Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware
•In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority...
Saved in:
| Published in | Medical hypotheses Vol. 136; p. 109507 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-9877 1532-2777 1532-2777 |
| DOI | 10.1016/j.mehy.2019.109507 |
Cover
| Abstract | •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority of the proposed method.
Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI’s are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate. |
|---|---|
| AbstractList | •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM are new algorithms with high performance.•A system to be used as mobile in hospitals is designed.•Experimental studies reveal the superiority of the proposed method.
Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI’s are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate. Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate. Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate.Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial intelligence and image processing, embedded systems are also used in decision support systems for tumor diagnosis. Extreme learning machine (ELM), is a recently developed, quick and efficient algorithm which can quickly and flawlessly diagnose tumors using machine learning techniques. Similarly, significantly fast and robust fuzzy C-means clustering algorithm (FRFCM) is a novel and fast algorithm which can display a high performance. In the present study, a brain tumor segmentation approach is proposed based on extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms (BTS-ELM-FRFCM) running on Raspberry Pi (PRI) hardware. The present study mainly aims to introduce a new segmentation system hardware containing new algorithms and offering a high level of accuracy the health sector. PRI's are useful mobile devices due to their cost-effectiveness and satisfying hardware. 3200 training images were used to train ELM in the present study. 20 pieces of MRI images were used for testing process. Figure of merid (FOM), Jaccard similarity coefficient (JSC) and Dice indexes were used in order to evaluate the performance of the proposed approach. In addition, the proposed method was compared with brain tumor segmentation based on support vector machine (BTS-SVM), brain tumor segmentation based on fuzzy C-means (BTS-FCM) and brain tumor segmentation based on self-organizing maps and k-means (BTS-SOM). The statistical analysis on FOM, JSC and Dice results obtained using four different approaches indicated that BTS-ELM-FRFCM displayed the highest performance. Thus, it can be concluded that the embedded system designed in the present study can perform brain tumor segmentation with a high accuracy rate. |
| ArticleNumber | 109507 |
| Author | SERT, Eser ŞİŞİK, Fatih |
| Author_xml | – sequence: 1 givenname: Fatih surname: ŞİŞİK fullname: ŞİŞİK, Fatih organization: Göksun Vocational School, Department of Computer Programming, Kahramanmaras Sutcu Imam University, K.Maras, Turkey – sequence: 2 givenname: Eser surname: SERT fullname: SERT, Eser email: esersert@ksu.edu.tr organization: Department of Computer Engineering, Engineering and Architecture Faculty, Kahramanmaras Sutcu Imam University, K.Maras, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31812927$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9u1DAYxC1URLeFF-CAfOSSxXb-OEZc6IoCUiUQgrPlOJ93vTjOYjtA-lB9RrxNe-mhnPxpNL-xNHOGTvzoAaGXlKwpoc2b_XqA3bxmhIosiJrwJ2hF65IVjHN-glakJE0hWs5P0VmMe0KIqMr2GTotaUuZYHyFbi6Csh6naRgDjrAdwCeV7OixOhzCqPQOdypCj7OSdoDhbwowAHaggrd-i4dssR6w8j2OduutsVr55GZsVEy3chi7KZ9mur6e8aYYQPmItcsahGOEctsx2LQbIg6Tv03Nv31T8dBBCDP-avFOhf6PCvAcPTXKRXhx956jH5cfvm8-FVdfPn7evL8qdEV4KkzX1F0DdVUZ0mmjha6VBtOL0hDC-7pWrC1ppY0QtGl1o3nVcKE4453gtK_Kc_R6yc0d_JogJjnYqME55WGcomQlYy2pSFln66s769QN0MtDsIMKs7zvOBvaxaDDGGMAI7VdOk65eycpkcc55V4e55THOeUyZ0bZA_Q-_VHo3QJBLui3hSCjtuA19DaATrIf7eP42we4dtbnUd1PmP8H_wMm4NDs |
| CitedBy_id | crossref_primary_10_1007_s11042_022_12445_7 crossref_primary_10_1007_s11042_023_17789_2 crossref_primary_10_1016_j_isatra_2020_03_018 crossref_primary_10_1155_2022_4224749 crossref_primary_10_1038_s41598_024_66554_4 crossref_primary_10_1002_ima_22792 crossref_primary_10_1007_s11042_023_16654_6 crossref_primary_10_1016_j_compbiomed_2022_106405 crossref_primary_10_1177_15353702231214259 crossref_primary_10_1002_ima_22826 crossref_primary_10_1155_2021_9054812 crossref_primary_10_1016_j_compbiomed_2022_105273 crossref_primary_10_3389_fneur_2021_701946 crossref_primary_10_47836_pjst_31_1_33 crossref_primary_10_1016_j_medengphy_2020_02_001 crossref_primary_10_1080_21681163_2022_2083019 crossref_primary_10_1155_2021_6191448 |
| Cites_doi | 10.1016/j.neucom.2017.04.007 10.1016/0098-3004(84)90020-7 10.1023/A:1022627411411 10.1016/j.compeleceng.2017.01.017 10.1142/S0218001419540089 10.1016/j.neucom.2017.03.093 10.1016/j.ins.2018.07.027 10.1016/j.fss.2017.12.006 10.1016/j.cmpb.2018.09.006 10.1016/j.chemolab.2012.02.008 10.1016/j.neucom.2005.12.126 10.1016/j.procs.2018.08.069 10.1016/j.mehy.2019.109433 10.15598/aeee.v12i4.1200 10.1016/j.infrared.2019.02.010 10.1016/j.aej.2017.06.008 10.1016/j.bspc.2018.08.025 10.1109/TGRS.2014.2335751 10.1016/j.neucom.2014.03.074 10.1016/j.procs.2015.12.302 10.1016/j.compag.2016.01.011 10.1016/j.procs.2016.03.058 10.1016/j.measurement.2019.07.058 10.1016/j.patcog.2018.05.006 10.1016/j.ejmp.2016.04.003 10.1016/j.compmedimag.2016.05.004 10.1016/j.mcm.2012.12.025 10.1016/j.neucom.2015.08.048 10.1016/j.media.2016.05.004 10.1016/j.neucom.2019.04.067 10.1007/s10278-013-9622-7 10.18844/ijire.v4i3.2549 10.1016/j.asoc.2019.02.036 10.1016/j.mehy.2019.109413 10.1371/journal.pone.0134254 10.1016/j.sna.2018.12.007 10.1016/j.media.2018.08.006 10.1016/j.eswa.2018.10.040 10.1016/j.fcij.2018.10.001 10.1016/j.neucom.2014.07.009 10.1007/s00521-016-2834-2 10.5402/2011/393891 10.1109/TFUZZ.2018.2796074 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.mehy.2019.109507 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1532-2777 |
| ExternalDocumentID | 31812927 10_1016_j_mehy_2019_109507 S0306987719310953 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ABZDS ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSP SSU SSZ T5K UHS WUQ Z5R ZGI ~G- ~HD AACTN AAIAV AATCM ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS LCYCR RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c407t-fb65b6e544f0bcfc9c5acefd93f007d55a28314cf99168c6c74679a727b971d43 |
| IEDL.DBID | .~1 |
| ISSN | 0306-9877 1532-2777 |
| IngestDate | Sat Sep 27 19:55:22 EDT 2025 Thu Apr 03 07:08:04 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Thu Oct 09 00:27:39 EDT 2025 Fri Feb 23 02:48:40 EST 2024 Tue Oct 14 19:25:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain tumor segmentation Raspberry Pi Extreme learning machine Segmentation Magnetic resonance imaging Significantly fast and robust fuzzy C-means clustering |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-fb65b6e544f0bcfc9c5acefd93f007d55a28314cf99168c6c74679a727b971d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31812927 |
| PQID | 2322804035 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2322804035 pubmed_primary_31812927 crossref_citationtrail_10_1016_j_mehy_2019_109507 crossref_primary_10_1016_j_mehy_2019_109507 elsevier_sciencedirect_doi_10_1016_j_mehy_2019_109507 elsevier_clinicalkey_doi_10_1016_j_mehy_2019_109507 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical hypotheses |
| PublicationTitleAlternate | Med Hypotheses |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sai, Wang, Teoh (b0105) 2015; 149 Diallo, Gobee, Durairajah (b0135) 2015; 76 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio (b0035) 2017; 35 Özyurt, Sert, Avci, Dogantekin (b0070) 2019; 147 Yilmaz, Durdu, Emlik (b0020) 2018; 29 Sert, Alkan (b0010) 2019; 33 Sert, Okumus (b0235) 2014; 12 Xie, Li, Ma (b0100) 2016; 173 Clark, Vendt, Smith, Freymann, Kirby, Koppel (b0185) 2013; 26 Huang, Zhu, Siew (b0195) 2006; 70 Lei, Jia, Zhang, He, Meng, Nandi (b0160) 2018; 26 Anandhalli, Baligar (b0125) 2018; 57 Lam Loong Man, Koonjul, Nagowah (b0140) 2018; 3 Zhu, Zou, Zhao, Cui, Duan, Chen (b0085) 2017; 55 Joskowicz, Cohen, Caplan, Sosna (b0240) 2018; 50 Sajjad, Nasir, Ullah, Muhammad, Sangaiah, Baik (b0130) 2019; 479 Yao, Duan, Li, Wang (b0230) 2013; 58 Cortes, Vapnik (b0165) 1995; 20 Wang, Ko, Chen, Chen, Lin (b0150) 2019; 285 Haykin (b0220) 1999 Sert (b0005) 2018; 65 Golestaneh, Zekri, Sheikholeslam (b0210) 2018; 342 Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW. Data from rembrandt 2015. DOI:10.7937/k9/tcia.2015.588ozuzb. Tu, Hansen, Kryger, Ahrendt (b0155) 2016; 122 Kohonen, Huang, Schroeder (b0175) 2012 Chandra, Rao (b0025) 2016; 79 Sert, Özyurt, Doğantekin (b0075) 2019; 133 Shang, He (b0120) 2015; 148 McDonnell, Tissera, Vladusich, van Schaik, Tapson (b0200) 2015; 10 Zhao, Wang (b0115) 2019; 355 Chi (b0225) 2011; 2011 Mittal, Goyal, Kaur, Kaur, Verma, Jude (b0030) 2019; 78 Selvapandian, Manivannan (b0045) 2018; 166 Şişik, Sert (b0055) 2017; 4 Bergner, Bocklitz, Romeike, Reichart, Kalff, Krafft (b0050) 2012; 117 Rehman, Naqvi, Khan, Khan, Bashir (b0040) 2019; 118 Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D, et al. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection 2016. DOI:10.7937/k9/tcia.2016.rnyfuye9. Zotin, Simonov, Kurako, Hamad, Kirillova (b0015) 2018; 126 Bezdek, Ehrlich, Full (b0170) 1984; 10 Pratt (b0245) 2002 Yildiz, Boyraz (b0145) 2019; 98 Zeng, Zhao, Liao, Zou, Wang, Wang (b0090) 2016; 32 Huang, Ma, van Triest, Wei, Qian (b0095) 2018; 277 Özyurt, Sert, Avcı (b0080) 2020;; 134 Nguyen, Mirza (b0110) 2017; 260 Sert, Avci (b0065) 2019; 47 Bezdek (b0215) 1981 Pinto, Pereira, Rasteiro, Silva (b0060) 2018; 82 Tang, Deng, Huang, Zhao (b0205) 2015; 53 Bezdek (10.1016/j.mehy.2019.109507_b0170) 1984; 10 Rehman (10.1016/j.mehy.2019.109507_b0040) 2019; 118 Huang (10.1016/j.mehy.2019.109507_b0095) 2018; 277 Clark (10.1016/j.mehy.2019.109507_b0185) 2013; 26 Cortes (10.1016/j.mehy.2019.109507_b0165) 1995; 20 Bergner (10.1016/j.mehy.2019.109507_b0050) 2012; 117 Sai (10.1016/j.mehy.2019.109507_b0105) 2015; 149 Nguyen (10.1016/j.mehy.2019.109507_b0110) 2017; 260 Pinto (10.1016/j.mehy.2019.109507_b0060) 2018; 82 Tang (10.1016/j.mehy.2019.109507_b0205) 2015; 53 Özyurt (10.1016/j.mehy.2019.109507_b0070) 2019; 147 10.1016/j.mehy.2019.109507_b0180 Havaei (10.1016/j.mehy.2019.109507_b0035) 2017; 35 Chi (10.1016/j.mehy.2019.109507_b0225) 2011; 2011 Yildiz (10.1016/j.mehy.2019.109507_b0145) 2019; 98 Yao (10.1016/j.mehy.2019.109507_b0230) 2013; 58 Joskowicz (10.1016/j.mehy.2019.109507_b0240) 2018; 50 Sert (10.1016/j.mehy.2019.109507_b0065) 2019; 47 Zhao (10.1016/j.mehy.2019.109507_b0115) 2019; 355 Haykin (10.1016/j.mehy.2019.109507_b0220) 1999 Selvapandian (10.1016/j.mehy.2019.109507_b0045) 2018; 166 10.1016/j.mehy.2019.109507_b0190 Yilmaz (10.1016/j.mehy.2019.109507_b0020) 2018; 29 Shang (10.1016/j.mehy.2019.109507_b0120) 2015; 148 Xie (10.1016/j.mehy.2019.109507_b0100) 2016; 173 Lam Loong Man (10.1016/j.mehy.2019.109507_b0140) 2018; 3 Huang (10.1016/j.mehy.2019.109507_b0195) 2006; 70 Chandra (10.1016/j.mehy.2019.109507_b0025) 2016; 79 Pratt (10.1016/j.mehy.2019.109507_b0245) 2002 Tu (10.1016/j.mehy.2019.109507_b0155) 2016; 122 Lei (10.1016/j.mehy.2019.109507_b0160) 2018; 26 Mittal (10.1016/j.mehy.2019.109507_b0030) 2019; 78 Sert (10.1016/j.mehy.2019.109507_b0235) 2014; 12 Kohonen (10.1016/j.mehy.2019.109507_b0175) 2012 Anandhalli (10.1016/j.mehy.2019.109507_b0125) 2018; 57 Sajjad (10.1016/j.mehy.2019.109507_b0130) 2019; 479 Zotin (10.1016/j.mehy.2019.109507_b0015) 2018; 126 Sert (10.1016/j.mehy.2019.109507_b0075) 2019; 133 Zhu (10.1016/j.mehy.2019.109507_b0085) 2017; 55 McDonnell (10.1016/j.mehy.2019.109507_b0200) 2015; 10 Golestaneh (10.1016/j.mehy.2019.109507_b0210) 2018; 342 Zeng (10.1016/j.mehy.2019.109507_b0090) 2016; 32 Bezdek (10.1016/j.mehy.2019.109507_b0215) 1981 Wang (10.1016/j.mehy.2019.109507_b0150) 2019; 285 Özyurt (10.1016/j.mehy.2019.109507_b0080) 2020; 134 Diallo (10.1016/j.mehy.2019.109507_b0135) 2015; 76 Şişik (10.1016/j.mehy.2019.109507_b0055) 2017; 4 Sert (10.1016/j.mehy.2019.109507_b0005) 2018; 65 Sert (10.1016/j.mehy.2019.109507_b0010) 2019; 33 |
| References_xml | – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b0160 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans Fuzzy Syst – volume: 117 start-page: 224 year: 2012 end-page: 232 ident: b0050 article-title: Identification of primary tumors of brain metastases by raman imaging and support vector machines publication-title: Chemometrics Intell Lab Syst – volume: 133 year: 2019 ident: b0075 article-title: A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network publication-title: Med Hypotheses – year: 2012 ident: b0175 article-title: Self-organizing maps – reference: Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D, et al. Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection 2016. DOI:10.7937/k9/tcia.2016.rnyfuye9. – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: b0185 article-title: The cancer ımaging archive (TCIA): maintaining and operating a public ınformation repository publication-title: J Digit Imaging – volume: 355 start-page: 134 year: 2019 end-page: 142 ident: b0115 article-title: Seemingly unrelated extreme learning machine publication-title: Neurocomputing – volume: 2011 start-page: 1 year: 2011 end-page: 18 ident: b0225 article-title: Self-Organizing Map-based color image segmentation with k -means clustering and saliency map publication-title: ISRN Signal Processing – volume: 58 start-page: 790 year: 2013 end-page: 798 ident: b0230 article-title: An improved k -means clustering algorithm for fish image segmentation publication-title: Math Comput Modell – volume: 50 start-page: 54 year: 2018 end-page: 64 ident: b0240 article-title: Automatic segmentation variability estimation with segmentation priors publication-title: Med Image Anal – volume: 342 start-page: 90 year: 2018 end-page: 108 ident: b0210 article-title: Fuzzy wavelet extreme learning machine publication-title: Fuzzy Sets Syst – volume: 122 start-page: 10 year: 2016 end-page: 18 ident: b0155 article-title: Automatic behaviour analysis system for honey bees using computer vision publication-title: Comput Electron Agric – volume: 32 start-page: 709 year: 2016 end-page: 716 ident: b0090 article-title: Liver vessel segmentation based on extreme learning machine publication-title: Physica Med – volume: 53 start-page: 1174 year: 2015 end-page: 1185 ident: b0205 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Trans Geosci Remote Sensing – volume: 118 start-page: 598 year: 2019 end-page: 613 ident: b0040 article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification publication-title: Expert Syst Appl – volume: 47 start-page: 276 year: 2019 end-page: 287 ident: b0065 article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches publication-title: Biomed Signal Process Control – volume: 4 start-page: 120 year: 2017 ident: b0055 article-title: Support vector machine working on FPGA and the segmentation method of brain MR screening publication-title: Int J Innovative Res Educ – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: b0035 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0165 article-title: Support-vector networks publication-title: Mach Learning – year: 1999 ident: b0220 article-title: Neural networks: a comprehensive foundation – volume: 148 start-page: 544 year: 2015 end-page: 550 ident: b0120 article-title: Confidence-weighted extreme learning machine for regression problems publication-title: Neurocomputing – volume: 126 start-page: 1261 year: 2018 end-page: 1270 ident: b0015 article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering publication-title: Procedia Comput Sci – volume: 149 start-page: 364 year: 2015 end-page: 372 ident: b0105 article-title: Facial age range estimation with extreme learning machines publication-title: Neurocomputing – volume: 57 start-page: 1597 year: 2018 end-page: 1607 ident: b0125 article-title: A novel approach in real-time vehicle detection and tracking using raspberry pi publication-title: Alexandria Eng J – volume: 479 start-page: 416 year: 2019 end-page: 431 ident: b0130 article-title: Raspberry pi assisted facial expression recognition framework for smart security in law-enforcement services publication-title: Inf Sci – volume: 285 start-page: 603 year: 2019 end-page: 612 ident: b0150 article-title: An automatic multi-thread image segmentation embedded system for surface plasmon resonance sensor publication-title: Sens Actuators, A – volume: 78 start-page: 346 year: 2019 end-page: 354 ident: b0030 article-title: Deep learning based enhanced tumor segmentation approach for MR brain images publication-title: Appl Soft Comput J – volume: 10 year: 2015 ident: b0200 article-title: Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the ‘extreme learning machine’ algorithm publication-title: PLoS One – volume: 277 start-page: 218 year: 2018 end-page: 227 ident: b0095 article-title: Automatic detection of neovascularization in retinal images using extreme learning machine publication-title: Neurocomputing – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0195 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0170 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput Geosci – reference: Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW. Data from rembrandt 2015. DOI:10.7937/k9/tcia.2015.588ozuzb. – volume: 98 start-page: 27 year: 2019 end-page: 35 ident: b0145 article-title: Development of a low-cost microcomputer based vein imaging system publication-title: Infrared Phys Technol – year: 1981 ident: b0215 article-title: Pattern Recognition with fuzzy objective function algorithms – volume: 166 start-page: 33 year: 2018 end-page: 38 ident: b0045 article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification publication-title: Comput Methods Programs Biomed – volume: 79 start-page: 449 year: 2016 end-page: 457 ident: b0025 article-title: Tumor detection in brain using genetic algorithm publication-title: Procedia Comput Sci – volume: 3 start-page: 304 year: 2018 end-page: 320 ident: b0140 article-title: A low cost autonomous unmanned ground vehicle publication-title: Future Comput Inf J – volume: 134 year: 2020; ident: b0080 article-title: An expert system for brain tumor detection: fuzzy c-means with super resolution and convolutional neural network with extreme learning machine publication-title: Med Hypotheses – volume: 173 start-page: 930 year: 2016 end-page: 941 ident: b0100 article-title: Breast mass classification in digital mammography based on extreme learning machine publication-title: Neurocomputing – volume: 260 start-page: 123 year: 2017 end-page: 130 ident: b0110 article-title: Dual-layer kernel extreme learning machine for action recognition publication-title: Neurocomputing – volume: 82 start-page: 105 year: 2018 end-page: 117 ident: b0060 article-title: Hierarchical brain tumour segmentation using extremely randomized trees publication-title: Pattern Recogn – volume: 147 year: 2019 ident: b0070 article-title: Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy publication-title: Measurement – year: 2002 ident: b0245 article-title: Digital image processing – volume: 55 start-page: 68 year: 2017 end-page: 77 ident: b0085 article-title: Retinal vessel segmentation in colour fundus images using extreme learning machine publication-title: Comput Med Imaging Graph – volume: 76 start-page: 126 year: 2015 end-page: 133 ident: b0135 article-title: Autonomous tour guide robot using embedded system control publication-title: Procedia Comput Sci – volume: 29 start-page: 79 year: 2018 end-page: 95 ident: b0020 article-title: A new method for skull stripping in brain MRI using multistable cellular neural networks publication-title: Neural Comput Appl – volume: 12 start-page: 354 year: 2014 end-page: 360 ident: b0235 article-title: Segmentation of mushroom and cap width measurement using modified k-means clustering algorithm publication-title: AEEE – volume: 65 start-page: 576 year: 2018 end-page: 592 ident: b0005 article-title: A new modified neutrosophic set segmentation approach publication-title: Comput Electr Eng – volume: 33 start-page: 1954008 year: 2019 ident: b0010 article-title: Image edge detection based on neutrosophic set approach combined with Chan-Vese algorithm publication-title: Int J Pattern Recognit Artif Intell – volume: 260 start-page: 123 year: 2017 ident: 10.1016/j.mehy.2019.109507_b0110 article-title: Dual-layer kernel extreme learning machine for action recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.007 – year: 2002 ident: 10.1016/j.mehy.2019.109507_b0245 – volume: 10 start-page: 191 issue: 02–03 year: 1984 ident: 10.1016/j.mehy.2019.109507_b0170 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 20 start-page: 273 issue: 03 year: 1995 ident: 10.1016/j.mehy.2019.109507_b0165 article-title: Support-vector networks publication-title: Mach Learning doi: 10.1023/A:1022627411411 – year: 2012 ident: 10.1016/j.mehy.2019.109507_b0175 – volume: 65 start-page: 576 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0005 article-title: A new modified neutrosophic set segmentation approach publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.01.017 – volume: 33 start-page: 1954008 issue: 03 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0010 article-title: Image edge detection based on neutrosophic set approach combined with Chan-Vese algorithm publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001419540089 – volume: 277 start-page: 218 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0095 article-title: Automatic detection of neovascularization in retinal images using extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.093 – volume: 479 start-page: 416 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0130 article-title: Raspberry pi assisted facial expression recognition framework for smart security in law-enforcement services publication-title: Inf Sci doi: 10.1016/j.ins.2018.07.027 – volume: 342 start-page: 90 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0210 article-title: Fuzzy wavelet extreme learning machine publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2017.12.006 – volume: 166 start-page: 33 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0045 article-title: Fusion based glioma brain tumor detection and segmentation using ANFIS classification publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.09.006 – volume: 117 start-page: 224 year: 2012 ident: 10.1016/j.mehy.2019.109507_b0050 article-title: Identification of primary tumors of brain metastases by raman imaging and support vector machines publication-title: Chemometrics Intell Lab Syst doi: 10.1016/j.chemolab.2012.02.008 – volume: 70 start-page: 489 issue: 01–03 year: 2006 ident: 10.1016/j.mehy.2019.109507_b0195 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 126 start-page: 1261 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0015 article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.08.069 – volume: 134 year: 2020 ident: 10.1016/j.mehy.2019.109507_b0080 article-title: An expert system for brain tumor detection: fuzzy c-means with super resolution and convolutional neural network with extreme learning machine publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.109433 – volume: 12 start-page: 354 issue: 04 year: 2014 ident: 10.1016/j.mehy.2019.109507_b0235 article-title: Segmentation of mushroom and cap width measurement using modified k-means clustering algorithm publication-title: AEEE doi: 10.15598/aeee.v12i4.1200 – volume: 98 start-page: 27 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0145 article-title: Development of a low-cost microcomputer based vein imaging system publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2019.02.010 – volume: 57 start-page: 1597 issue: 03 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0125 article-title: A novel approach in real-time vehicle detection and tracking using raspberry pi publication-title: Alexandria Eng J doi: 10.1016/j.aej.2017.06.008 – volume: 47 start-page: 276 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0065 article-title: Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.025 – volume: 53 start-page: 1174 issue: 03 year: 2015 ident: 10.1016/j.mehy.2019.109507_b0205 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Trans Geosci Remote Sensing doi: 10.1109/TGRS.2014.2335751 – volume: 149 start-page: 364 year: 2015 ident: 10.1016/j.mehy.2019.109507_b0105 article-title: Facial age range estimation with extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.074 – volume: 76 start-page: 126 year: 2015 ident: 10.1016/j.mehy.2019.109507_b0135 article-title: Autonomous tour guide robot using embedded system control publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.12.302 – volume: 122 start-page: 10 year: 2016 ident: 10.1016/j.mehy.2019.109507_b0155 article-title: Automatic behaviour analysis system for honey bees using computer vision publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.01.011 – volume: 79 start-page: 449 year: 2016 ident: 10.1016/j.mehy.2019.109507_b0025 article-title: Tumor detection in brain using genetic algorithm publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.03.058 – volume: 147 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0070 article-title: Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy publication-title: Measurement doi: 10.1016/j.measurement.2019.07.058 – ident: 10.1016/j.mehy.2019.109507_b0180 – volume: 82 start-page: 105 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0060 article-title: Hierarchical brain tumour segmentation using extremely randomized trees publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.05.006 – volume: 32 start-page: 709 issue: 5 year: 2016 ident: 10.1016/j.mehy.2019.109507_b0090 article-title: Liver vessel segmentation based on extreme learning machine publication-title: Physica Med doi: 10.1016/j.ejmp.2016.04.003 – volume: 55 start-page: 68 year: 2017 ident: 10.1016/j.mehy.2019.109507_b0085 article-title: Retinal vessel segmentation in colour fundus images using extreme learning machine publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2016.05.004 – volume: 58 start-page: 790 issue: 03–04 year: 2013 ident: 10.1016/j.mehy.2019.109507_b0230 article-title: An improved k -means clustering algorithm for fish image segmentation publication-title: Math Comput Modell doi: 10.1016/j.mcm.2012.12.025 – year: 1981 ident: 10.1016/j.mehy.2019.109507_b0215 – volume: 173 start-page: 930 year: 2016 ident: 10.1016/j.mehy.2019.109507_b0100 article-title: Breast mass classification in digital mammography based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.048 – ident: 10.1016/j.mehy.2019.109507_b0190 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.mehy.2019.109507_b0035 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 – volume: 355 start-page: 134 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0115 article-title: Seemingly unrelated extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.067 – volume: 26 start-page: 1045 issue: 06 year: 2013 ident: 10.1016/j.mehy.2019.109507_b0185 article-title: The cancer ımaging archive (TCIA): maintaining and operating a public ınformation repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 4 start-page: 120 issue: 3 year: 2017 ident: 10.1016/j.mehy.2019.109507_b0055 article-title: Support vector machine working on FPGA and the segmentation method of brain MR screening publication-title: Int J Innovative Res Educ doi: 10.18844/ijire.v4i3.2549 – volume: 78 start-page: 346 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0030 article-title: Deep learning based enhanced tumor segmentation approach for MR brain images publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.02.036 – volume: 133 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0075 article-title: A new approach for brain tumor diagnosis system: single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.109413 – volume: 10 issue: 08 year: 2015 ident: 10.1016/j.mehy.2019.109507_b0200 article-title: Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the ‘extreme learning machine’ algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0134254 – volume: 285 start-page: 603 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0150 article-title: An automatic multi-thread image segmentation embedded system for surface plasmon resonance sensor publication-title: Sens Actuators, A doi: 10.1016/j.sna.2018.12.007 – volume: 50 start-page: 54 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0240 article-title: Automatic segmentation variability estimation with segmentation priors publication-title: Med Image Anal doi: 10.1016/j.media.2018.08.006 – volume: 118 start-page: 598 year: 2019 ident: 10.1016/j.mehy.2019.109507_b0040 article-title: Fully automated multi-parametric brain tumour segmentation using superpixel based classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.10.040 – year: 1999 ident: 10.1016/j.mehy.2019.109507_b0220 – volume: 3 start-page: 304 issue: 2 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0140 article-title: A low cost autonomous unmanned ground vehicle publication-title: Future Comput Inf J doi: 10.1016/j.fcij.2018.10.001 – volume: 148 start-page: 544 year: 2015 ident: 10.1016/j.mehy.2019.109507_b0120 article-title: Confidence-weighted extreme learning machine for regression problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.009 – volume: 29 start-page: 79 issue: 8 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0020 article-title: A new method for skull stripping in brain MRI using multistable cellular neural networks publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2834-2 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.mehy.2019.109507_b0225 article-title: Self-Organizing Map-based color image segmentation with k -means clustering and saliency map publication-title: ISRN Signal Processing doi: 10.5402/2011/393891 – volume: 26 start-page: 3027 issue: 05 year: 2018 ident: 10.1016/j.mehy.2019.109507_b0160 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2796074 |
| SSID | ssj0009438 |
| Score | 2.35917 |
| Snippet | •In this study, brain tumor segmentation was performed using ELM and FRFCM approaches.•BTS-ELM-FRFCM approach was run on Raspberry PI hardware.•ELM and FRFCM... Automatic decision support systems have gained importance in health sector in recent years. In parallel with recent developments in the fields of artificial... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109507 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Brain Neoplasms - diagnosis Brain tumor segmentation Cluster Analysis Diagnosis, Computer-Assisted - instrumentation Diagnosis, Computer-Assisted - methods Extreme learning machine Fuzzy Logic Glioblastoma - diagnosis Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Neurons - metabolism Raspberry Pi Segmentation Significantly fast and robust fuzzy C-means clustering Software Support Vector Machine |
| Title | Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306987719310953 https://dx.doi.org/10.1016/j.mehy.2019.109507 https://www.ncbi.nlm.nih.gov/pubmed/31812927 https://www.proquest.com/docview/2322804035 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-2777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009438 issn: 0306-9877 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1532-2777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009438 issn: 0306-9877 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1532-2777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009438 issn: 0306-9877 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1532-2777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009438 issn: 0306-9877 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-2777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009438 issn: 0306-9877 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhhdJLSfq5TRpU6K2oG68lr3VMl4ZtS0JpG8jNyPJos2VtL_4gbA75Sf2NnbHlLYU2hd6MkGyjkWeepTfzGHsNwTEEEGsBUSSFNLETaWyNoCMwUBgCXUpbA2fn0fxCfrxUlztsNuTCEK3S-_7ep3fe2reM_WyO18vl-CuhXfxjniIECahqGmWwyympGLy9_UXz0LJTs6bOgnr7xJme45XD1YboXZqqKimSlP1zcPob-OyC0Okee-jRIz_pX3Cf7UDxiN0_8-fjj9mPd6T4wJs2LytewyL3mUUFH2qHcwpbGccWRH4cPTPtD3KvHbHgecetBG6KjBO1g4hEOPerDXembrrmqkxbvHTtzc2Gz0QOGOy4XbVUcYFuYVaLslo2V3nNq7YTRKKnfTH1OoWq2vDPS06ZXtemgifs4vT9t9lceEUGYfHHrxEujVQagZLSHafWWW2VseAyHTrEGplSBtFKIK0j1BnbyJKYiTaIkVI9DTIZPmW7RVnAc8YNYpPYmMAqQGeNniXA1ZJpm2nnHEA4YsFgisT6cuWkmrFKBl7a94TMl5D5kt58I_ZmO2bdF-u4s3c4WDgZ0lDRcSYYS-4cpbajfluo_xz3alhECX7BdCxjCijbOkFMO4nRl4ZqxJ71q2v79jQvEz2ZvvjPpx6wBxPaIOhIc4dst6laeIkoqkmPus_kiN07-fBpfv4TdTcfaA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALKu-FAkbihsI2D2fjI121WqBbIWil3izHGW8XbZJVHkLbAz-J38hM4ixCgiJxiyw7tjz2zGf7mxnGXoN_AD4k0oM4jrxIJ9ZLE6M9egIDgSbQpnQ1MD-NZ-fRhwtxscOmgy8M0Sqd7u91eqetXcnYzeZ4vVyOvxDaxRPzBCGIT1HTbrCbkQgmdAJ7-_0Xz0NGXTprqu1Rdec505O8crjcEL9LUlglQTll_2yd_oY-Oyt0vMfuOvjI3_UjvMd2oLjPbs3dA_kD9uOQUj7wps3LitewyJ1rUcGH4OGc7FbGsQShH0fVTBeE3CWPWPC8I1cC10XGidtBTCKc_NWGW103XXFVpi1-2vbqasOnXg5o7bhZtRRygX6hV4uyWjaXec2rtsuIRL191vU6hara8E9LTq5e33QFD9n58dHZdOa5lAyewZNf49k0FmkMIorsQWqskUZoAzaToUWwkQmhEa74kbEEOxMTG8pmIjWCpFRO_CwKH7HdoizgCeMawUmitW8EoLZG1eLjcsmkyaS1FiAcMX8QhTIuXjmlzVipgZj2VZH4FIlP9eIbsTfbNus-Wse1tcNBwmrwQ0XNqdCYXNtKbFv9tlL_2e7VsIgUbmF6l9EFlG2tENQGCSrTUIzY4351bUdP8xLIYPL0P3t9yW7PzuYn6uT96cdn7E5AtwUdg26f7TZVC88RUjXpi27L_ATkniD9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+segmentation+approach+based+on+the+extreme+learning+machine+and+significantly+fast+and+robust+fuzzy+C-means+clustering+algorithms+running+on+Raspberry+Pi+hardware&rft.jtitle=Medical+hypotheses&rft.au=%C5%9E%C4%B0%C5%9E%C4%B0K%2C+Fatih&rft.au=SERT%2C+Eser&rft.date=2020-03-01&rft.issn=0306-9877&rft.volume=136&rft.spage=109507&rft_id=info:doi/10.1016%2Fj.mehy.2019.109507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mehy_2019_109507 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-9877&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-9877&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-9877&client=summon |