Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware

•In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority...

Full description

Saved in:
Bibliographic Details
Published inMedical hypotheses Vol. 136; p. 109507
Main Authors ŞİŞİK, Fatih, SERT, Eser
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2020
Subjects
Online AccessGet full text
ISSN0306-9877
1532-2777
1532-2777
DOI10.1016/j.mehy.2019.109507

Cover

Abstract •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority of the proposed method. Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI’s are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.
AbstractList •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority of the proposed method. Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI’s are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.
Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.
Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.
ArticleNumber 109507
Author SERT, Eser
ŞİŞİK, Fatih
Author_xml – sequence: 1
  givenname: Fatih
  surname: ŞİŞİK
  fullname: ŞİŞİK, Fatih
  organization: Göksun Vocational School, Department of Computer Programming, Kahramanmaras Sutcu Imam University, K.Maras, Turkey
– sequence: 2
  givenname: Eser
  surname: SERT
  fullname: SERT, Eser
  email: esersert@ksu.edu.tr
  organization: Department of Computer Engineering, Engineering and Architecture Faculty, Kahramanmaras Sutcu Imam University, K.Maras, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31812927$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAYxC1URLeFF-CAfOSSxXb-OEZc6IoCUiUQgrPlOJ93vTjOYjtA-lB9RrxNe-mhnPxpNL-xNHOGTvzoAaGXlKwpoc2b_XqA3bxmhIosiJrwJ2hF65IVjHN-glakJE0hWs5P0VmMe0KIqMr2GTotaUuZYHyFbi6Csh6naRgDjrAdwCeV7OixOhzCqPQOdypCj7OSdoDhbwowAHaggrd-i4dssR6w8j2OduutsVr55GZsVEy3chi7KZ9mur6e8aYYQPmItcsahGOEctsx2LQbIg6Tv03Nv31T8dBBCDP-avFOhf6PCvAcPTXKRXhx956jH5cfvm8-FVdfPn7evL8qdEV4KkzX1F0DdVUZ0mmjha6VBtOL0hDC-7pWrC1ppY0QtGl1o3nVcKE4453gtK_Kc_R6yc0d_JogJjnYqME55WGcomQlYy2pSFln66s769QN0MtDsIMKs7zvOBvaxaDDGGMAI7VdOk65eycpkcc55V4e55THOeUyZ0bZA_Q-_VHo3QJBLui3hSCjtuA19DaATrIf7eP42we4dtbnUd1PmP8H_wMm4NDs
CitedBy_id crossref_primary_10_1007_s11042_022_12445_7
crossref_primary_10_1007_s11042_023_17789_2
crossref_primary_10_1016_j_isatra_2020_03_018
crossref_primary_10_1155_2022_4224749
crossref_primary_10_1038_s41598_024_66554_4
crossref_primary_10_1002_ima_22792
crossref_primary_10_1007_s11042_023_16654_6
crossref_primary_10_1016_j_compbiomed_2022_106405
crossref_primary_10_1177_15353702231214259
crossref_primary_10_1002_ima_22826
crossref_primary_10_1155_2021_9054812
crossref_primary_10_1016_j_compbiomed_2022_105273
crossref_primary_10_3389_fneur_2021_701946
crossref_primary_10_47836_pjst_31_1_33
crossref_primary_10_1016_j_medengphy_2020_02_001
crossref_primary_10_1080_21681163_2022_2083019
crossref_primary_10_1155_2021_6191448
Cites_doi 10.1016/j.neucom.2017.04.007
10.1016/0098-3004(84)90020-7
10.1023/A:1022627411411
10.1016/j.compeleceng.2017.01.017
10.1142/S0218001419540089
10.1016/j.neucom.2017.03.093
10.1016/j.ins.2018.07.027
10.1016/j.fss.2017.12.006
10.1016/j.cmpb.2018.09.006
10.1016/j.chemolab.2012.02.008
10.1016/j.neucom.2005.12.126
10.1016/j.procs.2018.08.069
10.1016/j.mehy.2019.109433
10.15598/aeee.v12i4.1200
10.1016/j.infrared.2019.02.010
