Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network

•Particle swarm optimization (PSO) and a gravitational search algorithm (GSA) were used to optimize the weights and biases of a FNN.•The chronic kidney disease (CKD) and mesothelioma (MES) disease datasets were used as research objects.•Fuzzy rules were used to optimize the parameters of a GSA to im...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 180; p. 105016
Main Authors Huang, Mei-Ling, Chou, Yueh-Ching
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2019.105016

Cover

Abstract •Particle swarm optimization (PSO) and a gravitational search algorithm (GSA) were used to optimize the weights and biases of a FNN.•The chronic kidney disease (CKD) and mesothelioma (MES) disease datasets were used as research objects.•Fuzzy rules were used to optimize the parameters of a GSA to improve the performance of classifiers. A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis. In this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier. When applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy–GSA was 99.25%. The accuracies of the combined algorithms PSO–GSA and fuzzy–PSO–GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy. This study used PSO, GSA, fuzzy–GSA, PSO–GSA, and fuzzy–PSO–GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy
AbstractList •Particle swarm optimization (PSO) and a gravitational search algorithm (GSA) were used to optimize the weights and biases of a FNN.•The chronic kidney disease (CKD) and mesothelioma (MES) disease datasets were used as research objects.•Fuzzy rules were used to optimize the parameters of a GSA to improve the performance of classifiers. A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis. In this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier. When applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy–GSA was 99.25%. The accuracies of the combined algorithms PSO–GSA and fuzzy–PSO–GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy. This study used PSO, GSA, fuzzy–GSA, PSO–GSA, and fuzzy–PSO–GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy
A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis.BACKGROUND AND OBJECTIVEA feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis.In this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier.METHODIn this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier.When applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy-GSA was 99.25%. The accuracies of the combined algorithms PSO-GSA and fuzzy-PSO-GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy.RESULTSWhen applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy-GSA was 99.25%. The accuracies of the combined algorithms PSO-GSA and fuzzy-PSO-GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy.This study used PSO, GSA, fuzzy-GSA, PSO-GSA, and fuzzy-PSO-GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy.CONCLUSIONSThis study used PSO, GSA, fuzzy-GSA, PSO-GSA, and fuzzy-PSO-GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy.
A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis. In this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier. When applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy-GSA was 99.25%. The accuracies of the combined algorithms PSO-GSA and fuzzy-PSO-GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy. This study used PSO, GSA, fuzzy-GSA, PSO-GSA, and fuzzy-PSO-GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy.
ArticleNumber 105016
Author Huang, Mei-Ling
Chou, Yueh-Ching
Author_xml – sequence: 1
  givenname: Mei-Ling
  surname: Huang
  fullname: Huang, Mei-Ling
  email: huangml@ncut.edu.tw
– sequence: 2
  givenname: Yueh-Ching
  surname: Chou
  fullname: Chou, Yueh-Ching
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31442736$$D View this record in MEDLINE/PubMed
BookMark eNqFkr1u2zAUhYkiReOkfYEOBccOkUtREiUVXQqjf0CALu1MUOSlTYciVZJyYL9OX7R07CwZ0onAwfkuL865V-jCeQcIvS3JsiQl-7BdynEalpSUfRaaLL1Ai7JradE2rLlAi6z0BWWkvURXMW4JIbRp2Ct0WZV1TduKLdDflR8H44xbY4HXQexMEsl4JyyOIILcYGHXPpi0GW_wJEIy0gKO9yKM2E_JjObw4L_Bwims58Nhj8NsIeLksRmn4HeA0wawtCJGo418sOMJgvZhFE4C9jr_rQFUkaU8WWEHc8gbOEj3Pty9Ri-1sBHenN9r9Pvrl1-r78Xtz28_Vp9vC1mTNhWaaEWhlII1oPqSDaqvh3bohg6g16TpYNCCQVUzII2o1KAIqwdQVc8U0VpV1-j9aW7e-s8MMfHRRAnWCgd-jpzSjjQNZTXN1ndn6zyMoPgUzCjCnj8Gmw3dySCDjzGA5vKcbArCWF4SfuyQb_mxQ37skJ86zCh9gj5Ofxb6dIIgB7QzEHiUBnK6ygSQiStvnsc_PsGlzVchhb2D_f_gf8Cgzes
CitedBy_id crossref_primary_10_3390_electronics10243158
crossref_primary_10_2174_1570162X21666221128153942
crossref_primary_10_1007_s12530_022_09456_y
crossref_primary_10_1016_j_measurement_2021_109276
crossref_primary_10_1155_2024_5806437
crossref_primary_10_1007_s10258_024_00252_x
crossref_primary_10_1016_j_apm_2020_11_013
crossref_primary_10_3390_machines9120312
crossref_primary_10_1016_j_compeleceng_2024_109258
crossref_primary_10_1007_s00500_022_07202_9
crossref_primary_10_29130_dubited_659106
crossref_primary_10_1177_0309524X221102794
crossref_primary_10_1007_s11255_024_04281_5
crossref_primary_10_1007_s42979_024_02794_5
crossref_primary_10_1007_s11069_021_04646_4
crossref_primary_10_1109_ACCESS_2025_3535667
crossref_primary_10_1007_s40620_023_01573_4
Cites_doi 10.1109/34.107014
10.1016/j.neucom.2018.09.001
10.1016/j.tust.2016.12.009
10.1016/j.compchemeng.2017.06.011
10.1016/j.ins.2009.03.004
10.1007/s12665-017-6864-6
10.1016/j.ins.2018.10.025
10.1109/ACCESS.2019.2909845
10.1109/72.329697
10.1016/j.knosys.2017.12.017
10.1080/01430750.2014.986289
10.1007/s00500-018-3253-3
10.1016/j.asoc.2010.04.017
10.1016/j.eswa.2015.03.034
10.1016/j.neucom.2016.09.113
10.1080/08839514.2018.1451216
10.1016/0893-6080(89)90020-8
10.1016/j.irbm.2018.09.004
10.1007/s12559-016-9404-x
10.1007/s12559-016-9396-6
10.1016/j.compeleceng.2011.09.001
10.1109/TCBB.2011.140
10.1007/s10706-015-9970-9
10.1016/j.asoc.2016.09.024
10.1377/hlthaff.2017.1655
10.1016/j.neucom.2015.03.104
10.1109/79.180705
10.1007/s00500-014-1567-3
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2019.105016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 31442736
10_1016_j_cmpb_2019_105016
S0169260719304614
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-f0fd2e1ca65ed916bd94b7b8b8ee9f058ebfa6e346e05a3dbd064bed396d0ffd3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sat Sep 27 23:45:32 EDT 2025
Wed Feb 19 02:29:45 EST 2025
Thu Apr 24 23:09:02 EDT 2025
Thu Oct 02 04:24:57 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Tue Oct 14 19:32:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mesothelioma disease
Gravitational search algorithm
Chronic kidney disease
Artificial neural network
Particle swarm optimization
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-f0fd2e1ca65ed916bd94b7b8b8ee9f058ebfa6e346e05a3dbd064bed396d0ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31442736
PQID 2280552642
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2280552642
pubmed_primary_31442736
crossref_citationtrail_10_1016_j_cmpb_2019_105016
crossref_primary_10_1016_j_cmpb_2019_105016
elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_105016
elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_105016
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zeng, Qiu, Wang, Liu, Zhang, Li (bib0017) 2018; 320
Er, Tanrikulu, Abakay, Temurtas (bib0042) 2012; 38
Shahnazar, Rad, Hasanipanah, Tahir, Armaghani, Ghoroqi (bib0024) 2017; 76
Lin, Chen, Lee (bib0005) 2004; 3264
Malakooti, Zhou (bib0006) 1998; 90
Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (bib0022) 2017; 63
Toghyani, Kasaeian, Ahmadi, Mohammadi (bib0021) 2016; 37
Olivas, Valdez, Melin, Sombra, Castillo (bib0031) 2019; 476
Mat Isa, Mamat (bib0004) 2011; 11
Bohat, Arya (bib0018) 2018; 143
Zhang (bib0010) 2009; 212
Mukherjee (bib0044) 2018; 32
W. Gulbinat, What is the role of WHO as an intergovernmental organisation in the coordination of telematics in health care?
Rashedi, Nezamabadi-pour, Saryazdi (bib0037) 2009; 179
Akben (bib0041) 2018; 39
Rubini, Eswaran (bib0039) 2015; 5
Adeli, Hung (bib0009) 1994; 62
Khandelwal, Armaghani (bib0023) 2016; 34
González, Valdez, Melin, Prado-Arechiga (bib0028) 2015; 42
Olivas, Valdez, Castillo (bib0030) 2016
Melo, Watada (bib0027) 2016; 172
Hush, Horne (bib0008) 1993; 10
Zeng, Wang, Zhang, Liu, Alsaadi (bib0016) 2016; 8
1997.
Valdez, Vazquez, Melin, Castillo (bib0029) 2017; 52
Cuckler, Sisko, Poisal, Keehan, Smith, Madison, Wolfe, Hardesty (bib0002) 2018; 37
Gori, Tesi (bib0013) 1992; 14
Dua, Graff (bib0034) 2019
Olivas, Valdez, Castillo, Melin (bib0032) 2016; 20
Mirjalili, Mohd Hashim, Moradian Sardroudi (bib0019) 2012; 218
Salmeron, Rahimi, Navali, Sadeghpour (bib0026) 2017; 232
Sombra, Valdez, Melin, Castillo (bib0033) 2013
Nilashi, bin Ibrahim, Ahmadi, Shahmoradi (bib0043) 2017; 106
Murat, Kemal (bib0040) 2017; 5
Mesothelioma’s disease data set Data Set, University of California Irvine mechanical learning database (2016).
Zeng, Wang, Zhang, Liu, Alsaadi (bib0014) 2016; 8
Hagan, Menhaj (bib0011) 1994; 5
Zeng, Wang, Li, Du, Liu (bib0015) 2012; 9
Kennedy, Eberhart (bib0036) 1995
Hornik, Stinchcombe, White (bib0007) 1989; 2
López, Ponce, Soriano, Molina, Rivas (bib0020) 2019; 7
Koopialipoor, Armaghani, Hedayat, Marto, Gordan (bib0025) 2019; 23
Irie (bib0003) 1988; 641
Zhang, Zhang, Lok, Lyu (bib0012) 2007; 185
Shi, Eberhart (bib0038) 1998
Murat (10.1016/j.cmpb.2019.105016_bib0040) 2017; 5
Malakooti (10.1016/j.cmpb.2019.105016_bib0006) 1998; 90
Hornik (10.1016/j.cmpb.2019.105016_bib0007) 1989; 2
Mat Isa (10.1016/j.cmpb.2019.105016_bib0004) 2011; 11
Zeng (10.1016/j.cmpb.2019.105016_bib0016) 2016; 8
Akben (10.1016/j.cmpb.2019.105016_bib0041) 2018; 39
Khandelwal (10.1016/j.cmpb.2019.105016_bib0023) 2016; 34
Bohat (10.1016/j.cmpb.2019.105016_bib0018) 2018; 143
10.1016/j.cmpb.2019.105016_bib0001
Gori (10.1016/j.cmpb.2019.105016_bib0013) 1992; 14
López (10.1016/j.cmpb.2019.105016_bib0020) 2019; 7
Olivas (10.1016/j.cmpb.2019.105016_bib0030) 2016
Rubini (10.1016/j.cmpb.2019.105016_bib0039) 2015; 5
Hush (10.1016/j.cmpb.2019.105016_bib0008) 1993; 10
Armaghani (10.1016/j.cmpb.2019.105016_bib0022) 2017; 63
Shi (10.1016/j.cmpb.2019.105016_bib0038) 1998
Dua (10.1016/j.cmpb.2019.105016_bib0034) 2019
Zeng (10.1016/j.cmpb.2019.105016_bib0014) 2016; 8
Zhang (10.1016/j.cmpb.2019.105016_bib0010) 2009; 212
Hagan (10.1016/j.cmpb.2019.105016_bib0011) 1994; 5
Olivas (10.1016/j.cmpb.2019.105016_bib0031) 2019; 476
González (10.1016/j.cmpb.2019.105016_bib0028) 2015; 42
Shahnazar (10.1016/j.cmpb.2019.105016_bib0024) 2017; 76
Irie (10.1016/j.cmpb.2019.105016_bib0003) 1988; 641
Lin (10.1016/j.cmpb.2019.105016_bib0005) 2004; 3264
Zeng (10.1016/j.cmpb.2019.105016_bib0017) 2018; 320
Melo (10.1016/j.cmpb.2019.105016_bib0027) 2016; 172
Nilashi (10.1016/j.cmpb.2019.105016_bib0043) 2017; 106
Mirjalili (10.1016/j.cmpb.2019.105016_bib0019) 2012; 218
Rashedi (10.1016/j.cmpb.2019.105016_bib0037) 2009; 179
Adeli (10.1016/j.cmpb.2019.105016_bib0009) 1994; 62
Zeng (10.1016/j.cmpb.2019.105016_bib0015) 2012; 9
10.1016/j.cmpb.2019.105016_bib0035
Cuckler (10.1016/j.cmpb.2019.105016_bib0002) 2018; 37
Salmeron (10.1016/j.cmpb.2019.105016_bib0026) 2017; 232
Kennedy (10.1016/j.cmpb.2019.105016_bib0036) 1995
Zhang (10.1016/j.cmpb.2019.105016_bib0012) 2007; 185
Koopialipoor (10.1016/j.cmpb.2019.105016_bib0025) 2019; 23
Er (10.1016/j.cmpb.2019.105016_bib0042) 2012; 38
Olivas (10.1016/j.cmpb.2019.105016_bib0032) 2016; 20
Toghyani (10.1016/j.cmpb.2019.105016_bib0021) 2016; 37
Valdez (10.1016/j.cmpb.2019.105016_bib0029) 2017; 52
Mukherjee (10.1016/j.cmpb.2019.105016_bib0044) 2018; 32
Sombra (10.1016/j.cmpb.2019.105016_bib0033) 2013
References_xml – start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0036
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN'95 - International Conference on Neural Networks, 1944
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib0011
  article-title: Training feed-forward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: bib0012
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feed-forward neural network training
  publication-title: Appl. Math. Comput.
– volume: 38
  start-page: 75
  year: 2012
  end-page: 81
  ident: bib0042
  article-title: An approach based on probabilistic neural network for diagnosis of Mesothelioma's disease
  publication-title: Comput. Electr. Eng.
– volume: 34
  start-page: 605
  year: 2016
  end-page: 620
  ident: bib0023
  article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique
  publication-title: Geotech. Geol. Eng.
– volume: 7
  start-page: 47841
  year: 2019
  end-page: 47855
  ident: bib0020
  article-title: A novel fuzzy-pso controller for increasing the lifetime in power electronics stage for brushless dc drives
  publication-title: IEEE Access
– volume: 476
  start-page: 159
  year: 2019
  end-page: 175
  ident: bib0031
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
– reference: , 1997.
– volume: 9
  start-page: 321
  year: 2012
  end-page: 329
  ident: bib0015
  article-title: A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– year: 2019
  ident: bib0034
  publication-title: UCI Machine Learning Repository
– volume: 90
  start-page: 27
  year: 1998
  end-page: 51
  ident: bib0006
  article-title: Approximating polynomial functions by feed-forward artificial neural networks: capacity analysis and design
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib0014
  article-title: Deep belief networks for quantitative analysis of gold immunochromatographic strip
  publication-title: Cognit. Comput.
– volume: 218
  start-page: 11125
  year: 2012
  end-page: 11137
  ident: bib0019
  article-title: Training feed-forward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
– start-page: 146
  year: 2016
  end-page: 151
  ident: bib0030
  article-title: A fuzzy system for dynamic parameter adaptation in gravitational search algorithm
  publication-title: IEEE Conf. on Intelligent Systems
– volume: 3264
  start-page: 3263
  year: 2004
  end-page: 3268
  ident: bib0005
  article-title: A self-adaptive quantum radial basis function network for classification applications
  publication-title: 2004 IJCNN (IEEE Cat. No.04CH37541)
– volume: 232
  start-page: 104
  year: 2017
  end-page: 112
  ident: bib0026
  article-title: Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets
  publication-title: Neurocomputing
– volume: 10
  start-page: 8
  year: 1993
  end-page: 39
  ident: bib0008
  article-title: Progress in supervised neural networks
  publication-title: IEEE Signal Proc. Mag.
– volume: 11
  start-page: 1457
  year: 2011
  end-page: 1466
  ident: bib0004
  article-title: Clustered-Hybrid multilayer perceptron network for pattern recognition application
  publication-title: Appl. Soft. Comput.
– volume: 641
  start-page: 641
  year: 1988
  end-page: 648
  ident: bib0003
  article-title: Capabilities of three-layered perceptrons
  publication-title: 2004 IJCNN
– volume: 14
  start-page: 76
  year: 1992
  end-page: 86
  ident: bib0013
  article-title: On the problem of local minima in backpropagation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 172
  start-page: 405
  year: 2016
  end-page: 412
  ident: bib0027
  article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network
  publication-title: Neurocomputing
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0037
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 8
  start-page: 143
  year: 2016
  end-page: 152
  ident: bib0016
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognit Comput
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: bib0022
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Space Technol.
– volume: 320
  start-page: 195
  year: 2018
  end-page: 202
  ident: bib0017
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
– volume: 5
  start-page: 49
  year: 2015
  end-page: 55
  ident: bib0039
  article-title: Generating comparative analysis of early stage prediction of chronic kidney disease
  publication-title: IJMER
– volume: 106
  start-page: 212
  year: 2017
  end-page: 223
  ident: bib0043
  article-title: An analytical method for diseases prediction using machine learning techniques
  publication-title: Comput. Chem. Eng.
– reference: W. Gulbinat, What is the role of WHO as an intergovernmental organisation in the coordination of telematics in health care?,
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0007
  article-title: Multilayer feed-forward networks are universal approximators
  publication-title: Neural Netw
– volume: 76
  start-page: 527
  year: 2017
  ident: bib0024
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environ. Earth Sci.
– volume: 23
  start-page: 5913
  year: 2019
  end-page: 5929
  ident: bib0025
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft, Comput.
– volume: 39
  start-page: 353
  year: 2018
  end-page: 358
  ident: bib0041
  article-title: Early stage chronic kidney disease diagnosis by applying data mining methods to urinalysis, blood analysis and disease history
  publication-title: IRBM
– volume: 62
  start-page: 81
  year: 1994
  end-page: 102
  ident: bib0009
  article-title: An adaptive conjugate gradient learning algorithm for efficient training of neural networks
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 1057
  year: 2016
  end-page: 1070
  ident: bib0032
  article-title: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic
  publication-title: Soft. Comput.
– start-page: 1068
  year: 2013
  end-page: 1074
  ident: bib0033
  article-title: A new gravitational search algorithm using fuzzy logic to parameter adaptation
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 5
  year: 2017
  ident: bib0040
  article-title: Classification of chronic kidney disease with most known data mining methods
  publication-title: IJASEAT
– volume: 37
  start-page: 482
  year: 2018
  end-page: 492
  ident: bib0002
  article-title: National health expenditure projections, 2017-26: despite uncertainty, fundamentals primarily drive spending growth
  publication-title: Health Aff. (Millwood)
– volume: 52
  start-page: 1070
  year: 2017
  end-page: 1083
  ident: bib0029
  article-title: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution
  publication-title: Appl. Soft Comput.
– volume: 42
  start-page: 5839
  year: 2015
  end-page: 5847
  ident: bib0028
  article-title: Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition
  publication-title: Expert Syst. Appl.
– reference: Mesothelioma’s disease data set Data Set, University of California Irvine mechanical learning database (2016).
– volume: 143
  start-page: 192
  year: 2018
  end-page: 207
  ident: bib0018
  article-title: An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feed-forward neural networks
  publication-title: Knowl.-Based Syst.
– volume: 32
  start-page: 293
  year: 2018
  end-page: 308
  ident: bib0044
  article-title: Malignant Mesothelioma disease diagnosis using data mining techniques
  publication-title: Appl. Artif. Intell.
– volume: 212
  start-page: 488
  year: 2009
  end-page: 498
  ident: bib0010
  article-title: An online gradient method with momentum for two-layer feed-forward neural networks
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 456
  year: 2016
  end-page: 468
  ident: bib0021
  article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine
  publication-title: Int. J. Ambient Energy
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0038
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings
– volume: 14
  start-page: 76
  year: 1992
  ident: 10.1016/j.cmpb.2019.105016_bib0013
  article-title: On the problem of local minima in backpropagation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.107014
– volume: 320
  start-page: 195
  year: 2018
  ident: 10.1016/j.cmpb.2019.105016_bib0017
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 63
  start-page: 29
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0022
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.12.009
– volume: 106
  start-page: 212
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0043
  article-title: An analytical method for diseases prediction using machine learning techniques
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.06.011
– volume: 641
  start-page: 641
  year: 1988
  ident: 10.1016/j.cmpb.2019.105016_bib0003
  article-title: Capabilities of three-layered perceptrons
– volume: 5
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0040
  article-title: Classification of chronic kidney disease with most known data mining methods
  publication-title: IJASEAT
– volume: 179
  start-page: 2232
  year: 2009
  ident: 10.1016/j.cmpb.2019.105016_bib0037
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 5
  start-page: 49
  year: 2015
  ident: 10.1016/j.cmpb.2019.105016_bib0039
  article-title: Generating comparative analysis of early stage prediction of chronic kidney disease
  publication-title: IJMER
– volume: 76
  start-page: 527
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0024
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6864-6
– volume: 476
  start-page: 159
  year: 2019
  ident: 10.1016/j.cmpb.2019.105016_bib0031
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.025
– volume: 7
  start-page: 47841
  year: 2019
  ident: 10.1016/j.cmpb.2019.105016_bib0020
  article-title: A novel fuzzy-pso controller for increasing the lifetime in power electronics stage for brushless dc drives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909845
– volume: 5
  start-page: 989
  year: 1994
  ident: 10.1016/j.cmpb.2019.105016_bib0011
  article-title: Training feed-forward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329697
– volume: 143
  start-page: 192
  year: 2018
  ident: 10.1016/j.cmpb.2019.105016_bib0018
  article-title: An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feed-forward neural networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.12.017
– volume: 37
  start-page: 456
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0021
  article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2014.986289
– volume: 185
  start-page: 1026
  year: 2007
  ident: 10.1016/j.cmpb.2019.105016_bib0012
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feed-forward neural network training
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 5913
  year: 2019
  ident: 10.1016/j.cmpb.2019.105016_bib0025
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft, Comput.
  doi: 10.1007/s00500-018-3253-3
– volume: 212
  start-page: 488
  year: 2009
  ident: 10.1016/j.cmpb.2019.105016_bib0010
  article-title: An online gradient method with momentum for two-layer feed-forward neural networks
  publication-title: Appl. Math. Comput.
– volume: 218
  start-page: 11125
  year: 2012
  ident: 10.1016/j.cmpb.2019.105016_bib0019
  article-title: Training feed-forward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl. Math. Comput.
– volume: 11
  start-page: 1457
  year: 2011
  ident: 10.1016/j.cmpb.2019.105016_bib0004
  article-title: Clustered-Hybrid multilayer perceptron network for pattern recognition application
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2010.04.017
– start-page: 1068
  year: 2013
  ident: 10.1016/j.cmpb.2019.105016_bib0033
  article-title: A new gravitational search algorithm using fuzzy logic to parameter adaptation
– volume: 42
  start-page: 5839
  year: 2015
  ident: 10.1016/j.cmpb.2019.105016_bib0028
  article-title: Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.03.034
– volume: 232
  start-page: 104
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0026
  article-title: Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.113
– ident: 10.1016/j.cmpb.2019.105016_bib0001
– start-page: 1942
  year: 1995
  ident: 10.1016/j.cmpb.2019.105016_bib0036
  article-title: Particle swarm optimization
– start-page: 146
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0030
  article-title: A fuzzy system for dynamic parameter adaptation in gravitational search algorithm
– volume: 62
  start-page: 81
  year: 1994
  ident: 10.1016/j.cmpb.2019.105016_bib0009
  article-title: An adaptive conjugate gradient learning algorithm for efficient training of neural networks
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 293
  year: 2018
  ident: 10.1016/j.cmpb.2019.105016_bib0044
  article-title: Malignant Mesothelioma disease diagnosis using data mining techniques
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2018.1451216
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.cmpb.2019.105016_bib0007
  article-title: Multilayer feed-forward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– year: 2019
  ident: 10.1016/j.cmpb.2019.105016_bib0034
– ident: 10.1016/j.cmpb.2019.105016_bib0035
– start-page: 69
  year: 1998
  ident: 10.1016/j.cmpb.2019.105016_bib0038
  article-title: A modified particle swarm optimizer
– volume: 39
  start-page: 353
  year: 2018
  ident: 10.1016/j.cmpb.2019.105016_bib0041
  article-title: Early stage chronic kidney disease diagnosis by applying data mining methods to urinalysis, blood analysis and disease history
  publication-title: IRBM
  doi: 10.1016/j.irbm.2018.09.004
– volume: 8
  start-page: 684
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0014
  article-title: Deep belief networks for quantitative analysis of gold immunochromatographic strip
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-016-9404-x
– volume: 8
  start-page: 143
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0016
  article-title: A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay
  publication-title: Cognit Comput
  doi: 10.1007/s12559-016-9396-6
– volume: 38
  start-page: 75
  year: 2012
  ident: 10.1016/j.cmpb.2019.105016_bib0042
  article-title: An approach based on probabilistic neural network for diagnosis of Mesothelioma's disease
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2011.09.001
– volume: 9
  start-page: 321
  year: 2012
  ident: 10.1016/j.cmpb.2019.105016_bib0015
  article-title: A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2011.140
– volume: 34
  start-page: 605
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0023
  article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-015-9970-9
– volume: 90
  start-page: 27
  year: 1998
  ident: 10.1016/j.cmpb.2019.105016_bib0006
  article-title: Approximating polynomial functions by feed-forward artificial neural networks: capacity analysis and design
  publication-title: Appl. Math. Comput.
– volume: 52
  start-page: 1070
  year: 2017
  ident: 10.1016/j.cmpb.2019.105016_bib0029
  article-title: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.024
– volume: 37
  start-page: 482
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2019.105016_bib0002
  article-title: National health expenditure projections, 2017-26: despite uncertainty, fundamentals primarily drive spending growth
  publication-title: Health Aff. (Millwood)
  doi: 10.1377/hlthaff.2017.1655
– volume: 172
  start-page: 405
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0027
  article-title: Gaussian-PSO with fuzzy reasoning based on structural learning for training a neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.104
– volume: 3264
  start-page: 3263
  year: 2004
  ident: 10.1016/j.cmpb.2019.105016_bib0005
  article-title: A self-adaptive quantum radial basis function network for classification applications
– volume: 10
  start-page: 8
  year: 1993
  ident: 10.1016/j.cmpb.2019.105016_bib0008
  article-title: Progress in supervised neural networks
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/79.180705
– volume: 20
  start-page: 1057
  year: 2016
  ident: 10.1016/j.cmpb.2019.105016_bib0032
  article-title: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-014-1567-3
SSID ssj0002556
Score 2.3453867
Snippet •Particle swarm optimization (PSO) and a gravitational search algorithm (GSA) were used to optimize the weights and biases of a FNN.•The chronic kidney disease...
A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105016
SubjectTerms Algorithms
Artificial neural network
Chronic kidney disease
Data Mining
Diagnostic Errors - prevention & control
Fuzzy Logic
Gravitational search algorithm
Humans
Lung Neoplasms - diagnosis
Machine Learning
Mesothelioma - diagnosis
Mesothelioma disease
Mesothelioma, Malignant
Neural Networks, Computer
Particle swarm optimization
Renal Insufficiency, Chronic - diagnosis
Title Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260719304614
https://dx.doi.org/10.1016/j.cmpb.2019.105016
https://www.ncbi.nlm.nih.gov/pubmed/31442736
https://www.proquest.com/docview/2280552642
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISFeEONnYUxG4o2Zpk2cxI_TxFRA2wtM2ltkx2fo1CZRmwqxB_6Z_aO7s51OSDAknqpGPsX1nc9fmu--Y-xtUlqpFGgxgVKKzNpCGKNBWJkXqXM6db4XwelZPjvPPl3Iix12PNTCEK0y5v6Q0322jlfGcTXH3Xw-_kI6IlOSR1NeNZw0QbOsoC4G73_d0jxIYivoeytBo2PhTOB41cvOEL1LUbvbhHqe__lw-hv49IfQySP2MKJHfhQmuMd2oHnM7p_G9-NP2DVub-NbPnDNqbNQVOBGmxDSXC--tat5_315yLv4O_n6h14teYvJYxmrMg-5bix3m6urn3y1WcCa9y2f-_8fgCNk5DWBbmIZ-eG8uy0_4K3Dezs8FAVeIk4uJ81MnEETGOdP2fnJh6_HMxHbMIgan_Z64RJnpzCpdS7BIpo0VmWmMKUpAZRLZAnG6RzSLIdE6tQaizDHgE1VbhPnbPqM7TZtAy8YRwfgrjRq4qDIdO4MAUAfD_iR1MWITYb1r-q4QtQqY1ENZLTLinxWkc-q4LMRe7e16YJCx52j08Gt1VB7itmywgPkTiu5tfotOv9p92aInAq3Lb2L0Q20m3VFKkRSIhqdjtjzEFLb2af4kIuoMn_5n3d9xR7Qt0A53Ge7_WoDrxE69ebA740Ddu_o4-fZ2Q0gjxvv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGkGAvaPwubGAk3php2sRJ_IimTQXWvbBJe7Ps2B5FbRK1qSb2wD_DP8qd7XRCgiHxFMnxKY7vfP6c3H1HyNukNFwIq9jIlpxlxhRMa2WZ4XmROqdS52sRTE_zyXn26YJfbJHDPhcGwyqj7w8-3Xvr2DKMszlsZ7PhF-QRGSM9mvCs4dkdcjfj4wJPYO9_3MR5IMdWIPgWDLvHzJkQ5FUtWo3xXQLr3SZY9PzPu9Pf0KffhY53yYMIH-mHMMKHZMvWj8i9afxB_pj8hPWtfc0HqiiWFooU3CATbJqq-WWznHVfFwe0jS9KV1dquaANeI9FTMs8oKo21K2vr7_T5XpuV7Rr6Mx_gLAUMCOtEHVjmJHvTtub_APaOHi2g12RQRMG5VIkzYQR1CHk_Ak5Pz46O5ywWIeBVXDc65hLnBnbUaVybg3ASW1Epgtd6tJa4RJeWu1UbtMstwlXqdEGcI62JhW5SZwz6VOyXTe1fU4oKACWpRYjZ4tM5U4jAvQGAZekKgZk1M-_rOIMYa2Mueyj0b5J1JlEncmgswF5t5FpA0XHrb3TXq2yTz4FdylhB7lVim-kfjPPf8q96S1HwrrFnzGqts16JZGGiHOAo-MBeRZMajP6FE65ACvzF__51Nfk_uRseiJPPp5-fkl28E6IP9wj291ybfcBR3X6lV8nvwB_2h2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+a+gravitational+search+algorithm%2C+particle+swarm+optimization%2C+and+fuzzy+rules+to+improve+the+classification+performance+of+a+feed-forward+neural+network&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Huang%2C+Mei-Ling&rft.au=Chou%2C+Yueh-Ching&rft.date=2019-10-01&rft.eissn=1872-7565&rft.volume=180&rft.spage=105016&rft_id=info:doi/10.1016%2Fj.cmpb.2019.105016&rft_id=info%3Apmid%2F31442736&rft.externalDocID=31442736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon