Diffusion models for super-resolution microscopy: a tutorial
Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with...
Saved in:
| Published in | JPhys photonics Vol. 7; no. 1; pp. 13001 - 13035 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
31.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2515-7647 2515-7647 |
| DOI | 10.1088/2515-7647/ada101 |
Cover
| Abstract | Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with a specific focus on transforming low-resolution microscopy images into their corresponding high-resolution versions in the context of super-resolution microscopy. We provide the necessary theoretical background, the essential mathematical derivations, and a detailed Python code implementation using PyTorch. We discuss the metrics to quantitatively evaluate the model, illustrate the model performance at different noise levels of the input low-resolution images, and briefly discuss how to adapt the tutorial for other applications. The code provided in this tutorial is also available as a Python notebook in the supplementary information. |
|---|---|
| AbstractList | Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with a specific focus on transforming low-resolution microscopy images into their corresponding high-resolution versions in the context of super-resolution microscopy. We provide the necessary theoretical background, the essential mathematical derivations, and a detailed Python code implementation using PyTorch. We discuss the metrics to quantitatively evaluate the model, illustrate the model performance at different noise levels of the input low-resolution images, and briefly discuss how to adapt the tutorial for other applications. The code provided in this tutorial is also available as a Python notebook in the supplementary information. |
| Author | Bachimanchi, Harshith Volpe, Giovanni |
| Author_xml | – sequence: 1 givenname: Harshith orcidid: 0000-0001-9497-8410 surname: Bachimanchi fullname: Bachimanchi, Harshith organization: University of Gothenburg Department of Physics, Gothenburg, Sweden – sequence: 2 givenname: Giovanni orcidid: 0000-0001-5057-1846 surname: Volpe fullname: Volpe, Giovanni organization: University of Gothenburg Department of Physics, Gothenburg, Sweden |
| BackLink | https://gup.ub.gu.se/publication/348399$$DView record from Swedish Publication Index |
| BookMark | eNqNkEtLxDAUhYMoqKN7lwW31kmaNGnFjfgcENzoOtzmMXSoTU0ahvn3tlMZdSG4yuXknMO93zHab11rEDoj-JLgophnOclTwZmYgwaCyR462kn7P-ZDdBrCCmOciZLhjB-h67va2hhq1ybvTpsmJNb5JMTO-NSb4JrYb_9q5V1QrttcJZD0sXe-huYEHVhogjn9emfo7eH-9fYpfX55XNzePKeKYdGnVnPgSmieKU5BWwCgJGcZgKEwDFRDyZSthMDUVDxj1mQ5ZYIojoFaTmdoMfVqByvZ-fod_EY6qOVWcH4pwfe1aozUmquSVDk3tmAZpUBVbkGboiKqFFU1dJGpK7YdbNbQNLtCguVIU4645IhLTjSHTDplwtp0sfq1wTJ2cpCWUQYjKStoWQ7-88nfefcRTejlykXfDojkcDjHZcmK0YUn14g2eGP_s8jFFKld9935p_0TzGikQA |
| Cites_doi | 10.1364/OL.19.000780 10.1109/TPAMI.2015.2439281 10.1038/s41467-023-38452-2 10.1109/TMM.2019.2919431 10.1038/s41467-024-49125-z 10.1038/nature14539 10.1038/s42256-024-00831-9 10.1007/BF02956173 10.1038/s41592-018-0239-0 10.1038/s41467-024-48575-9 10.1038/s41587-022-01471-3 10.1073/pnas.0406877102 10.1038/nmeth929 10.1145/3528233.3530757 10.1016/j.cell.2018.09.057 10.1529/biophysj.107.120345 10.6084/m9.figshare.13264793.v9 10.1046/j.1365-2818.2000.00710.x 10.1126/science.1127344 10.1007/s11042-023-17660-4 10.1038/nbt895 10.1016/j.neucom.2022.01.029 10.1126/science.aab3500 10.1038/s41592-020-01048-5 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Published by IOP Publishing Ltd 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7SP 7XB 88I 8FD 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ L7M M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTPV AOWAS F1U ADTOC UNPAY DOA |
| DOI | 10.1088/2515-7647/ada101 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SwePub SwePub Articles SWEPUB Göteborgs universitet Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2515-7647 |
| ExternalDocumentID | oai_doaj_org_article_dd6c91b56ef84233a3c5fade8b1c97bb 10.1088/2515-7647/ada101 oai_gup_ub_gu_se_348399 10_1088_2515_7647_ada101 jpphotonada101 |
| GrantInformation_xml | – fundername: Knut och Alice Wallenbergs Stiftelse grantid: Grant No. 2019.0079 funderid: http://dx.doi.org/10.13039/501100004063 – fundername: HORIZON EUROPE European Research Council grantid: Consolidator Grant MAPEI (Grant No. 101001267) funderid: http://dx.doi.org/10.13039/100019180 |
| GroupedDBID | 88I ABHWH ABUWG ACHIP ADBBV AFKRA AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU CJUJL CRLBU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IJHAN IOP M2P M~E N5L O3W OK1 PIMPY PJBAE TSCCA AAFWJ AAYXX CITATION PHGZM PHGZT PUEGO 3V. 7SP 7XB 8FD 8FK L7M PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTPV AOWAS EJD F1U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c407t-fd6a6c7d62c63adfaaa31542aae3a1543da94cfb7703eb624fe253471c60a3f63 |
| IEDL.DBID | O3W |
| ISSN | 2515-7647 |
| IngestDate | Fri Oct 03 12:39:32 EDT 2025 Sun Oct 26 03:43:06 EDT 2025 Wed Sep 10 00:23:14 EDT 2025 Mon Jun 30 13:04:15 EDT 2025 Wed Oct 01 05:03:51 EDT 2025 Tue Feb 04 22:30:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-fd6a6c7d62c63adfaaa31542aae3a1543da94cfb7703eb624fe253471c60a3f63 |
| Notes | JPPHOTON-100692.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9497-8410 0000-0001-5057-1846 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2515-7647/ada101 |
| PQID | 3156099489 |
| PQPubID | 4916452 |
| PageCount | 35 |
| ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_348399 iop_journals_10_1088_2515_7647_ada101 unpaywall_primary_10_1088_2515_7647_ada101 crossref_primary_10_1088_2515_7647_ada101 proquest_journals_3156099489 doaj_primary_oai_doaj_org_article_dd6c91b56ef84233a3c5fade8b1c97bb |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-31 |
| PublicationDateYYYYMMDD | 2025-01-31 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | JPhys photonics |
| PublicationTitleAbbrev | JPhysPhotonics |
| PublicationTitleAlternate | J. Phys. Photonics |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Qiao (jpphotonada101bib27) 2023; 41 della Maggiora (jpphotonada101bib35) 2024 Guo (jpphotonada101bib52) 2018; 175 Della Maggiora (jpphotonada101bib34) 2024 Li (jpphotonada101bib33) 2022; 479 Lai (jpphotonada101bib14) 2017 Ronneberger (jpphotonada101bib48) 2015 Midtvedt (jpphotonada101bib50) 2024 Bachimanchi (jpphotonada101bib39) 2024 Goodfellow (jpphotonada101bib43) 2014; vol 27 Parmar (jpphotonada101bib21) 2018; vol 80 Gustafsson (jpphotonada101bib6) 2000; 198 Karras (jpphotonada101bib44) 2018 Ho (jpphotonada101bib29) 2020; vol 33 Yu (jpphotonada101bib10) 2024; 83 Abbe (jpphotonada101bib1) 1873; 9 Hell (jpphotonada101bib2) 1994; 19 Dahl (jpphotonada101bib23) 2017 Rombach (jpphotonada101bib30) 2022 Dong (jpphotonada101bib12) 2016; 38 Rust (jpphotonada101bib5) 2006; 3 Zhang (jpphotonada101bib16) 2018 Lu (jpphotonada101bib38) 2024; 15 Cai (jpphotonada101bib19) 2019 Chen (jpphotonada101bib24) 2018 Wang (jpphotonada101bib25) 2019; 16 Qiao (jpphotonada101bib55) 2020 Lim (jpphotonada101bib13) 2017 Qiao (jpphotonada101bib40) 2021 Weng (jpphotonada101bib47) 2021 Gustafsson (jpphotonada101bib54) 2008; 94 Fürrutter (jpphotonada101bib37) 2024; 6 Yang (jpphotonada101bib17) 2019; 21 Oscar Cross-Zamirski (jpphotonada101bib36) 2023 Qiao (jpphotonada101bib11) 2024; 15 Li (jpphotonada101bib53) 2015; 349 Midtvedt (jpphotonada101bib9) 2025 Saharia (jpphotonada101bib32) 2022 Vaswani (jpphotonada101bib49) 2017; vol 30 LeCun (jpphotonada101bib8) 2015; 521 Menon (jpphotonada101bib22) 2020 Chen (jpphotonada101bib28) 2023; 14 Radford (jpphotonada101bib45) 2016 Betzig (jpphotonada101bib4) 2006; 313 Ledig (jpphotonada101bib15) 2017 Saharia (jpphotonada101bib46) 2021 Qiao (jpphotonada101bib26) 2021; 18 Cai (jpphotonada101bib18) 2019 Hell (jpphotonada101bib3) 2003; 21 Gustafsson (jpphotonada101bib7) 2005; 102 Lugmayr (jpphotonada101bib20) 2020 Kingma (jpphotonada101bib41) 2022 Vahdat (jpphotonada101bib42) 2020; vol 33 Dhariwal (jpphotonada101bib31) 2021; vol 34 Ho (jpphotonada101bib51) 2021 |
| References_xml | – volume: 19 start-page: 780 year: 1994 ident: jpphotonada101bib2 article-title: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy publication-title: Opt. Lett. doi: 10.1364/OL.19.000780 – year: 2016 ident: jpphotonada101bib45 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – volume: 38 start-page: 295 year: 2016 ident: jpphotonada101bib12 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 14 start-page: 2854 year: 2023 ident: jpphotonada101bib28 article-title: Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging publication-title: Nat. Commun. doi: 10.1038/s41467-023-38452-2 – year: 2022 ident: jpphotonada101bib41 article-title: Auto-encoding variational Bayes – volume: 21 start-page: 3106 year: 2019 ident: jpphotonada101bib17 article-title: Deep learning for single image super-resolution: a brief review publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2019.2919431 – year: 2024 ident: jpphotonada101bib39 article-title: biosr_dataset – volume: 15 start-page: 4677 year: 2024 ident: jpphotonada101bib38 article-title: Diffusion-based deep learning method for augmenting ultrastructural imaging and volume electron microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-024-49125-z – year: 2025 ident: jpphotonada101bib9 – start-page: pp 3086 year: 2019 ident: jpphotonada101bib18 article-title: Toward real-world single image super-resolution: a new benchmark and a new model – volume: 521 start-page: 436 year: 2015 ident: jpphotonada101bib8 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2024 ident: jpphotonada101bib35 article-title: Single exposure quantitative phase imaging with a conventional microscope using diffusion models – start-page: pp 5835 year: 2017 ident: jpphotonada101bib14 article-title: Deep Laplacian pyramid networks for fast and accurate super-resolution – volume: 6 start-page: 515 year: 2024 ident: jpphotonada101bib37 article-title: Quantum circuit synthesis with diffusion models publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-024-00831-9 – start-page: pp 286 year: 2018 ident: jpphotonada101bib16 article-title: Image super-resolution using very deep residual channel attention networks – volume: vol 34 start-page: pp 8780 year: 2021 ident: jpphotonada101bib31 article-title: Diffusion models beat GANs on image synthesis – volume: vol 30 year: 2017 ident: jpphotonada101bib49 article-title: Attention is all you need – volume: 9 start-page: 413 year: 1873 ident: jpphotonada101bib1 article-title: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung publication-title: Arch. Mikrosk. Anat. doi: 10.1007/BF02956173 – volume: 16 start-page: 103 year: 2019 ident: jpphotonada101bib25 article-title: Deep learning enables cross-modality super-resolution in fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0239-0 – volume: 15 start-page: 4180 year: 2024 ident: jpphotonada101bib11 article-title: Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-024-48575-9 – volume: vol 33 start-page: pp 19667 year: 2020 ident: jpphotonada101bib42 article-title: NVAE: a deep hierarchical variational autoencoder – volume: 41 start-page: 367 year: 2023 ident: jpphotonada101bib27 article-title: Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01471-3 – volume: 102 start-page: 13081 year: 2005 ident: jpphotonada101bib7 article-title: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0406877102 – start-page: pp 5449 year: 2017 ident: jpphotonada101bib23 article-title: Pixel recursive super resolution – start-page: pp 10674 year: 2022 ident: jpphotonada101bib30 article-title: High-resolution image synthesis with latent diffusion models – start-page: pp 2492 year: 2018 ident: jpphotonada101bib24 article-title: FSRNet: end-to-end learning face super-resolution with facial priors – year: 2024 ident: jpphotonada101bib50 article-title: Deeplay – start-page: pp 2058 year: 2020 ident: jpphotonada101bib20 article-title: NTIRE 2020 challenge on real-world image super-resolution: methods and results – volume: 3 start-page: 793 year: 2006 ident: jpphotonada101bib5 article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nat. Methods doi: 10.1038/nmeth929 – year: 2022 ident: jpphotonada101bib32 article-title: Palette: image-to-image diffusion models doi: 10.1145/3528233.3530757 – year: 2018 ident: jpphotonada101bib44 article-title: Progressive growing of GANs for improved quality, stability and variation – volume: 175 start-page: 1430 year: 2018 ident: jpphotonada101bib52 article-title: Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales publication-title: Cell doi: 10.1016/j.cell.2018.09.057 – volume: vol 27 year: 2014 ident: jpphotonada101bib43 article-title: Generative adversarial nets – volume: 94 start-page: 4957 year: 2008 ident: jpphotonada101bib54 article-title: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination publication-title: Biophys. J. doi: 10.1529/biophysj.107.120345 – year: 2020 ident: jpphotonada101bib55 article-title: BioSR: a biological image dataset for super-resolution microscopy doi: 10.6084/m9.figshare.13264793.v9 – start-page: pp 234 year: 2015 ident: jpphotonada101bib48 article-title: U-Net: convolutional networks for biomedical image segmentation – start-page: pp 2211 year: 2019 ident: jpphotonada101bib19 article-title: NTIRE 2019 challenge on real image super-resolution: methods and results – volume: 198 start-page: 82 year: 2000 ident: jpphotonada101bib6 article-title: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2000.00710.x – start-page: pp 3802 year: 2023 ident: jpphotonada101bib36 article-title: Class-guided image-to-image diffusion: cell painting from brightfield images with class labels – volume: 313 start-page: 1642 year: 2006 ident: jpphotonada101bib4 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – year: 2021 ident: jpphotonada101bib46 article-title: Image super-resolution via iterative refinement – volume: vol 33 start-page: pp 6840 year: 2020 ident: jpphotonada101bib29 article-title: Denoising diffusion probabilistic models – start-page: pp 2434 year: 2020 ident: jpphotonada101bib22 article-title: Pulse: self-supervised photo upsampling via latent space exploration of generative models – year: 2021 ident: jpphotonada101bib47 article-title: What are diffusion models? – volume: 83 start-page: 55921 year: 2024 ident: jpphotonada101bib10 article-title: A review of single image super-resolution reconstruction based on deep learning publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-17660-4 – year: 2021 ident: jpphotonada101bib51 article-title: Classifier-free diffusion guidance – volume: 21 start-page: 1347 year: 2003 ident: jpphotonada101bib3 article-title: Toward fluorescence nanoscopy publication-title: Nat. Biotechnol. doi: 10.1038/nbt895 – volume: 479 start-page: 47 year: 2022 ident: jpphotonada101bib33 article-title: SRDiff: single image super-resolution with diffusion probabilistic models publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.029 – volume: 349 start-page: aab3500 year: 2015 ident: jpphotonada101bib53 article-title: Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics publication-title: Science doi: 10.1126/science.aab3500 – volume: 18 start-page: 194 year: 2021 ident: jpphotonada101bib26 article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – year: 2024 ident: jpphotonada101bib34 article-title: Conditional variational diffusion models – volume: vol 80 start-page: pp 4055 year: 2018 ident: jpphotonada101bib21 article-title: Image transformer – start-page: pp 1132 year: 2017 ident: jpphotonada101bib13 article-title: Enhanced deep residual networks for single image super-resolution – start-page: pp 105 year: 2017 ident: jpphotonada101bib15 article-title: Photo-realistic single image super-resolution using a generative adversarial network – year: 2021 ident: jpphotonada101bib40 article-title: DL-SR |
| SSID | ssj0002794026 |
| Score | 2.283794 |
| Snippet | Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation... |
| SourceID | doaj unpaywall swepub proquest crossref iop |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 13001 |
| SubjectTerms | Atom and Molecular Physics and Optics Atom- och molekylfysik och optik Background noise deep learning denoising diffusion probabilistic models (DDPMs) diffusion models Image resolution Microscopy microscopy image enhancement Neural networks Noise levels Probabilistic models python tutorial super-resolution |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7Si3oQRcW6MQcVFEI7k0wW8eJK8eDJgreQVSq1HdoO4r_3ZWaq9WIv3oZMYJLvJfO9L8t7CJ0El-mUC4OFdgJTJx02IMOwo_BCkwAecnVA9on1-vTxJX9ZSPUVz4TV4YFr4DrOMStTkzMfBFA_0cTmQTsvTGolNyb-fbtCLoipt2o7TYIwmu9LwkzqAI_nmDPKO9rptMkBM-ehKlw_sMtgXPz2NOvooetotRwV-vNDD4cL7POwiTYatzG5rpu7hVb8aBtd3Q1CKONyV1IltJkm4IEm07LwEwwquhlUyXs8cxdvn3xeJjqZxaAFMOh2UP_h_vm2h5tsCNiC6Jrh4JhmljuWWUa0CxqgBP8HEPVEwwNxWlIbDIc57A3LaPBZToB7LOsC6IzsotZoPPJ7KDHSc8pA-_I8Kg5iQMdwYgNnltmsa9vofI6NKuqgF6rarBZCRRxVxFHVOLbRTQTvu14MV10VgBFVY0S1zIhtdArQq2b6TP_42OHcOD-VSbwMLiUVso3OaoP9as1rWSgoei3V1CtCwSOEihffBl3aw_3_6OEBWsti5uBuCqx3iFqzSemPwJ2ZmeNq5H4B44bx7w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_s-WD7IEotvfpBHrTQwnKX7GY3EUupX4gPRxEF35b9PAS9i3cXxP_e2WRz1hf7FjYLm_xmZuc3-zEDsO9tplJRaFIoWxBmS0s0hmHEMnyhqEeG3ByQHfGLG3Z5m9-uwKi7CxOOVXZzYjNR26kJa-QDGq78liUryt_VIwlVo8LualdCQ8XSCvZXk2LsA6xmITNWD1aPz0Z_r5arLhmqH0Ydcb8SLWyA_j0ngjMxUFalsTZM55-aNP7ode6m1VsG2mYV_QRr9aRSz0_q_v4fr3S-AeuRTiZ_WvlvwoqbfIaj0zvv67AMljSFbuYJMtNkXlduRjC6jsqWPISzeOFWyvNhopJFSGaAyrgFN-dn1ycXJFZJIAaDsQXxlituhOWZ4VRZrxBi5EWItKMKH6hVJTNeC7Rtp3nGvMtyij7J8CEKg9Mv0JtMJ-4rJLp0gnGMiUUeIhGqMb4R1HjBDTfZ0PThR4eNrNpkGLLZxC4KGXCUAUfZ4tiH4wDesl9IY900TGdjGa1CWstNmeqcO18gr6OKmtwr6wqdmlJo3YcDhF5Gs5q_M9hOJ5zXzq8a04fvrcDefM24riQ2jWs5d5IyZIrY8edSoP_9w2_vD7oNH7NQK3iYop_bgd5iVrtdJDALvRe18gXHS-5q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye1APPlBxdZUeVFCIbps0acWLT8SDeHBBTyFPEXUttkX01ztpu-qK-LiVdkqbmQnzTZL5BqE1ZyIZ8kThRJoEU5MarCANw4bCA0kcIOTqgOw5O-3Ts6v4qlnv8LUwI_v3kJxB-I0xZ5TvSCNDX6jVZjGg7hZq988v9q9977ihSLML-d1rI1GnIueHWHL7mI3iypordBKNl4NMvjzL-_tPseZkuiY-yiuKQn_E5G67LNS2fv1C4PiXYcygqQZwBvu1h8yiMTuYQ3tHt86VfqEsqFrh5AFg1yAvM_uEIf9u3DF48Kf1fN3Ky24gg8LTHYC7zqP-yfHl4Slu-ihgDelagZ1hkmluWKQZkcZJMAIgJ7CFJRIuiJEp1U5xmP1WsYg6G8UEopZmPTAXIwuoNXgc2EUUqNRyyiBr5rHPVYiCDIgT7TjTTEc93UGbQz2LrKbLENU2d5IIrwPhdSBqHXTQgTfEu5wnuq5ugOJEM2-EMUynoYqZdQkgPyKJjp00NlGhTrlSHbQOZhTNxMt_-Fh3aOgPYeLLyNOUJmkHbdTGH_mbmzITcOumFLkVhAKWBMGtd-f4dYRL_xFeRhOR7y3cCyEudlGreCrtCgCeQq02vv4GE7P4Fw priority: 102 providerName: Unpaywall |
| Title | Diffusion models for super-resolution microscopy: a tutorial |
| URI | https://iopscience.iop.org/article/10.1088/2515-7647/ada101 https://www.proquest.com/docview/3156099489 https://gup.ub.gu.se/publication/348399 https://doi.org/10.1088/2515-7647/ada101 https://doaj.org/article/dd6c91b56ef84233a3c5fade8b1c97bb |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics (IOP) Publishing Journals customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: IOP dateStart: 20180101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: O3W dateStart: 20190101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2515-7647 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2515-7647 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794026 issn: 2515-7647 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFH-IHrSHUrHSrXaZgwotRHcmmSSjXtQq2sO6iEvtKeRTCroO7g7F_96XmXF1QayXISQZkvm9l3m_l48XgI3gMp0KaYjUThLmCkcMumHEMSzQNCBDrjfI9vnpkP26yq_mYG96FuaubH_925hsAgU3ELYb4uQOWuScCM7EjnY6jWe3FuLqVgycf05_TydYMtQ0dDDapcnXXpwxRXXEfjQw2Oos2WwCiH6AxWpU6od_-ubmhQE6-QQfW-aYHDT9XIY5P1qB_Z9_Q6jijFdS32kzTpCEJuOq9PcEHelWr5LbuO0uHkB52E10MolxC1DvPsPw5Pjy6JS0FyIQi37XhATHNbfC8cxyql3QiCZSIATVU40J6nTBbDACh7E3PGPBZzlF82N5D3HndBXmR3cj_wUSU3jBOLq_Io9OBzXoyghqg-CW26xnO_D9CRtVNnEvVL1eLaWKOKqIo2pw7MBhBG9aL0asrjNQeqqVnnKO2yI1OfdBIoWjmto8aOelSW0hjOnAJkKv2hE0fqOx9SfhPFem8Tx4UTBZdGCrEdhMb66rUmHWdaXGXlGGpBAr_pgK9L9f-PWdnVuDpSzeD9xL0batw_zkvvLfkLRMTBcWDo_7g4tu7fTj8-x80K0VFkuG_cHBn0fNqus4 |
| linkProvider | IOP Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a28PgAYEAURiQB4YEktUmduwEMSHGNnVsVAht0t48X6tJow1to6l_jt_GceJ07GU87S1yrMQ-F_v7fDkH4K23mUpFoUmhbEGYLS3RSMOIZfhCUY8IuTkgO-LDU_btLD9bgz_dXZhwrLIbE5uB2k5NWCPv03DltyxZUX6ufpOQNSrsrnYpNFRMrWB3mhBj8WLHkVteIYWb7xzuob63s-xg_-TrkMQsA8QgmVkQb7niRlieGU6V9QqbiLgCW-qowgdqVcmM1wJ9w2meMe-ynOKYbvgAO8MpfvcebDDKSiR_G7v7ox8_V6s8GZo7spy4P4oe3Uc8kRPBmegrq9KYi6abD5u0ATjLXUyrm4i3jWL6ADbrSaWWV-ry8p9Z8OARPIzwNfnS2ttjWHOTJ_Bp78L7Oiy7JU1inXmCSDiZ15WbEWTz0biTX-HsX7gFs_yYqGQRgieg8T-F0zuR1zNYn0wn7jkkunSCceTgIg_Mh2rkU4IaL7jhJhuYHrzvZCOrNviGbDbNi0IGOcogR9nKsQe7QXireiFsdlMwnY1l9EJpLTdlqnPufIE4kipqcq-sK3RqSqF1D7ZR9DK68fyWn211yrmufG2hPXjXKuxGa8Z1JbFoXMu5k5QhMsWKH1YK_W8PX9z-0zewOTz5fiyPD0dHL-F-FvIUD1KcY7dgfTGr3SsETwv9OlpoAud37RR_AcHVLH0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1daxQxcNAW_HiwFRVPW7sPVVDIfWyySVZ8qdajrVL7YKFvMZ9Hab0uvV2k_nonu7nTE6mCbyE7S5KZSWYmmQ-A7eByPRLSEKmdJMyVjhg0w4hj-EHTgBpy6yB7yPeO2cFJcZLqnLaxMBdVOvr72OwSBXcoTA5xcoASuSCCMzHQTiNHDSoXbsJqm6ckRvB9OlpcsuTIbWhkpOfJP_28JI7arP0oZHDkZYWzSyJ6F24300pffdPn578IofEafJlPv_M9Oes3tenb779ldvyP9a3DvaSgZjsd-H244acP4M3uaQhNvFjL2tI5swx13WzWVP6SoL2e2Df7Gr37YpzL1etMZ3VMj4Ds_RCOx-8_v9sjqe4CsWje1SQ4rrkVjueWU-2CRqKhpoW081RjgzpdMhuMwNPCG56z4POCopSzfIjk5fQRrEwvpv4xZKb0gnG0skURbRtq0GIS1AbBLbf50Pbg5Rz9qurSa6j2WVxKFfGgIh5Uh4cevI30WcDFxNhtByJRJSQq57gtR6bgPkjUFKmmtgjaeWlGthTG9OA54l2ljTq7ZrCNOf1_AtMYdl6WTJY9eNHxxNJsJk2lsGvSqJlXlKHuiYCvFjzz1xU--cfJbcGto92x-rh_-OEp3MljReLhCKXpBqzUl43fRDWpNs_arfADagAKkA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye1APPlBxdZUeVFCIbps0acWLT8SDeHBBTyFPEXUttkX01ztpu-qK-LiVdkqbmQnzTZL5BqE1ZyIZ8kThRJoEU5MarCANw4bCA0kcIOTqgOw5O-3Ts6v4qlnv8LUwI_v3kJxB-I0xZ5TvSCNDX6jVZjGg7hZq988v9q9977ihSLML-d1rI1GnIueHWHL7mI3iypordBKNl4NMvjzL-_tPseZkuiY-yiuKQn_E5G67LNS2fv1C4PiXYcygqQZwBvu1h8yiMTuYQ3tHt86VfqEsqFrh5AFg1yAvM_uEIf9u3DF48Kf1fN3Ky24gg8LTHYC7zqP-yfHl4Slu-ihgDelagZ1hkmluWKQZkcZJMAIgJ7CFJRIuiJEp1U5xmP1WsYg6G8UEopZmPTAXIwuoNXgc2EUUqNRyyiBr5rHPVYiCDIgT7TjTTEc93UGbQz2LrKbLENU2d5IIrwPhdSBqHXTQgTfEu5wnuq5ugOJEM2-EMUynoYqZdQkgPyKJjp00NlGhTrlSHbQOZhTNxMt_-Fh3aOgPYeLLyNOUJmkHbdTGH_mbmzITcOumFLkVhAKWBMGtd-f4dYRL_xFeRhOR7y3cCyEudlGreCrtCgCeQq02vv4GE7P4Fw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+models+for+super-resolution+microscopy%3A+a+tutorial&rft.jtitle=JPhys+photonics&rft.au=Bachimanchi%2C+Harshith&rft.au=Volpe%2C+Giovanni&rft.date=2025-01-31&rft.issn=2515-7647&rft.eissn=2515-7647&rft.volume=7&rft.issue=1&rft.spage=13001&rft_id=info:doi/10.1088%2F2515-7647%2Fada101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2515_7647_ada101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-7647&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-7647&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-7647&client=summon |