10.1016/j.aej.2017.06.008
10.1016/j.bspc.2018.08.025
10.1109/TGRS.2014.2335751
10.1016/j.neucom.2014.03.074
10.1016/j.procs.2015.12.302
10.1016/j.compag.2016.01.011
10.1016/j.procs.2016.03.058
10.1016/j.measurement.2019.07.058
10.1016/j.patcog.2018.05.006
10.1016/j.ejmp.2016.04.003
10.1016/j.compmedimag.2016.05.004
10.1016/j.mcm.2012.12.025
10.1016/j.neucom.2015.08.048
10.1016/j.media.2016.05.004
10.1016/j.neucom.2019.04.067
10.1007/s10278-013-9622-7
10.18844/ijire.v4i3.2549
10.1016/j.asoc.2019.02.036
10.1016/j.mehy.2019.109413
10.1371/journal.pone.0134254
10.1016/j.sna.2018.12.007
10.1016/j.media.2018.08.006
10.1016/j.eswa.2018.10.040
10.1016/j.fcij.2018.10.001
10.1016/j.neucom.2014.07.009
10.1007/s00521-016-2834-2
10.5402/2011/393891
10.1109/TFUZZ.2018.2796074
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mehy.2019.109507
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-2777
ExternalDocumentID 31812927
10_1016_j_mehy_2019_109507
S0306987719310953
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSP
SSU
SSZ
T5K
UHS
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-fb65b6e544f0bcfc9c5acefd93f007d55a28314cf99168c6c74679a727b971d43
IEDL.DBID .~1
ISSN 0306-9877
1532-2777
IngestDate Sat Sep 27 19:55:22 EDT 2025
Thu Apr 03 07:08:04 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Thu Oct 09 00:27:39 EDT 2025
Fri Feb 23 02:48:40 EST 2024
Tue Oct 14 19:25:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain tumor segmentation
Raspberry Pi
Extreme learning machine
Segmentation
Magnetic resonance imaging
Significantly fast and robust fuzzy C-means clustering
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-fb65b6e544f0bcfc9c5acefd93f007d55a28314cf99168c6c74679a727b971d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31812927
PQID 2322804035
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2322804035
pubmed_primary_31812927
crossref_citationtrail_10_1016_j_mehy_2019_109507
crossref_primary_10_1016_j_mehy_2019_109507
elsevier_sciencedirect_doi_10_1016_j_mehy_2019_109507
elsevier_clinicalkey_doi_10_1016_j_mehy_2019_109507
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical hypotheses
PublicationTitleAlternate Med Hypotheses
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sai, Wang, Teoh (b0105) 2015; 149
Diallo, Gobee, Durairajah (b0135) 2015; 76
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio (b0035) 2017; 35
Özyurt, Sert, Avci, Dogantekin (b0070) 2019; 147
Yilmaz, Durdu, Emlik (b0020) 2018; 29
Sert, Alkan (b0010) 2019; 33
Sert, Okumus (b0235) 2014; 12
Xie, Li, Ma (b0100) 2016; 173
Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0185) 2013; 26
Huang, Zhu, Siew (b0195) 2006; 70
Lei, Jia, Zhang, He, Meng, Nandi (b0160) 2018; 26
Anandhalli, Baligar (b0125) 2018; 57
Lam Loong Man, Koonjul, Nagowah (b0140) 2018; 3
Zhu, Zou, Zhao, Cui, Duan, Chen (b0085) 2017; 55
Joskowicz, Cohen, Caplan, Sosna (b0240) 2018; 50
Sajjad, Nasir, Ullah, Muhammad, Sangaiah, Baik (b0130) 2019; 479
Yao, Duan, Li, Wang (b0230) 2013; 58
Cortes, Vapnik (b0165) 1995; 20
Wang, Ko, Chen, Chen, Lin (b0150) 2019; 285
Haykin (b0220) 1999
Sert (b0005) 2018; 65
Golestaneh, Zekri, Sheikholeslam (b0210) 2018; 342
Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW. Data from rembrandt 2015. DOI:10.7937/k9/tcia.2015.588ozuzb.
