Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it...
        Saved in:
      
    
          | Published in | IOP conference series. Materials Science and Engineering Vol. 960; no. 2; pp. 22083 - 22093 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bristol
          IOP Publishing
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1757-8981 1757-899X 1757-899X  | 
| DOI | 10.1088/1757-899X/960/2/022083 | 
Cover
| Abstract | Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes' behaviour, even for different types of bitumen and aggregates considered here. | 
    
|---|---|
| AbstractList | Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes’ behaviour, even for different types of bitumen and aggregates considered here. | 
    
| Author | Miani, Matteo Baldo, Nicola Manthos, Evangelos Valentin, Jan  | 
    
| Author_xml | – sequence: 1 givenname: Nicola surname: Baldo fullname: Baldo, Nicola email: nicola.baldo@uniud.it organization: Polytechnic Department of Engineering and Architecture (DPIA), University of Udine , Italy – sequence: 2 givenname: Jan surname: Valentin fullname: Valentin, Jan organization: Faculty of Civil Engineering, Czech Technical University in Prague , Czech Republic – sequence: 3 givenname: Evangelos surname: Manthos fullname: Manthos, Evangelos organization: Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus , Greece – sequence: 4 givenname: Matteo surname: Miani fullname: Miani, Matteo organization: Polytechnic Department of Engineering and Architecture (DPIA), University of Udine , Italy  | 
    
| BookMark | eNqFkElLxTAUhYMoOP4FCbhx83xJOqXi5vF4DuCEA7gL1zT1RdqmJikOC3-7qRVFUdwkNzf3Ozk5q2ixMY1CaJOSHUo4H9MsyUY8z2_GeUrGbEwYIzxaQCufF4ufNafLaNW5e0LSLI7JCno97WpltYQKT-dgQfpwegGvTYNNiQ_13RyfmKKrOocnrp1D5fHUNNIqr_rCg250c4cvJue7eBI6dQtWu0BDbUL_rPW61i-qwJeBrcwjPlWdDa8FUVW5dbRUQuXUxse-hq73Z1fTw9Hx2cHRdHI8kjHJ_KgETngchd-WkEMpWRHlUZFxIFlECpkzqkCqIslZlCa3aXzL0yJRNCWkX3IaraFs0O2aFp4fgxPRWl2DfRaUiD5G0SckQlpPIsQomBhiDOTWQLbWPHTKeXFvOtsEs4IlKeM8obSfSocpaY1zVpV_yt_8lN_7AUrt3-P3FnT1P84GXJv2y9i_0PYv0Mnl7NuYaIsyegP8DbSy | 
    
| CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2023_132792 crossref_primary_10_3390_coatings12010054  | 
    
| Cites_doi | 10.3390/app9173502 10.1007/BF00332914 10.1016/j.conbuildmat.2015.07.054  | 
    
| ContentType | Journal Article | 
    
| Copyright | Published under licence by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.1088/1757-899X/960/2/022083 | 
    
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest One Academic Technology Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (ProQuest) Materials Science Database (Proquest) ProQuest Engineering Collection Engineering Database (Proquest) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitleAlternate | Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models | 
    
| EISSN | 1757-899X | 
    
| ExternalDocumentID | 10.1088/1757-899x/960/2/022083 10_1088_1757_899X_960_2_022083 MSE_960_2_022083  | 
    
| GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX AEINN CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS 02O 1WK 4.4 AALHV ACARI ADTOC AERVB AGQPQ ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M48 Q02 UNPAY  | 
    
| ID | FETCH-LOGICAL-c407t-fa80843088fa9afc2d393d78a0730dc921eaced592365b64b86d5e1600e160913 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 1757-8981 1757-899X  | 
    
| IngestDate | Sun Oct 26 04:06:42 EDT 2025 Wed Aug 13 09:30:56 EDT 2025 Wed Oct 01 02:48:04 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Thu Jan 07 14:56:12 EST 2021 Wed Aug 21 03:38:14 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-fa80843088fa9afc2d393d78a0730dc921eaced592365b64b86d5e1600e160913 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1757-899X/960/2/022083 | 
    
| PQID | 2562885113 | 
    
| PQPubID | 4998670 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_primary_10_1088_1757_899X_960_2_022083 unpaywall_primary_10_1088_1757_899x_960_2_022083 proquest_journals_2562885113 iop_journals_10_1088_1757_899X_960_2_022083 crossref_citationtrail_10_1088_1757_899X_960_2_022083  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201201 | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 20201201 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Bristol | 
    
