphotonada101bib13
  article-title: Enhanced deep residual networks for single image super-resolution
– start-page: pp 105
  year: 2017
  ident: jpphotonada101bib15
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– year: 2021
  ident: jpphotonada101bib40
  article-title: DL-SR
SSID ssj0002794026
Score 2.283794
Snippet Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation...
SourceID doaj
unpaywall
swepub
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13001
SubjectTerms Atom and Molecular Physics and Optics
Atom- och molekylfysik och optik
Background noise
deep learning
denoising diffusion probabilistic models (DDPMs)
diffusion models
Image resolution
Microscopy
microscopy image enhancement
Neural networks
Noise levels
Probabilistic models
python tutorial
super-resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7Si3oQRcW6MQcVFEI7k0wW8eJK8eDJgreQVSq1HdoO4r_3ZWaq9WIv3oZMYJLvJfO9L8t7CJ0El-mUC4OFdgJTJx02IMOwo_BCkwAecnVA9on1-vTxJX9ZSPUVz4TV4YFr4DrOMStTkzMfBFA_0cTmQTsvTGolNyb-fbtCLoipt2o7TYIwmu9LwkzqAI_nmDPKO9rptMkBM-ehKlw_sMtgXPz2NOvooetotRwV-vNDD4cL7POwiTYatzG5rpu7hVb8aBtd3Q1CKONyV1IltJkm4IEm07LwEwwquhlUyXs8cxdvn3xeJjqZxaAFMOh2UP_h_vm2h5tsCNiC6Jrh4JhmljuWWUa0CxqgBP8HEPVEwwNxWlIbDIc57A3LaPBZToB7LOsC6IzsotZoPPJ7KDHSc8pA-_I8Kg5iQMdwYgNnltmsa9vofI6NKuqgF6rarBZCRRxVxFHVOLbRTQTvu14MV10VgBFVY0S1zIhtdArQq2b6TP_42OHcOD-VSbwMLiUVso3OaoP9as1rWSgoei3V1CtCwSOEihffBl3aw_3_6OEBWsti5uBuCqx3iFqzSemPwJ2ZmeNq5H4B44bx7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_s-WD7IEotvfpBHrTQwnKX7GY3EUupX4gPRxEF35b9PAS9i3cXxP_e2WRz1hf7FjYLm_xmZuc3-zEDsO9tplJRaFIoWxBmS0s0hmHEMnyhqEeG3ByQHfGLG3Z5m9-uwKi7CxOOVXZzYjNR26kJa-QDGq78liUryt_VIwlVo8LualdCQ8XSCvZXk2LsA6xmITNWD1aPz0Z_r5arLhmqH0Ydcb8SLWyA_j0ngjMxUFalsTZM55-aNP7ode6m1VsG2mYV_QRr9aRSz0_q_v4fr3S-AeuRTiZ_WvlvwoqbfIaj0zvv67AMljSFbuYJMtNkXlduRjC6jsqWPISzeOFWyvNhopJFSGaAyrgFN-dn1ycXJFZJIAaDsQXxlituhOWZ4VRZrxBi5EWItKMKH6hVJTNeC7Rtp3nGvMtyij7J8CEKg9Mv0JtMJ-4rJLp0gnGMiUUeIhGqMb4R1HjBDTfZ0PThR4eNrNpkGLLZxC4KGXCUAUfZ4tiH4wDesl9IY900TGdjGa1CWstNmeqcO18gr6OKmtwr6wqdmlJo3YcDhF5Gs5q_M9hOJ5zXzq8a04fvrcDefM24riQ2jWs5d5IyZIrY8edSoP_9w2_vD7oNH7NQK3iYop_bgd5iVrtdJDALvRe18gXHS-5q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye1APPlBxdZUeVFCIbps0acWLT8SDeHBBTyFPEXUttkX01ztpu-qK-LiVdkqbmQnzTZL5BqE1ZyIZ8kThRJoEU5MarCANw4bCA0kcIOTqgOw5O-3Ts6v4qlnv8LUwI_v3kJxB-I0xZ5TvSCNDX6jVZjGg7hZq988v9q9977ihSLML-d1rI1GnIueHWHL7mI3iypordBKNl4NMvjzL-_tPseZkuiY-yiuKQn_E5G67LNS2fv1C4PiXYcygqQZwBvu1h8yiMTuYQ3tHt86VfqEsqFrh5AFg1yAvM_uEIf9u3DF48Kf1fN3Ky24gg8LTHYC7zqP-yfHl4Slu-ihgDelagZ1hkmluWKQZkcZJMAIgJ7CFJRIuiJEp1U5xmP1WsYg6G8UEopZmPTAXIwuoNXgc2EUUqNRyyiBr5rHPVYiCDIgT7TjTTEc93UGbQz2LrKbLENU2d5IIrwPhdSBqHXTQgTfEu5wnuq5ugOJEM2-EMUynoYqZdQkgPyKJjp00NlGhTrlSHbQOZhTNxMt_-Fh3aOgPYeLLyNOUJmkHbdTGH_mbmzITcOumFLkVhAKWBMGtd-f4dYRL_xFeRhOR7y3cCyEudlGreCrtCgCeQq02vv4GE7P4Fw
  priority: 102
  providerName: Unpaywall
Title Diffusion models for super-resolution microscopy: a tutorial
URI https://iopscience.iop.org/article/10.1088/2515-7647/ada101
https://www.proquest.com/docview/3156099489
https://gup.ub.gu.se/publication/348399
https://doi.org/10.1088/2515-7647/ada101
https://doaj.org/article/dd6c91b56ef84233a3c5fade8b1c97bb
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) Publishing Journals
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: IOP
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: O3W
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2515-7647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794026
  issn: 2515-7647
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFH-IHrSHUrHSrXaZgwotRHcmmSSjXtQq2sO6iEvtKeRTCroO7g7F_96XmXF1QayXISQZkvm9l3m_l48XgI3gMp0KaYjUThLmCkcMumHEMSzQNCBDrjfI9vnpkP26yq_mYG96FuaubH_925hsAgU3ELYb4uQOWuScCM7EjnY6jWe3FuLqVgycf05_TydYMtQ0dDDapcnXXpwxRXXEfjQw2Oos2WwCiH6AxWpU6od_-ubmhQE6-QQfW-aYHDT9XIY5P1qB_Z9_Q6jijFdS32kzTpCEJuOq9PcEHelWr5LbuO0uHkB52E10MolxC1DvPsPw5Pjy6JS0FyIQi37XhATHNbfC8cxyql3QiCZSIATVU40J6nTBbDACh7E3PGPBZzlF82N5D3HndBXmR3cj_wUSU3jBOLq_Io9OBzXoyghqg-CW26xnO_D9CRtVNnEvVL1eLaWKOKqIo2pw7MBhBG9aL0asrjNQeqqVnnKO2yI1OfdBIoWjmto8aOelSW0hjOnAJkKv2hE0fqOx9SfhPFem8Tx4UTBZdGCrEdhMb66rUmHWdaXGXlGGpBAr_pgK9L9f-PWdnVuDpSzeD9xL0batw_zkvvLfkLRMTBcWDo_7g4tu7fTj8-x80K0VFkuG_cHBn0fNqus4
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PgAYEAURiQB4YEktUmduwEMSHGNnVsVAht0t48X6tJow1to6l_jt_GceJ07GU87S1yrMQ-F_v7fDkH4K23mUpFoUmhbEGYLS3RSMOIZfhCUY8IuTkgO-LDU_btLD9bgz_dXZhwrLIbE5uB2k5NWCPv03DltyxZUX6ufpOQNSrsrnYpNFRMrWB3mhBj8WLHkVteIYWb7xzuob63s-xg_-TrkMQsA8QgmVkQb7niRlieGU6V9QqbiLgCW-qowgdqVcmM1wJ9w2meMe-ynOKYbvgAO8MpfvcebDDKSiR_G7v7ox8_V6s8GZo7spy4P4oe3Uc8kRPBmegrq9KYi6abD5u0ATjLXUyrm4i3jWL6ADbrSaWWV-ry8p9Z8OARPIzwNfnS2ttjWHOTJ_Bp78L7Oiy7JU1inXmCSDiZ15WbEWTz0biTX-HsX7gFs_yYqGQRgieg8T-F0zuR1zNYn0wn7jkkunSCceTgIg_Mh2rkU4IaL7jhJhuYHrzvZCOrNviGbDbNi0IGOcogR9nKsQe7QXireiFsdlMwnY1l9EJpLTdlqnPufIE4kipqcq-sK3RqSqF1D7ZR9DK68fyWn211yrmufG2hPXjXKuxGa8Z1JbFoXMu5k5QhMsWKH1YK_W8PX9z-0zewOTz5fiyPD0dHL-F-FvIUD1KcY7dgfTGr3SsETwv9OlpoAud37RR_AcHVLH0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1daxQxcNAW_HiwFRVPW7sPVVDIfWyySVZ8qdajrVL7YKFvMZ9Hab0uvV2k_nonu7nTE6mCbyE7S5KZSWYmmQ-A7eByPRLSEKmdJMyVjhg0w4hj-EHTgBpy6yB7yPeO2cFJcZLqnLaxMBdVOvr72OwSBXcoTA5xcoASuSCCMzHQTiNHDSoXbsJqm6ckRvB9OlpcsuTIbWhkpOfJP_28JI7arP0oZHDkZYWzSyJ6F24300pffdPn578IofEafJlPv_M9Oes3tenb779ldvyP9a3DvaSgZjsd-H244acP4M3uaQhNvFjL2tI5swx13WzWVP6SoL2e2Df7Gr37YpzL1etMZ3VMj4Ds_RCOx-8_v9sjqe4CsWje1SQ4rrkVjueWU-2CRqKhpoW081RjgzpdMhuMwNPCG56z4POCopSzfIjk5fQRrEwvpv4xZKb0gnG0skURbRtq0GIS1AbBLbf50Pbg5Rz9qurSa6j2WVxKFfGgIh5Uh4cevI30WcDFxNhtByJRJSQq57gtR6bgPkjUFKmmtgjaeWlGthTG9OA54l2ljTq7ZrCNOf1_AtMYdl6WTJY9eNHxxNJsJk2lsGvSqJlXlKHuiYCvFjzz1xU--cfJbcGto92x-rh_-OEp3MljReLhCKXpBqzUl43fRDWpNs_arfADagAKkA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye1APPlBxdZUeVFCIbps0acWLT8SDeHBBTyFPEXUttkX01ztpu-qK-LiVdkqbmQnzTZL5BqE1ZyIZ8kThRJoEU5MarCANw4bCA0kcIOTqgOw5O-3Ts6v4qlnv8LUwI_v3kJxB-I0xZ5TvSCNDX6jVZjGg7hZq988v9q9977ihSLML-d1rI1GnIueHWHL7mI3iypordBKNl4NMvjzL-_tPseZkuiY-yiuKQn_E5G67LNS2fv1C4PiXYcygqQZwBvu1h8yiMTuYQ3tHt86VfqEsqFrh5AFg1yAvM_uEIf9u3DF48Kf1fN3Ky24gg8LTHYC7zqP-yfHl4Slu-ihgDelagZ1hkmluWKQZkcZJMAIgJ7CFJRIuiJEp1U5xmP1WsYg6G8UEopZmPTAXIwuoNXgc2EUUqNRyyiBr5rHPVYiCDIgT7TjTTEc93UGbQz2LrKbLENU2d5IIrwPhdSBqHXTQgTfEu5wnuq5ugOJEM2-EMUynoYqZdQkgPyKJjp00NlGhTrlSHbQOZhTNxMt_-Fh3aOgPYeLLyNOUJmkHbdTGH_mbmzITcOumFLkVhAKWBMGtd-f4dYRL_xFeRhOR7y3cCyEudlGreCrtCgCeQq02vv4GE7P4Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+models+for+super-resolution+microscopy%3A+a+tutorial&rft.jtitle=JPhys+photonics&rft.au=Bachimanchi%2C+Harshith&rft.au=Volpe%2C+Giovanni&rft.date=2025-01-31&rft.issn=2515-7647&rft.eissn=2515-7647&rft.volume=7&rft.issue=1&rft.spage=13001&rft_id=info:doi/10.1088%2F2515-7647%2Fada101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2515_7647_ada101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-7647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-7647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-7647&client=summon