Tu, Hansen, Kryger, Ahrendt (b0155) 2016; 122
Kohonen, Huang, Schroeder (b0175) 2012
Chandra, Rao (b0025) 2016; 79
Sert, Özyurt, Doğantekin (b0075) 2019; 133
Shang, He (b0120) 2015; 148
McDonnell, Tissera, Vladusich, van Schaik, Tapson (b0200) 2015; 10
Zhao, Wang (b0115) 2019; 355
Chi (b0225) 2011; 2011
Mittal, Goyal, Kaur, Kaur, Verma, Jude (b0030) 2019; 78
Selvapandian, Manivannan (b0045) 2018; 166
Şişik, Sert (b0055) 2017; 4
Bergner, Bocklitz, Romeike, Reichart, Kalff, Krafft (b0050) 2012; 117
Rehman, Naqvi, Khan, Khan, Bashir (b0040) 2019; 118
Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D, et al. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection 2016. DOI:10.7937/k9/tcia.2016.rnyfuye9.
Zotin, Simonov, Kurako, Hamad, Kirillova (b0015) 2018; 126
Bezdek, Ehrlich, Full (b0170) 1984; 10
Pratt (b0245) 2002
Yildiz, Boyraz (b0145) 2019; 98
Zeng, Zhao, Liao, Zou, Wang, Wang (b0090) 2016; 32
Huang, Ma, van Triest, Wei, Qian (b0095) 2018; 277
Özyurt, Sert, Avcı (b0080) 2020;; 134
Nguyen, Mirza (b0110) 2017; 260
Sert, Avci (b0065) 2019; 47
Bezdek (b0215) 1981
Pinto, Pereira, Rasteiro, Silva (b0060) 2018; 82
Tang, Deng, Huang, Zhao (b0205) 2015; 53
Bezdek (10.1016/j.mehy.2019.109507_b0170) 1984; 10
Rehman (10.1016/j.mehy.2019.109507_b0040) 2019; 118
Huang (10.1016/j.mehy.2019.109507_b0095) 2018; 277
Clark (10.1016/j.mehy.2019.109507_b0185) 2013; 26
Cortes (10.1016/j.mehy.2019.109507_b0165) 1995; 20
Bergner (10.1016/j.mehy.2019.109507_b0050) 2012; 117
Sai (10.1016/j.mehy.2019.109507_b0105) 2015; 149
Nguyen (10.1016/j.mehy.2019.109507_b0110) 2017; 260
Pinto (10.1016/j.mehy.2019.109507_b0060) 2018; 82
Tang (10.1016/j.mehy.2019.109507_b0205) 2015; 53
Özyurt (10.1016/j.mehy.2019.109507_b0070) 2019; 147
10.1016/j.mehy.2019.109507_b0180
Havaei (10.1016/j.mehy.2019.109507_b0035) 2017; 35
Chi (10.1016/j.mehy.2019.109507_b0225) 2011; 2011
Yildiz (10.1016/j.mehy.2019.109507_b0145) 2019; 98
Yao (10.1016/j.mehy.2019.109507_b0230) 2013; 58
Joskowicz (10.1016/j.mehy.2019.109507_b0240) 2018; 50
Sert (10.1016/j.mehy.2019.109507_b0065) 2019; 47
Zhao (10.1016/j.mehy.2019.109507_b0115) 2019; 355
Haykin (10.1016/j.mehy.2019.109507_b0220) 1999
Selvapandian (10.1016/j.mehy.2019.109507_b0045) 2018; 166
10.1016/j.mehy.2019.109507_b0190
Yilmaz (10.1016/j.mehy.2019.109507_b0020) 2018; 29
Shang (10.1016/j.mehy.2019.109507_b0120) 2015; 148
Xie (10.1016/j.mehy.2019.109507_b0100) 2016; 173
Lam Loong Man (10.1016/j.mehy.2019.109507_b0140) 2018; 3
Huang (10.1016/j.mehy.2019.109507_b0195) 2006; 70
Chandra (10.1016/j.mehy.2019.109507_b0025) 2016; 79
Pratt (10.1016/j.mehy.2019.109507_b0245) 2002
Tu (10.1016/j.mehy.2019.109507_b0155) 2016; 122
Lei (10.1016/j.mehy.2019.109507_b0160) 2018; 26
Mittal (10.1016/j.mehy.2019.109507_b0030) 2019; 78
Sert (10.1016/j.mehy.2019.109507_b0235) 2014; 12
Kohonen (10.1016/j.mehy.2019.109507_b0175) 2012
Anandhalli (10.1016/j.mehy.2019.109507_b0125) 2018; 57
Sajjad (10.1016/j.mehy.2019.109507_b0130) 2019; 479
Zotin (10.1016/j.mehy.2019.109507_b0015) 2018; 126
Sert (10.1016/j.mehy.2019.109507_b0075) 2019; 133
Zhu (10.1016/j.mehy.2019.109507_b0085) 2017; 55
McDonnell (10.1016/j.mehy.2019.109507_b0200) 2015; 10
Golestaneh (10.1016/j.mehy.2019.109507_b0210) 2018; 342
Zeng (10.1016/j.mehy.2019.109507_b0090) 2016; 32
Bezdek (10.1016/j.mehy.2019.109507_b0215) 1981
Wang (10.1016/j.mehy.2019.109507_b0150) 2019; 285
Özyurt (10.1016/j.mehy.2019.109507_b0080) 2020; 134
Diallo (10.1016/j.mehy.2019.109507_b0135) 2015; 76
Şişik (10.1016/j.mehy.2019.109507_b0055) 2017; 4
Sert (10.1016/j.mehy.2019.109507_b0005) 2018; 65
Sert (10.1016/j.mehy.2019.109507_b0010) 2019; 33
References_xml – volume: 26
  start-page: 3027
  year: 2018
  end-page: 3041
  ident: b0160
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans Fuzzy Syst
– volume: 117
  start-page: 224
  year: 2012
  end-page: 232
  ident: b0050
  article-title: Identification of primary tumors of brain metastases by raman imaging and support vector machines
  publication-title: Chemometrics Intell Lab Syst
– volume: 133
  year: 2019
  ident: b0075
  article-title: A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network
  publication-title: Med Hypotheses
– year: 2012
  ident: b0175
  article-title: Self-organizing maps
– reference: Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D, et al. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection 2016. DOI:10.7937/k9/tcia.2016.rnyfuye9.
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: b0185
  article-title: The cancer ımaging archive (TCIA): maintaining and operating a public ınformation repository
  publication-title: J Digit Imaging
– volume: 355
  start-page: 134
  year: 2019
  end-page: 142
  ident: b0115
  article-title: Seemingly unrelated extreme learning machine
  publication-title: Neurocomputing
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 18
  ident: b0225
  article-title: Self-Organizing Map-based color image segmentation with k -means clustering and saliency map
  publication-title: ISRN Signal Processing
– volume: 58
  start-page: 790
  year: 2013
  end-page: 798
  ident: b0230
  article-title: An improved k -means clustering algorithm for fish image segmentation
  publication-title: Math Comput Modell
– volume: 50
  start-page: 54
  year: 2018
  end-page: 64
  ident: b0240
  article-title: Automatic segmentation variability estimation with segmentation priors
  publication-title: Med Image Anal
– volume: 342
  start-page: 90
  year: 2018
  end-page: 108
  ident: b0210
  article-title: Fuzzy wavelet extreme learning machine
  publication-title: Fuzzy Sets Syst
– volume: 122
  start-page: 10
  year: 2016
  end-page: 18
  ident: b0155
  article-title: Automatic behaviour analysis system for honey bees using computer vision
  publication-title: Comput Electron Agric
– volume: 32
  start-page: 709
  year: 2016
  end-page: 716
  ident: b0090
  article-title: Liver vessel segmentation based on extreme learning machine
  publication-title: Physica Med
– volume: 53
  start-page: 1174
  year: 2015
  end-page: 1185
  ident: b0205
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Trans Geosci Remote Sensing
– volume: 118
  start-page: 598
  year: 2019
  end-page: 613
  ident: b0040
  article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification
  publication-title: Expert Syst Appl
– volume: 47
  start-page: 276
  year: 2019
  end-page: 287
  ident: b0065
  article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches
  publication-title: Biomed Signal Process Control
– volume: 4
  start-page: 120
  year: 2017
  ident: b0055
  article-title: Support vector machine working on FPGA and the segmentation method of brain MR screening
  publication-title: Int J Innovative Res Educ
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: b0035
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0165
  article-title: Support-vector networks
  publication-title: Mach Learning
– year: 1999
  ident: b0220
  article-title: Neural networks: a comprehensive foundation
– volume: 148
  start-page: 544
  year: 2015
  end-page: 550
  ident: b0120
  article-title: Confidence-weighted extreme learning machine for regression problems
  publication-title: Neurocomputing
– volume: 126
  start-page: 1261
  year: 2018
  end-page: 1270
  ident: b0015
  article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering
  publication-title: Procedia Comput Sci
– volume: 149
  start-page: 364
  year: 2015
  end-page: 372
  ident: b0105
  article-title: Facial age range estimation with extreme learning machines
  publication-title: Neurocomputing
– volume: 57
  start-page: 1597
  year: 2018
  end-page: 1607
  ident: b0125
  article-title: A novel approach in real-time vehicle detection and tracking using raspberry pi
  publication-title: Alexandria Eng J
– volume: 479
  start-page: 416
  year: 2019
  end-page: 431
  ident: b0130
  article-title: Raspberry pi assisted facial expression recognition framework for smart security in law-enforcement services
  publication-title: Inf Sci
– volume: 285
  start-page: 603
  year: 2019
  end-page: 612
  ident: b0150
  article-title: An automatic multi-thread image segmentation embedded system for surface plasmon resonance sensor
  publication-title: Sens Actuators, A
– volume: 78
  start-page: 346
  year: 2019
  end-page: 354
  ident: b0030
  article-title: Deep learning based enhanced tumor segmentation approach for MR brain images
  publication-title: Appl Soft Comput J
– volume: 10
  year: 2015
  ident: b0200
  article-title: Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the ‘extreme learning machine’ algorithm
  publication-title: PLoS One
– volume: 277
  start-page: 218
  year: 2018
  end-page: 227
  ident: b0095
  article-title: Automatic detection of neovascularization in retinal images using extreme learning machine
  publication-title: Neurocomputing
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0195
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0170
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
– reference: Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW. Data from rembrandt 2015. DOI:10.7937/k9/tcia.2015.588ozuzb.
– volume: 98
  start-page: 27
  year: 2019
  end-page: 35
  ident: b0145
  article-title: Development of a low-cost microcomputer based vein imaging system
  publication-title: Infrared Phys Technol
– year: 1981
  ident: b0215
  article-title: Pattern Recognition with fuzzy objective function algorithms
– volume: 166
  start-page: 33
  year: 2018
  end-page: 38
  ident: b0045
  article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification
  publication-title: Comput Methods Programs Biomed
– volume: 79
  start-page: 449
  year: 2016
  end-page: 457
  ident: b0025
  article-title: Tumor detection in brain using genetic algorithm
  publication-title: Procedia Comput Sci
– volume: 3
  start-page: 304
  year: 2018
  end-page: 320
  ident: b0140
  article-title: A low cost autonomous unmanned ground vehicle
  publication-title: Future Comput Inf J
– volume: 134
  year: 2020;
  ident: b0080
  article-title: An expert system for brain tumor detection: fuzzy c-means with super resolution and convolutional neural network with extreme learning machine
  publication-title: Med Hypotheses
– volume: 173
  start-page: 930
  year: 2016
  end-page: 941
  ident: b0100
  article-title: Breast mass classification in digital mammography based on extreme learning machine
  publication-title: Neurocomputing
– volume: 260
  start-page: 123
  year: 2017
  end-page: 130
  ident: b0110
  article-title: Dual-layer kernel extreme learning machine for action recognition
  publication-title: Neurocomputing
– volume: 82
  start-page: 105
  year: 2018
  end-page: 117
  ident: b0060
  article-title: Hierarchical brain tumour segmentation using extremely randomized trees
  publication-title: Pattern Recogn
– volume: 147
  year: 2019
  ident: b0070
  article-title: Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy
  publication-title: Measurement
– year: 2002
  ident: b0245
  article-title: Digital image processing
– volume: 55
  start-page: 68
  year: 2017
  end-page: 77
  ident: b0085
  article-title: Retinal vessel segmentation in colour fundus images using extreme learning machine
  publication-title: Comput Med Imaging Graph
– volume: 76
  start-page: 126
  year: 2015
  end-page: 133
  ident: b0135
  article-title: Autonomous tour guide robot using embedded system control
  publication-title: Procedia Comput Sci
– volume: 29
  start-page: 79
  year: 2018
  end-page: 95
  ident: b0020
  article-title: A new method for skull stripping in brain MRI using multistable cellular neural networks
  publication-title: Neural Comput Appl
– volume: 12
  start-page: 354
  year: 2014
  end-page: 360
  ident: b0235
  article-title: Segmentation of mushroom and cap width measurement using modified k-means clustering algorithm
  publication-title: AEEE
– volume: 65
  start-page: 576
  year: 2018
  end-page: 592
  ident: b0005
  article-title: A new modified neutrosophic set segmentation approach
  publication-title: Comput Electr Eng
– volume: 33
  start-page: 1954008
  year: 2019
  ident: b0010
  article-title: Image edge detection based on neutrosophic set approach combined with Chan-Vese algorithm
  publication-title: Int J Pattern Recognit Artif Intell
– volume: 260
  start-page: 123
  year: 2017
  ident: 10.1016/j.mehy.2019.109507_b0110
  article-title: Dual-layer kernel extreme learning machine for action recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.007
– year: 2002
  ident: 10.1016/j.mehy.2019.109507_b0245
– volume: 10
  start-page: 191
  issue: 02–03
  year: 1984
  ident: 10.1016/j.mehy.2019.109507_b0170
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 20
  start-page: 273
  issue: 03
  year: 1995
  ident: 10.1016/j.mehy.2019.109507_b0165
  article-title: Support-vector networks
  publication-title: Mach Learning
  doi: 10.1023/A:1022627411411
– year: 2012
  ident: 10.1016/j.mehy.2019.109507_b0175
– volume: 65
  start-page: 576
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0005
  article-title: A new modified neutrosophic set segmentation approach
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.01.017
– volume: 33
  start-page: 1954008
  issue: 03
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0010
  article-title: Image edge detection based on neutrosophic set approach combined with Chan-Vese algorithm
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001419540089
– volume: 277
  start-page: 218
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0095
  article-title: Automatic detection of neovascularization in retinal images using extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.093
– volume: 479
  start-page: 416
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0130
  article-title: Raspberry pi assisted facial expression recognition framework for smart security in law-enforcement services
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.07.027
– volume: 342
  start-page: 90
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0210
  article-title: Fuzzy wavelet extreme learning machine
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2017.12.006
– volume: 166
  start-page: 33
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0045
  article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.09.006
– volume: 117
  start-page: 224
  year: 2012
  ident: 10.1016/j.mehy.2019.109507_b0050
  article-title: Identification of primary tumors of brain metastases by raman imaging and support vector machines
  publication-title: Chemometrics Intell Lab Syst
  doi: 10.1016/j.chemolab.2012.02.008
– volume: 70
  start-page: 489
  issue: 01–03
  year: 2006
  ident: 10.1016/j.mehy.2019.109507_b0195
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 126
  start-page: 1261
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0015
  article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.08.069
– volume: 134
  year: 2020
  ident: 10.1016/j.mehy.2019.109507_b0080
  article-title: An expert system for brain tumor detection: fuzzy c-means with super resolution and convolutional neural network with extreme learning machine
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.109433
– volume: 12
  start-page: 354
  issue: 04
  year: 2014
  ident: 10.1016/j.mehy.2019.109507_b0235
  article-title: Segmentation of mushroom and cap width measurement using modified k-means clustering algorithm
  publication-title: AEEE
  doi: 10.15598/aeee.v12i4.1200
– volume: 98
  start-page: 27
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0145
  article-title: Development of a low-cost microcomputer based vein imaging system
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2019.02.010
– volume: 57
  start-page: 1597
  issue: 03
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0125
  article-title: A novel approach in real-time vehicle detection and tracking using raspberry pi
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2017.06.008
– volume: 47
  start-page: 276
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0065
  article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.025
– volume: 53
  start-page: 1174
  issue: 03
  year: 2015
  ident: 10.1016/j.mehy.2019.109507_b0205
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Trans Geosci Remote Sensing
  doi: 10.1109/TGRS.2014.2335751
– volume: 149
  start-page: 364
  year: 2015
  ident: 10.1016/j.mehy.2019.109507_b0105
  article-title: Facial age range estimation with extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.074
– volume: 76
  start-page: 126
  year: 2015
  ident: 10.1016/j.mehy.2019.109507_b0135
  article-title: Autonomous tour guide robot using embedded system control
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.12.302
– volume: 122
  start-page: 10
  year: 2016
  ident: 10.1016/j.mehy.2019.109507_b0155
  article-title: Automatic behaviour analysis system for honey bees using computer vision
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.01.011
– volume: 79
  start-page: 449
  year: 2016
  ident: 10.1016/j.mehy.2019.109507_b0025
  article-title: Tumor detection in brain using genetic algorithm
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.03.058
– volume: 147
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0070
  article-title: Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.07.058
– ident: 10.1016/j.mehy.2019.109507_b0180
– volume: 82
  start-page: 105
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0060
  article-title: Hierarchical brain tumour segmentation using extremely randomized trees
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.05.006
– volume: 32
  start-page: 709
  issue: 5
  year: 2016
  ident: 10.1016/j.mehy.2019.109507_b0090
  article-title: Liver vessel segmentation based on extreme learning machine
  publication-title: Physica Med
  doi: 10.1016/j.ejmp.2016.04.003
– volume: 55
  start-page: 68
  year: 2017
  ident: 10.1016/j.mehy.2019.109507_b0085
  article-title: Retinal vessel segmentation in colour fundus images using extreme learning machine
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2016.05.004
– volume: 58
  start-page: 790
  issue: 03–04
  year: 2013
  ident: 10.1016/j.mehy.2019.109507_b0230
  article-title: An improved k -means clustering algorithm for fish image segmentation
  publication-title: Math Comput Modell
  doi: 10.1016/j.mcm.2012.12.025
– year: 1981
  ident: 10.1016/j.mehy.2019.109507_b0215
– volume: 173
  start-page: 930
  year: 2016
  ident: 10.1016/j.mehy.2019.109507_b0100
  article-title: Breast mass classification in digital mammography based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.048
– ident: 10.1016/j.mehy.2019.109507_b0190
– volume: 35
  start-page: 18
  year: 2017
  ident: 10.1016/j.mehy.2019.109507_b0035
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– volume: 355
  start-page: 134
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0115
  article-title: Seemingly unrelated extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.067
– volume: 26
  start-page: 1045
  issue: 06
  year: 2013
  ident: 10.1016/j.mehy.2019.109507_b0185
  article-title: The cancer ımaging archive (TCIA): maintaining and operating a public ınformation repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 4
  start-page: 120
  issue: 3
  year: 2017
  ident: 10.1016/j.mehy.2019.109507_b0055
  article-title: Support vector machine working on FPGA and the segmentation method of brain MR screening
  publication-title: Int J Innovative Res Educ
  doi: 10.18844/ijire.v4i3.2549
– volume: 78
  start-page: 346
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0030
  article-title: Deep learning based enhanced tumor segmentation approach for MR brain images
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.02.036
– volume: 133
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0075
  article-title: A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.109413
– volume: 10
  issue: 08
  year: 2015
  ident: 10.1016/j.mehy.2019.109507_b0200
  article-title: Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the ‘extreme learning machine’ algorithm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134254
– volume: 285
  start-page: 603
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0150
  article-title: An automatic multi-thread image segmentation embedded system for surface plasmon resonance sensor
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2018.12.007
– volume: 50
  start-page: 54
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0240
  article-title: Automatic segmentation variability estimation with segmentation priors
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.08.006
– volume: 118
  start-page: 598
  year: 2019
  ident: 10.1016/j.mehy.2019.109507_b0040
  article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.10.040
– year: 1999
  ident: 10.1016/j.mehy.2019.109507_b0220
– volume: 3
  start-page: 304
  issue: 2
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0140
  article-title: A low cost autonomous unmanned ground vehicle
  publication-title: Future Comput Inf J
  doi: 10.1016/j.fcij.2018.10.001
– volume: 148
  start-page: 544
  year: 2015
  ident: 10.1016/j.mehy.2019.109507_b0120
  article-title: Confidence-weighted extreme learning machine for regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.009
– volume: 29
  start-page: 79
  issue: 8
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0020
  article-title: A new method for skull stripping in brain MRI using multistable cellular neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2834-2
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.mehy.2019.109507_b0225
  article-title: Self-Organizing Map-based color image segmentation with k -means clustering and saliency map
  publication-title: ISRN Signal Processing
  doi: 10.5402/2011/393891
– volume: 26
  start-page: 3027
  issue: 05
  year: 2018
  ident: 10.1016/j.mehy.2019.109507_b0160
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2796074
SSID ssj0009438
Score 2.35917
Snippet •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM...
Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109507
SubjectTerms Algorithms
Brain - diagnostic imaging
Brain Neoplasms - diagnosis
Brain tumor segmentation
Cluster Analysis
Diagnosis, Computer-Assisted - instrumentation
Diagnosis, Computer-Assisted - methods
Extreme learning machine
Fuzzy Logic
Glioblastoma - diagnosis
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Neurons - metabolism
Raspberry Pi
Segmentation
Significantly fast and robust fuzzy C-means clustering
Software
Support Vector Machine
Title Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306987719310953
https://dx.doi.org/10.1016/j.mehy.2019.109507
https://www.ncbi.nlm.nih.gov/pubmed/31812927
https://www.proquest.com/docview/2322804035
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhhdJLSfq5TRpU6K2oG68lr3VMl4ZtS0JpG8jNyPJos2VtL_4gbA75Sf2NnbHlLYU2hd6MkGyjkWeepTfzGHsNwTEEEGsBUSSFNLETaWyNoCMwUBgCXUpbA2fn0fxCfrxUlztsNuTCEK3S-_7ep3fe2reM_WyO18vl-CuhXfxjniIECahqGmWwyympGLy9_UXz0LJTs6bOgnr7xJme45XD1YboXZqqKimSlP1zcPob-OyC0Okee-jRIz_pX3Cf7UDxiN0_8-fjj9mPd6T4wJs2LytewyL3mUUFH2qHcwpbGccWRH4cPTPtD3KvHbHgecetBG6KjBO1g4hEOPerDXembrrmqkxbvHTtzc2Gz0QOGOy4XbVUcYFuYVaLslo2V3nNq7YTRKKnfTH1OoWq2vDPS06ZXtemgifs4vT9t9lceEUGYfHHrxEujVQagZLSHafWWW2VseAyHTrEGplSBtFKIK0j1BnbyJKYiTaIkVI9DTIZPmW7RVnAc8YNYpPYmMAqQGeNniXA1ZJpm2nnHEA4YsFgisT6cuWkmrFKBl7a94TMl5D5kt58I_ZmO2bdF-u4s3c4WDgZ0lDRcSYYS-4cpbajfluo_xz3alhECX7BdCxjCijbOkFMO4nRl4ZqxJ71q2v79jQvEz2ZvvjPpx6wBxPaIOhIc4dst6laeIkoqkmPus_kiN07-fBpfv4TdTcfaA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALKu-FAkbihsI2D2fjI121WqBbIWil3izHGW8XbZJVHkLbAz-J38hM4ixCgiJxiyw7tjz2zGf7mxnGXoN_AD4k0oM4jrxIJ9ZLE6M9egIDgSbQpnQ1MD-NZ-fRhwtxscOmgy8M0Sqd7u91eqetXcnYzeZ4vVyOvxDaxRPzBCGIT1HTbrCbkQgmdAJ7-_0Xz0NGXTprqu1Rdec505O8crjcEL9LUlglQTll_2yd_oY-Oyt0vMfuOvjI3_UjvMd2oLjPbs3dA_kD9uOQUj7wps3LitewyJ1rUcGH4OGc7FbGsQShH0fVTBeE3CWPWPC8I1cC10XGidtBTCKc_NWGW103XXFVpi1-2vbqasOnXg5o7bhZtRRygX6hV4uyWjaXec2rtsuIRL191vU6hara8E9LTq5e33QFD9n58dHZdOa5lAyewZNf49k0FmkMIorsQWqskUZoAzaToUWwkQmhEa74kbEEOxMTG8pmIjWCpFRO_CwKH7HdoizgCeMawUmitW8EoLZG1eLjcsmkyaS1FiAcMX8QhTIuXjmlzVipgZj2VZH4FIlP9eIbsTfbNus-Wse1tcNBwmrwQ0XNqdCYXNtKbFv9tlL_2e7VsIgUbmF6l9EFlG2tENQGCSrTUIzY4351bUdP8xLIYPL0P3t9yW7PzuYn6uT96cdn7E5AtwUdg26f7TZVC88RUjXpi27L_ATkniD9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+segmentation+approach+based+on+the+extreme+learning+machine+and+significantly+fast+and+robust+fuzzy+C-means+clustering+algorithms+running+on+Raspberry+Pi+hardware&rft.jtitle=Medical+hypotheses&rft.au=%C5%9E%C4%B0%C5%9E%C4%B0K%2C+Fatih&rft.au=SERT%2C+Eser&rft.date=2020-03-01&rft.issn=0306-9877&rft.volume=136&rft.spage=109507&rft_id=info:doi/10.1016%2Fj.mehy.2019.109507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mehy_2019_109507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-9877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-9877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-9877&client=summon