| PublicationPlace_xml | – name: Bristol | 
    
| PublicationTitle | IOP conference series. Materials Science and Engineering | 
    
| PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng | 
    
| PublicationYear | 2020 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | Rumelhart (MSE_960_2_022083bib3) 1988 Snoek (MSE_960_2_022083bib7) 2012; 2 Vogl (MSE_960_2_022083bib6) 1988; 59 Baldo (MSE_960_2_022083bib2) 2019; 9 Hagan (MSE_960_2_022083bib5) 2014; 11 Pasetto (MSE_960_2_022083bib1) 2015; 94 McCulloch (MSE_960_2_022083bib4) 1988 Bull (MSE_960_2_022083bib11) 2011; 12 Rasmussen (MSE_960_2_022083bib8) 2006 Srinivas (MSE_960_2_022083bib10) 2010 Mockus (MSE_960_2_022083bib9) 1978  | 
    
| References_xml | – volume: 9 start-page: 3502 year: 2019 ident: MSE_960_2_022083bib2 article-title: Stiffness Modulus and Marshall Parameters of Hot Mix Asphalts: Laboratory Data Modeling by Artificial Neural Networks Characterized by Cross-Validation publication-title: Appl. Sci. (Basel) doi: 10.3390/app9173502 – start-page: 696 year: 1988 ident: MSE_960_2_022083bib3 – start-page: 117 year: 1978 ident: MSE_960_2_022083bib9 – volume: 11 start-page: 4 year: 2014 ident: MSE_960_2_022083bib5 – volume: 59 start-page: 256 year: 1988 ident: MSE_960_2_022083bib6 article-title: Accelerating the convergence of the backpropagation method publication-title: Biol. Cybern. doi: 10.1007/BF00332914 – volume: 2 start-page: 2951 year: 2012 ident: MSE_960_2_022083bib7 article-title: Practical Bayesian Optimization of Machine Learning Algorithms publication-title: Adv. Neural. Inf. Process. Syst. – volume: 94 start-page: 784 year: 2015 ident: MSE_960_2_022083bib1 article-title: Computational analysis of the creep behaviour of bituminous mixtures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.07.054 – volume: 12 start-page: 2879 year: 2011 ident: MSE_960_2_022083bib11 article-title: Convergence rates of efficient global optimization algorithms publication-title: J. Mach. Learn. Res. – start-page: 105 year: 2006 ident: MSE_960_2_022083bib8 – start-page: 1015 year: 2010 ident: MSE_960_2_022083bib10 article-title: Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design – start-page: 15 year: 1988 ident: MSE_960_2_022083bib4  | 
    
| SSID | ssj0067440 | 
    
| Score | 2.1837685 | 
    
| Snippet | Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the... | 
    
| SourceID | unpaywall proquest crossref iop  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 22083 | 
    
| SubjectTerms | Algorithms Artificial neural networks Asphalt Bitumens Concrete Empirical analysis Error analysis Laboratories Laboratory tests Mechanical properties Optimization Performance evaluation Prediction models Stiffness  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest One Academic dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBbJ5pDkUPpI6KZpUSG3YhzLa0UulLJdNoTCbpakgb0JWQ9YcGw3a5O0h_72zvixiQ9tLsbYki008uiTR_N9hJwkCmYlbZjnjBXeKMIgoVCxB8hbMRZw7WzN9jnnFzej78touUXmXS4MbqvsfGLtqE2u8R-5D1MzEwgPwq_FTw9VozC62kloqFZawXypKca2yQ5DZqwB2fk2nS-uOt_MkQ6vTpGMwDfHIuhyhmEZ2F6Llz6Aep_5mIIqwt50tb3Kix4S3a2yQv26V2n6ZFI6f0letGiSjhvzvyJbNntN9p9wDL4hf-ZVE5RJ6WRDztzkXtLcUdznQWe5qdJqTcfrAsPndJJnACZLiydlIyFBr8aLz3RMJxvdQlrrFNFL8Dm3q9_W0GvUZcnvKfJ9wNtQZS1dH5Cb8-mPyYXXii54GtZ2peeUOBWjEHrEqVg5zUwYh-ZMKPQFRscsAFdtTQTAkEcJHyWCm8gGgJvwEAfhIRlkeWbfYjq40mdORwkYDWnSYq65SkLttBaKGzckUde3UreM5CiMkco6Mi6ERJtItIkEm0gmG5sMib-pVzScHM_W-ASmk-3nuX629Mde6dn1tHdfFtj2424YPBZ8HKNDcroZGv9s40PvqUf_f-I7ssdwqV_vpDkmg_Kusu8BD5XJh3aQ_wVtMwG2 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgObQ9FPpApaXIlbihsMTZGKe3aAVClVgQsNL2ZDl-SIiQRGwiHof-9s7ksZBKiHKJomTG8WPs-ZzxzBCynSjQStowzxkrvFGIRkKhIg-Qt2LM59rZOtrnhB9NR79m4azdKKIvTM9-D5sz0G6wikbR3RCg9pAN0TFUBMtkhYfwYEBWppPT-Hft9VgT1llJO6ZZ5xL8bEE9bbR8mRc9oPmmygp1f6vS9InOOVwlJ11tm6MmV7tVmezqh38COf5_c9bI-xZ-0riRlw9kyWYfybsnQQk_kT-TqrHipHS8iObcOGvS3FE8GEKPc1Ol1ZzG8wLt7XScZ4A-S4s3ZZNzgp7Fpz9pTMeLRIe0TmxET2CRur58sIaeYyKX_JZigBD4GqZlS-efyfTw4GJ85LVZGjwNm8HSc0rsiVEArXMqUk4zE0SB2RcKFw-jI-bD2m5NCEiShwkfJYKb0PoAtPAS-cE6GWR5Zr-g_7jS-06Hie8HGFct4pqrJNBOa6G4cRsk7EZL6jaEOWbSSGVtShdCYv9KHHkJ_SuZbPp3gwwXfEUTxONFjh0QBtnO5_mL1D961MfnB733ssC6b3aC9UgIeJMJxLxQxN5C2J6t412v1K-vZ_lG3jL8X1Afx9kkg_Kmst8BVJXJVjuT_gLTuw_B priority: 102 providerName: Unpaywall  | 
    
| Title | Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models | 
    
| URI | https://iopscience.iop.org/article/10.1088/1757-899X/960/2/022083 https://www.proquest.com/docview/2562885113 https://doi.org/10.1088/1757-899x/960/2/022083  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 960 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: HH5 dateStart: 20090101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: O3W dateStart: 20090201 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: IOP dateStart: 20090101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1757-899X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb5swELaW9mHrw7qfarc28qS9TYSCg2v2RqNk1aQmUbto3RMytpGmMUALqFsf9rf3DkNWJlXVtBdkgW2OA-4-8N13hLxNJHglpX0n1UY44wAXCYUMHUDe0vc9rlLTsH3O-elq_PEy6KIJm1yYomxN_wialijYqrANiBMuODwwrGF46QL6dn0Xc0UFG5BtJgAeYw7fYtkZY478d01OZDNGeF2S8J3z9PzTAGToQc-HdV7KX1cyy255odkuSTr5bfDJt1FdJSN1_Re1439d4BPyuMWoNLIDnpIHJn9Gdm4xFz4nv-e1XerJ6GRD-WwzOmmRUoweoWeFrrN6TaN1iYvydFLkAFErg43KFqag59HyPY3oZFMNkTbVj-gCLNn3r9dG0wus9lJcUWQRgbNh7bZs_YKsZtNPk1OnLeXgKPhirJxUiiMxZnB1qQxlqnzNQqaPhUQLo1Xoe-AAjA4AbvIg4eNEcB0YD9AYbkKPvSRbeZGbPUwyl-o4VUHieQzJ10KuuEyYSpUSkut0nwTdDYxVy3OO5TayuFlvFyJG_cao3xj0G_ux1e8-cTfjSsv0ce-Id3AL4_alX9_b-02v99nFtHc8LlH2g-5Z-9MRQKkvEBjDFEeb5-9OGX_2Zn31TzK-Jo98_J_QhOsckK3qR20OAXRVyZAMxOzDkGyfTOfL82HzksF2wT7DvtV8GX25AaPNIKc | 
    
| linkProvider | IOP Publishing | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELb6OJQeEE-xUMBIcEJRGudRB6lCy7LVlnaXqg9pb8axHalSmgSSaNse-Gn8Nmby2DYH6KmXaJV1nCgznkfG832EvI8keCWlmRVrwy3PxyIhl6EFkbdkzAlUbGq0z1kwOfO-zf35CvnT9cLgtsrOJtaGWmcKv5Hb4JoZx_DA_Zz_tJA1CqurHYWGbKkV9G4NMdY2dhyYqwWkcMXu_leQ9wfG9sano4nVsgxYCpKZ0ool3-aeC6stlqGMFdNu6OodLlH5tQqZA7bJaB8iocCPAi_igfaNA4ECHkLHhXlXybrneiEkf-tfxrOj484XBAi_V7dk-uALQu50PcqQdrbnwrkNSYTNbGx55W7PPa6eZ3kv8t2o0lxeLWSS3HKCe4_IwzZ6pcNG3R6TFZM-IZu3MA2fkt-zqikCJXS0BINuej1pFlPcV0Knma6SqqDDIsdyPR1lKQSvpcEfZUNZQY-HR5_okI6WPIm05kWi38HGXZxfG01PkAcmW1DEF4G7IatbUjwjZ_fy-p-TtTRLzQtsP5dqJ1Z-BEqCsGxhoAIZuSpWistAxwPid-9WqBYBHYk4ElFX4jkXKBOBMhEgE8FEI5MBsZfX5Q0GyJ1XfATRidYcFHeOftcbPT0Z9_4XOT77VqcGNwNv1sSAbC9V45_PeNmb9eX_Z3xLNian00NxuD87eEUeMPzMUO_i2SJr5a_KvIZYrIzetApPyY_7XmN_Ad7APbI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZJCn0c-g5Nk7Yq9Fa8juW1I-e2bHdJH9ksTQN7E7IeUOLaprZJm0N_e2csrxsXQii9GIElWRrJM5-tmW8IeZNKsEpKM89qw71xhIeEXCYeIG_JWBAra1q2z0V8dDb-sIpWG2TWx8IUZaf6R1B0RMFOhJ1DHPfB4IFiTZKVD-jbZz7GivLQL7XdJLdathKM4ztZrhVyjBx4bVxk244H60Dha_sa2KhNGMcAft5p8lL-vJBZdsUSzR84j5GqJTBEB5TzUVOnI3X5F73jf0_yIbnfYVU6cY0ekQ2TPyb3rjAYPiG_Fo078snotKd-dpGdtLAUvUjocaGbrKnopCrxcJ5Oixygam2wULsEFfTzZHlIJ3TaZ0WkbRYkegIa7dvXS6PpKWZ9KS4osonA0zCHW1Y9JWfz2ZfpkdeldPAUfDnWnpV8n49DmKGVibSK6TAJ9QGXqGm0SlgAhsDoCGBnHKXxOOWxjkwAqAwvSRBuk628yM0zDDaX6sCqKA2CEEnYkljFMg2VVYrLWNsdEq0XUaiO7xzTbmSiPXfnXKCMBcpYgIwFE07GO8Tv25WO8ePGFm9hGUX38lc31n49qH18OhvcFyWOfW-93_5UBHDKOAJk6GK_34PXjvHHoNfn_zTGV-T28t1cfHq_-LhL7jL8xdB68OyRrfp7Y14ADqvTl-1b9hsSpSDe | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgObQ9FPpApaXIlbihsMTZGKe3aAVClVgQsNL2ZDl-SIiQRGwiHof-9s7ksZBKiHKJomTG8WPs-ZzxzBCynSjQStowzxkrvFGIRkKhIg-Qt2LM59rZOtrnhB9NR79m4azdKKIvTM9-D5sz0G6wikbR3RCg9pAN0TFUBMtkhYfwYEBWppPT-Hft9VgT1llJO6ZZ5xL8bEE9bbR8mRc9oPmmygp1f6vS9InOOVwlJ11tm6MmV7tVmezqh38COf5_c9bI-xZ-0riRlw9kyWYfybsnQQk_kT-TqrHipHS8iObcOGvS3FE8GEKPc1Ol1ZzG8wLt7XScZ4A-S4s3ZZNzgp7Fpz9pTMeLRIe0TmxET2CRur58sIaeYyKX_JZigBD4GqZlS-efyfTw4GJ85LVZGjwNm8HSc0rsiVEArXMqUk4zE0SB2RcKFw-jI-bD2m5NCEiShwkfJYKb0PoAtPAS-cE6GWR5Zr-g_7jS-06Hie8HGFct4pqrJNBOa6G4cRsk7EZL6jaEOWbSSGVtShdCYv9KHHkJ_SuZbPp3gwwXfEUTxONFjh0QBtnO5_mL1D961MfnB733ssC6b3aC9UgIeJMJxLxQxN5C2J6t412v1K-vZ_lG3jL8X1Afx9kkg_Kmst8BVJXJVjuT_gLTuw_B | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Characterization+of+High+Modulus+Asphalt+Concrete+Containing+RAP%3A+A+Comparison+among+Optimized+Shallow+Neural+Models&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Baldo%2C+Nicola&rft.au=Valentin%2C+Jan&rft.au=Manthos%2C+Evangelos&rft.au=Miani%2C+Matteo&rft.date=2020-12-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=960&rft.issue=2&rft_id=info:doi/10.1088%2F1757-899X%2F960%2F2%2F022083&rft.externalDocID=MSE_960_2_022083 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |