Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models

Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 960; no. 2; pp. 22083 - 22093
Main Authors Baldo, Nicola, Valentin, Jan, Manthos, Evangelos, Miani, Matteo
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2020
Subjects
Online AccessGet full text
ISSN1757-8981
1757-899X
1757-899X
DOI10.1088/1757-899X/960/2/022083

Cover

Abstract Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes' behaviour, even for different types of bitumen and aggregates considered here.
AbstractList Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the expected results of costly laboratory tests and save both time and financial resources in the mix design phase. In fact, such a model would make it possible to assess a priori whether the stiffness of a specific mixture, characterised in the laboratory only by the common Marshall test, is suitable for the level of service required by the road pavement under analysis. In this study, 54 Marshall test specimens of high modulus asphalt concrete were prepared and tested in the laboratory to determine an empirical relationship between the stiffness modulus and Marshall stability by means of shallow artificial neural networks. Part out of these mixtures was characterised by different types of bitumen (20/30 or 50/70 penetration grade) and percentages of used reclaimed asphalt (RAP at 20% or 30%); a polymer modified bitumen was used in the preparation of the remaining Marshall test specimens, which do not contain RAP. For the complex and laborious identification of the neural model hyperparameters, which define its architecture and algorithmic functioning, the Bayesian optimization approach has been adopted. Although the results of this methodology depend on the predefined hyperparameters variability ranges, it allows an unbiased definition of the optimal neural model characteristics to be performed by minimizing (or maximizing) a loss function. In this study, the mean square error on 5 validation folds was used as a loss function, in order to avoid a poor performance evaluation due to the small number of samples. In addition, 3 different neural training algorithms were applied to compare results and convergence times. The procedure presented in this study is a valuable guide for the development of predictive models of asphalt concretes’ behaviour, even for different types of bitumen and aggregates considered here.
Author Miani, Matteo
Baldo, Nicola
Manthos, Evangelos
Valentin, Jan
Author_xml – sequence: 1
  givenname: Nicola
  surname: Baldo
  fullname: Baldo, Nicola
  email: nicola.baldo@uniud.it
  organization: Polytechnic Department of Engineering and Architecture (DPIA), University of Udine , Italy
– sequence: 2
  givenname: Jan
  surname: Valentin
  fullname: Valentin, Jan
  organization: Faculty of Civil Engineering, Czech Technical University in Prague , Czech Republic
– sequence: 3
  givenname: Evangelos
  surname: Manthos
  fullname: Manthos, Evangelos
  organization: Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus , Greece
– sequence: 4
  givenname: Matteo
  surname: Miani
  fullname: Miani, Matteo
  organization: Polytechnic Department of Engineering and Architecture (DPIA), University of Udine , Italy
BookMark eNqFkElLxTAUhYMoOP4FCbhx83xJOqXi5vF4DuCEA7gL1zT1RdqmJikOC3-7qRVFUdwkNzf3Ozk5q2ixMY1CaJOSHUo4H9MsyUY8z2_GeUrGbEwYIzxaQCufF4ufNafLaNW5e0LSLI7JCno97WpltYQKT-dgQfpwegGvTYNNiQ_13RyfmKKrOocnrp1D5fHUNNIqr_rCg250c4cvJue7eBI6dQtWu0BDbUL_rPW61i-qwJeBrcwjPlWdDa8FUVW5dbRUQuXUxse-hq73Z1fTw9Hx2cHRdHI8kjHJ_KgETngchd-WkEMpWRHlUZFxIFlECpkzqkCqIslZlCa3aXzL0yJRNCWkX3IaraFs0O2aFp4fgxPRWl2DfRaUiD5G0SckQlpPIsQomBhiDOTWQLbWPHTKeXFvOtsEs4IlKeM8obSfSocpaY1zVpV_yt_8lN_7AUrt3-P3FnT1P84GXJv2y9i_0PYv0Mnl7NuYaIsyegP8DbSy
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2023_132792
crossref_primary_10_3390_coatings12010054
Cites_doi 10.3390/app9173502
10.1007/BF00332914
10.1016/j.conbuildmat.2015.07.054
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1088/1757-899X/960/2/022083
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest One Academic
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection‎ (ProQuest)
Materials Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
EISSN 1757-899X
ExternalDocumentID 10.1088/1757-899x/960/2/022083
10_1088_1757_899X_960_2_022083
MSE_960_2_022083
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
4.4
AALHV
ACARI
ADTOC
AERVB
AGQPQ
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M48
Q02
UNPAY
ID FETCH-LOGICAL-c407t-fa80843088fa9afc2d393d78a0730dc921eaced592365b64b86d5e1600e160913
IEDL.DBID IOP
ISSN 1757-8981
1757-899X
IngestDate Sun Oct 26 04:06:42 EDT 2025
Wed Aug 13 09:30:56 EDT 2025
Wed Oct 01 02:48:04 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Thu Jan 07 14:56:12 EST 2021
Wed Aug 21 03:38:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-fa80843088fa9afc2d393d78a0730dc921eaced592365b64b86d5e1600e160913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1757-899X/960/2/022083
PQID 2562885113
PQPubID 4998670
PageCount 11
ParticipantIDs crossref_primary_10_1088_1757_899X_960_2_022083
unpaywall_primary_10_1088_1757_899x_960_2_022083
proquest_journals_2562885113
iop_journals_10_1088_1757_899X_960_2_022083
crossref_citationtrail_10_1088_1757_899X_960_2_022083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Rumelhart (MSE_960_2_022083bib3) 1988
Snoek (MSE_960_2_022083bib7) 2012; 2
Vogl (MSE_960_2_022083bib6) 1988; 59
Baldo (MSE_960_2_022083bib2) 2019; 9
Hagan (MSE_960_2_022083bib5) 2014; 11
Pasetto (MSE_960_2_022083bib1) 2015; 94
McCulloch (MSE_960_2_022083bib4) 1988
Bull (MSE_960_2_022083bib11) 2011; 12
Rasmussen (MSE_960_2_022083bib8) 2006
Srinivas (MSE_960_2_022083bib10) 2010
Mockus (MSE_960_2_022083bib9) 1978
References_xml – volume: 9
  start-page: 3502
  year: 2019
  ident: MSE_960_2_022083bib2
  article-title: Stiffness Modulus and Marshall Parameters of Hot Mix Asphalts: Laboratory Data Modeling by Artificial Neural Networks Characterized by Cross-Validation
  publication-title: Appl. Sci. (Basel)
  doi: 10.3390/app9173502
– start-page: 696
  year: 1988
  ident: MSE_960_2_022083bib3
– start-page: 117
  year: 1978
  ident: MSE_960_2_022083bib9
– volume: 11
  start-page: 4
  year: 2014
  ident: MSE_960_2_022083bib5
– volume: 59
  start-page: 256
  year: 1988
  ident: MSE_960_2_022083bib6
  article-title: Accelerating the convergence of the backpropagation method
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00332914
– volume: 2
  start-page: 2951
  year: 2012
  ident: MSE_960_2_022083bib7
  article-title: Practical Bayesian Optimization of Machine Learning Algorithms
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 94
  start-page: 784
  year: 2015
  ident: MSE_960_2_022083bib1
  article-title: Computational analysis of the creep behaviour of bituminous mixtures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.07.054
– volume: 12
  start-page: 2879
  year: 2011
  ident: MSE_960_2_022083bib11
  article-title: Convergence rates of efficient global optimization algorithms
  publication-title: J. Mach. Learn. Res.
– start-page: 105
  year: 2006
  ident: MSE_960_2_022083bib8
– start-page: 1015
  year: 2010
  ident: MSE_960_2_022083bib10
  article-title: Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
– start-page: 15
  year: 1988
  ident: MSE_960_2_022083bib4
SSID ssj0067440
Score 2.1837685
Snippet Knowing the relationship between the stiffness modulus and the empirical mechanical characteristics of asphalt concrete, road engineers may predict the...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22083
SubjectTerms Algorithms
Artificial neural networks
Asphalt
Bitumens
Concrete
Empirical analysis
Error analysis
Laboratories
Laboratory tests
Mechanical properties
Optimization
Performance evaluation
Prediction models
Stiffness
SummonAdditionalLinks – databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBbJ5pDkUPpI6KZpUSG3YhzLa0UulLJdNoTCbpakgb0JWQ9YcGw3a5O0h_72zvixiQ9tLsbYki008uiTR_N9hJwkCmYlbZjnjBXeKMIgoVCxB8hbMRZw7WzN9jnnFzej78touUXmXS4MbqvsfGLtqE2u8R-5D1MzEwgPwq_FTw9VozC62kloqFZawXypKca2yQ5DZqwB2fk2nS-uOt_MkQ6vTpGMwDfHIuhyhmEZ2F6Llz6Aep_5mIIqwt50tb3Kix4S3a2yQv26V2n6ZFI6f0letGiSjhvzvyJbNntN9p9wDL4hf-ZVE5RJ6WRDztzkXtLcUdznQWe5qdJqTcfrAsPndJJnACZLiydlIyFBr8aLz3RMJxvdQlrrFNFL8Dm3q9_W0GvUZcnvKfJ9wNtQZS1dH5Cb8-mPyYXXii54GtZ2peeUOBWjEHrEqVg5zUwYh-ZMKPQFRscsAFdtTQTAkEcJHyWCm8gGgJvwEAfhIRlkeWbfYjq40mdORwkYDWnSYq65SkLttBaKGzckUde3UreM5CiMkco6Mi6ERJtItIkEm0gmG5sMib-pVzScHM_W-ASmk-3nuX629Mde6dn1tHdfFtj2424YPBZ8HKNDcroZGv9s40PvqUf_f-I7ssdwqV_vpDkmg_Kusu8BD5XJh3aQ_wVtMwG2
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgObQ9FPpApaXIlbihsMTZGKe3aAVClVgQsNL2ZDl-SIiQRGwiHof-9s7ksZBKiHKJomTG8WPs-ZzxzBCynSjQStowzxkrvFGIRkKhIg-Qt2LM59rZOtrnhB9NR79m4azdKKIvTM9-D5sz0G6wikbR3RCg9pAN0TFUBMtkhYfwYEBWppPT-Hft9VgT1llJO6ZZ5xL8bEE9bbR8mRc9oPmmygp1f6vS9InOOVwlJ11tm6MmV7tVmezqh38COf5_c9bI-xZ-0riRlw9kyWYfybsnQQk_kT-TqrHipHS8iObcOGvS3FE8GEKPc1Ol1ZzG8wLt7XScZ4A-S4s3ZZNzgp7Fpz9pTMeLRIe0TmxET2CRur58sIaeYyKX_JZigBD4GqZlS-efyfTw4GJ85LVZGjwNm8HSc0rsiVEArXMqUk4zE0SB2RcKFw-jI-bD2m5NCEiShwkfJYKb0PoAtPAS-cE6GWR5Zr-g_7jS-06Hie8HGFct4pqrJNBOa6G4cRsk7EZL6jaEOWbSSGVtShdCYv9KHHkJ_SuZbPp3gwwXfEUTxONFjh0QBtnO5_mL1D961MfnB733ssC6b3aC9UgIeJMJxLxQxN5C2J6t412v1K-vZ_lG3jL8X1Afx9kkg_Kmst8BVJXJVjuT_gLTuw_B
  priority: 102
  providerName: Unpaywall
Title Numerical Characterization of High Modulus Asphalt Concrete Containing RAP: A Comparison among Optimized Shallow Neural Models
URI https://iopscience.iop.org/article/10.1088/1757-899X/960/2/022083
https://www.proquest.com/docview/2562885113
https://doi.org/10.1088/1757-899x/960/2/022083
UnpaywallVersion publishedVersion
Volume 960
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: IOP
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb5swELaW9mHrw7qfarc28qS9TYSCg2v2RqNk1aQmUbto3RMytpGmMUALqFsf9rf3DkNWJlXVtBdkgW2OA-4-8N13hLxNJHglpX0n1UY44wAXCYUMHUDe0vc9rlLTsH3O-elq_PEy6KIJm1yYomxN_wialijYqrANiBMuODwwrGF46QL6dn0Xc0UFG5BtJgAeYw7fYtkZY478d01OZDNGeF2S8J3z9PzTAGToQc-HdV7KX1cyy255odkuSTr5bfDJt1FdJSN1_Re1439d4BPyuMWoNLIDnpIHJn9Gdm4xFz4nv-e1XerJ6GRD-WwzOmmRUoweoWeFrrN6TaN1iYvydFLkAFErg43KFqag59HyPY3oZFMNkTbVj-gCLNn3r9dG0wus9lJcUWQRgbNh7bZs_YKsZtNPk1OnLeXgKPhirJxUiiMxZnB1qQxlqnzNQqaPhUQLo1Xoe-AAjA4AbvIg4eNEcB0YD9AYbkKPvSRbeZGbPUwyl-o4VUHieQzJ10KuuEyYSpUSkut0nwTdDYxVy3OO5TayuFlvFyJG_cao3xj0G_ux1e8-cTfjSsv0ce-Id3AL4_alX9_b-02v99nFtHc8LlH2g-5Z-9MRQKkvEBjDFEeb5-9OGX_2Zn31TzK-Jo98_J_QhOsckK3qR20OAXRVyZAMxOzDkGyfTOfL82HzksF2wT7DvtV8GX25AaPNIKc
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELb6OJQeEE-xUMBIcEJRGudRB6lCy7LVlnaXqg9pb8axHalSmgSSaNse-Gn8Nmby2DYH6KmXaJV1nCgznkfG832EvI8keCWlmRVrwy3PxyIhl6EFkbdkzAlUbGq0z1kwOfO-zf35CvnT9cLgtsrOJtaGWmcKv5Hb4JoZx_DA_Zz_tJA1CqurHYWGbKkV9G4NMdY2dhyYqwWkcMXu_leQ9wfG9sano4nVsgxYCpKZ0ool3-aeC6stlqGMFdNu6OodLlH5tQqZA7bJaB8iocCPAi_igfaNA4ECHkLHhXlXybrneiEkf-tfxrOj484XBAi_V7dk-uALQu50PcqQdrbnwrkNSYTNbGx55W7PPa6eZ3kv8t2o0lxeLWSS3HKCe4_IwzZ6pcNG3R6TFZM-IZu3MA2fkt-zqikCJXS0BINuej1pFlPcV0Knma6SqqDDIsdyPR1lKQSvpcEfZUNZQY-HR5_okI6WPIm05kWi38HGXZxfG01PkAcmW1DEF4G7IatbUjwjZ_fy-p-TtTRLzQtsP5dqJ1Z-BEqCsGxhoAIZuSpWistAxwPid-9WqBYBHYk4ElFX4jkXKBOBMhEgE8FEI5MBsZfX5Q0GyJ1XfATRidYcFHeOftcbPT0Z9_4XOT77VqcGNwNv1sSAbC9V45_PeNmb9eX_Z3xLNian00NxuD87eEUeMPzMUO_i2SJr5a_KvIZYrIzetApPyY_7XmN_Ad7APbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZJCn0c-g5Nk7Yq9Fa8juW1I-e2bHdJH9ksTQN7E7IeUOLaprZJm0N_e2csrxsXQii9GIElWRrJM5-tmW8IeZNKsEpKM89qw71xhIeEXCYeIG_JWBAra1q2z0V8dDb-sIpWG2TWx8IUZaf6R1B0RMFOhJ1DHPfB4IFiTZKVD-jbZz7GivLQL7XdJLdathKM4ztZrhVyjBx4bVxk244H60Dha_sa2KhNGMcAft5p8lL-vJBZdsUSzR84j5GqJTBEB5TzUVOnI3X5F73jf0_yIbnfYVU6cY0ekQ2TPyb3rjAYPiG_Fo078snotKd-dpGdtLAUvUjocaGbrKnopCrxcJ5Oixygam2wULsEFfTzZHlIJ3TaZ0WkbRYkegIa7dvXS6PpKWZ9KS4osonA0zCHW1Y9JWfz2ZfpkdeldPAUfDnWnpV8n49DmKGVibSK6TAJ9QGXqGm0SlgAhsDoCGBnHKXxOOWxjkwAqAwvSRBuk628yM0zDDaX6sCqKA2CEEnYkljFMg2VVYrLWNsdEq0XUaiO7xzTbmSiPXfnXKCMBcpYgIwFE07GO8Tv25WO8ePGFm9hGUX38lc31n49qH18OhvcFyWOfW-93_5UBHDKOAJk6GK_34PXjvHHoNfn_zTGV-T28t1cfHq_-LhL7jL8xdB68OyRrfp7Y14ADqvTl-1b9hsSpSDe
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgObQ9FPpApaXIlbihsMTZGKe3aAVClVgQsNL2ZDl-SIiQRGwiHof-9s7ksZBKiHKJomTG8WPs-ZzxzBCynSjQStowzxkrvFGIRkKhIg-Qt2LM59rZOtrnhB9NR79m4azdKKIvTM9-D5sz0G6wikbR3RCg9pAN0TFUBMtkhYfwYEBWppPT-Hft9VgT1llJO6ZZ5xL8bEE9bbR8mRc9oPmmygp1f6vS9InOOVwlJ11tm6MmV7tVmezqh38COf5_c9bI-xZ-0riRlw9kyWYfybsnQQk_kT-TqrHipHS8iObcOGvS3FE8GEKPc1Ol1ZzG8wLt7XScZ4A-S4s3ZZNzgp7Fpz9pTMeLRIe0TmxET2CRur58sIaeYyKX_JZigBD4GqZlS-efyfTw4GJ85LVZGjwNm8HSc0rsiVEArXMqUk4zE0SB2RcKFw-jI-bD2m5NCEiShwkfJYKb0PoAtPAS-cE6GWR5Zr-g_7jS-06Hie8HGFct4pqrJNBOa6G4cRsk7EZL6jaEOWbSSGVtShdCYv9KHHkJ_SuZbPp3gwwXfEUTxONFjh0QBtnO5_mL1D961MfnB733ssC6b3aC9UgIeJMJxLxQxN5C2J6t412v1K-vZ_lG3jL8X1Afx9kkg_Kmst8BVJXJVjuT_gLTuw_B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Characterization+of+High+Modulus+Asphalt+Concrete+Containing+RAP%3A+A+Comparison+among+Optimized+Shallow+Neural+Models&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Baldo%2C+Nicola&rft.au=Valentin%2C+Jan&rft.au=Manthos%2C+Evangelos&rft.au=Miani%2C+Matteo&rft.date=2020-12-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=960&rft.issue=2&rft_id=info:doi/10.1088%2F1757-899X%2F960%2F2%2F022083&rft.externalDocID=MSE_960_2_022083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon